掺锶羟基磷灰石对成骨细胞生物学行为的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
掺锶羟基磷灰石(Sr-HA)因锶元素的掺入对其性能产生重要影响,与目前广泛使用的羟基磷灰石(HA)相比,提高了其降解速率与力学性能,此外,低剂量的Sr还具有促进骨形成,抑制骨吸收等优点。
     本实验采用微弧氧化法对纯钛表面进行改性处理,在其表面形成不同掺锶浓度的羟基磷灰石涂层,并在一定的掺锶浓度下选取三个不同的微弧氧化时间对纯钛表面进行处理,形成锶浓度相同但具有不同表面性状的涂层结构。观察不同涂层表面的物理和化学性质,并且通过体外细胞学实验对涂层的生物安全性和成骨细胞在材料表面的生物学行为进行研究,为优化锶浓度、表面处理工艺以及涂层结构提供理论依据。
     研究方法:
     1.采用扫描电镜观察涂层表面形貌,采用能谱分析仪分析涂层的化学成分,采用X射线衍射分析涂层的物相组成,采用粗糙度测量仪测量涂层表面粗糙程度及采用接触角测量仪测量表面液体的接触角。
     2.根据国家质量技术监督局参照ISO10993标准发布的GB/T16886国家医疗器械生物学评价标准,用L929成纤维细胞与不同锶浓度涂层的浸提液复合培养,检测各个锶浓度组的细胞毒性。
     3.采用原代培养的成骨细胞观察不同涂层对细胞附着、增殖、细胞形态和碱性磷酸酶(ALP)活性的影响,用Real-time PCR方法检测不同表面成骨细胞相关基因的表达水平。
     结果:
     1.通过改变微弧氧化电解液中[Sr/(Sr+Ca)]比例,可以在纯钛表面形成不同掺锶浓度的Sr-HA涂层,随着Sr的掺入,涂层表面HA逐渐被Sr-HA替代。不同掺锶浓度的Sr-HA涂层表面的液体接触角没有显著差异(P>0.05)。
     2.不同掺锶浓度试样表面细胞毒性评级均为0级或1级,锶元素的掺入没有产生明显的细胞毒性,但随着掺锶量的增加,细胞相对增殖率有轻微下降的趋势。
     3.成骨细胞在掺锶浓度为15.15%和23.78 %组涂层表面的附着和增殖明显高于掺锶浓度为2.22 %和7.24%组(P<0.05)。掺锶浓度为2.22%和7.24%组表面成骨细胞7d的ALP活性高于掺锶浓度为15.15%和23.78%组(P<0.05)。3d成骨细胞形态观察显示在不同掺锶浓度组表面成骨细胞附着和伸展状良好,表面分泌颗粒丰富,呈现良好的功能状态。
     4.Realtime PCR结果显示:在细胞培养72h后掺锶浓度为7.24%组表面成骨细胞的骨形成蛋白(BMP)和Runx-2表达增加,掺锶浓度为23.78%组表面成骨细胞骨钙素(OCN)的表达增加,不同掺锶浓度组对骨桥蛋白(OPN)的表达无明显影响。
     5.延长微弧氧化时间可以使涂层表面粗糙度增大,去离子水的接触角变小。此外,微弧氧化电解液中的Ca和P可以被整合到表面氧化层中且其含量随着微弧氧化时间的延长而增加。
     6.成骨细胞在材料表面培养60min和90min时,微弧氧化10min和15min组的细胞附着明显高于5min组(P<0.05)。成骨细胞在5min组增殖速度最快,15min组增殖速度最慢。微弧氧化10min和15min组成骨细胞72h的ALP活性高于5min组(P<0.05)。
     7. 3d成骨细胞形态观察显示不同微弧氧化时间组表面成骨细胞均表现为细胞表面分泌颗粒丰富,细胞通过板状和丝状伪足锚定在基底材料表面;在相对光滑的Ti6Al4V表面,细胞伸展及连续细胞层的形成优于粗糙表面,但是细胞的立体感不强,表面分泌颗粒少。
     8. Realtime PCR结果显示在细胞培养72h后,微弧氧化10min和15min组表面成骨基因BMP和OCN的表达增加,各时间组表面对基因OPN和Runx-2的表达没有明显的影响。
     结论:微弧氧化处理10min-15min形成的掺锶浓度为15.15%-23.78 %的Sr-HA涂层能更好的促进成骨细胞的附着、增殖和分化。
Strontium-containing hydroxyapatite(Sr-HA) has higher solubility and better mechanical properties because of the incorporation of strontium comparing to the pure HA and pure titanium. Additionally, low doses strontium can stimulate bone formation and reduce bone resorption .
     We developed Sr-HA coatings with different doses of strontium on titanium substrates by micro-arc oxidation (MAO) method, and chose three MAO time length to developing different surface topography. The aim of this study is to observe the properties of the films and investigate the cytotoxicity and osteoblast biocompatibility of the coatings.
     Methods:
     The surface morphology of the coatings was analyzed by scanning electron microscope (SEM).The element composition and phase component were analyzed with energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). Surface roughness and contact angle were measured using a surface profilometer and a contact angle measuring system.
     According to the GB and YY-T, L929 fibroblasts of mouse were used in MTT assay to examine the cytotoxicity of Sr-HA containing different strontium concentrations. Osteoblast cell adhesion and proliferation were examined by the MTT method and alkaline phosphatase (ALP) activity was assessed using test kits. The gene expression of several osteogenesis-related genes was surveyed by Realtime-PCR method.
     Results:
     1. Sr-HA coatings with different doses of strontium on titanium substrates can be developed by changing the proportion of [Sr/(Sr+Ca)] in the MAO electrolytes. HA was substituted by Sr-HA with the incorporation of strontium. The water contact angles had no significant deviation (P>0.05).
     2. The toxicity gradation of all groups was 0—1. Strontium incorporation did not induce obvious cytotoxicity, but the relative growth ratio slightly declined with the increase of strontium concentration.
     3. Samples containing 15.15% and 23.78% strontium enhanced osteoblast adhesion and proliferation while 7.24% Sr-HA increased the values of ALP activity after 7 d culture (P<0.05).After 3-d culture, on the Sr-HA coatings osteoblasts exhibited a good spreading and proliferation morghology.
     4. After 72h culture, the gene expression of BMP and Runx2 were increased on the Sr-HA coatings containing 7.24% strontium, while the expression of OCN was enhanced on the coating containing 23.78% strontium. No obvious variations in gene expression of OPN was observed on different strontium doses coatings.
     5. After prolonging the MAO time length, the coatings’surface morghology became more irregular, surface roughness was enhanced and water contact angles became smaller. Ca and P in the MAO electrolytes were incorporated into the oxidized coatings.
     6. MAO 10min and 15min coatings enhanced osteoblast adhesion after 60min and 90min-culture(P<0.05). Osteoblast exhibited fastest proliferation rate on the 5min surface, while lowest on the 15min surface. MAO 10min and 15min surface increased the values of ALP activity after 72h culture (P<0.05).
     7. After 3-d culture, osteoblast on MAO surfaces exhibited the typical osteoblast phenotype, the cells displayed lamellipodia and filopodia extensions, while on the Ti6Al4V surface cells were relatively flatter and displayed less functional morghology.
     8. After 72h culture, the gene expression of BMP and OCN were increased on the Sr-HA coatings after 15min MAO treatment. No obvious variations in gene expression of OPN and Runx2 were observed on different MAO time length treatments.
     Conclusions:
     Sr-HA coatings containing 15.15%—23.78% strontium after 10min—15min MAO treatment have better surface properties which favor the cell adhesion, proliferation, ALP activity and gene expression of osteoblast.
引文
[1] Shinobu Y, Investigation of bones remodeling by resorbable bioactive glass. Dental Material and Devices,1997,16(5):415-419.
    [2] S.Pors Nielsen. Biological role of strontium. Bone2004;35:583-588
    [3] Christoffersen J, Christoffersen MR, N.Kolthoff,et al.. Effects of strontium ions on growth and dissolution of hydroxyapatite and on bone mineral detection. Bone 1997;20:47-54.
    [4] Weichang Xue, Howard.Hosick, Amit Bandyopadhyay,et al. Preparation and cell-materials interaction of plasma sprayed strontium-containing hydroxyapatite coating. Surface&Coating Technology 2007;201:4685- 4693.
    [5] C.Capuccini, P.Torricelli, F.Sima,et al., Strontium-substituted hydroxya patite coatings synthesized by pulsed-laser deposition :In vitro osteoblast and osteoclast response. Acta Biomaterialia 2008;4: 1885-1893.
    [6]傅远飞,陈德敏。不同含锶量的掺锶羟基磷灰石陶瓷细胞毒性评价.现代口腔医学杂志,2003,17(6):501-504.
    [7]储成林,朱景川,尹钟大.医用钛合金及其表面改性.材料科学与工程,1998,6(2):40-43.
    [8] Van Noort R. Review titanium: the implant materials of today. Mater Sci.1989;22:3801-3811.
    [9] Branemark PI. Osseointegration and its experimental background. Prosthet Dent.1983;50:399-403.
    [10]张阳德,乐园,赵梓讫。羟基磷灰石骨修复材料。中国现代医学杂志,2006,1,16(1):72-75。
    [11]牛宗伟,张建华,任升峰等。羟基磷灰石人工骨研究进展与展望。硅酸盐通报,2004,6:71-74.
    [12] Oreffo R O,Driessens F C,Josep A.Planell,et al. Growth and differentiation of human bone marrow osteoprogenitors on novel calcium phosphate cements.Biomaterials,1998,19(20):1845-1854.
    [13] Okazaki M, Miake, Tonhda H,et al. Functionally graded fluoridate apatite.Biomaterials,1999,20(15):1421-1426.
    [14] .Miyazaki K, Horibe T, Antonucci JM,et al. Polymeric calcium phosphate cements: analysis of reaction products and properties. Dent Mater,1993,9 (1):41-45.
    [15] Ignjatovic N,Tomic S,Dakic M,et al. Synthesis and properties of hydroxyapatite/poly-L-Lacitide composite. Biomaterials,1999,20(2):809- 816.
    [16] Lu L, Mikos A. The importance of new processing techniques in tissue engineering. Materials Research Society Bull,1996,21(11):28-32.
    [17] .Miyamoto Y,Ishikaway K,Takechi M, et al. Basic properties of calcium phosphate cement containing atelocollagen to powder phases.Biomateri- als,1998,1(7-9):707-715.
    [18] .Kamegai A,Shimamurs N,Naitou K,et al. Bone formation under the influence of bone morphogenetic protein/self-setting apatite cement composite as a delivery system. Biomed Mater Eng ,1994,4(4):291-307.
    [19]黄国涛,刘文革,倪国新。锶对成骨及破骨细胞生物学特性的影响。中国组织工程研究与临床康复,2008,11,12(46),9113-9116。
    [20] Berterand Naveau. Strontium : a new treatment for osteoporosis . Joint Bone Spine 2004;71(4):261-263.
    [21] Cabrera WE,Schrooten I,De Broe ME, et al. Strontium and bone. Bone Miner Res,1999,14:661-668.
    [22] Okaayama S, Akao M, Nakamura S,et al. The mechanical properties and solubility of strontium substituted hydroxyapatite. Biomed Mater Eng, 1991,1(1):11-17
    [23]陈德敏,傅远飞。不同含锶量的掺锶羟基磷灰石固溶体机械性能评价。口腔材料器械杂志,2001,10(4):178-179.
    [24] Li YW , Leong JCY, Lu WW, et al. A novel injectable bioactive cement for spinal surgery: a developmental and preclinical study. Biomedical Material Research.2000;52:164-170.
    [25]陈德敏,傅远飞,顾国珍等.掺锶磷灰石固溶体的制备及降解度测定.中国生物医学工程学报,2001,(20)3:278一280.
    [26] Yu-Peng Lu, Mu-Sen Li, Shi-Tong Li,et al. Plasma-sprayed hydroxyapatite titania composite bond coat for hydroxyapatite coating on titanium substrate.Biomaterials,2004;25:4399-4403.
    [27] D.G.Wang, C.Z. Chen , J. MA,et al. In situ synthesis of hydroxyapatite coating by laser cladding. Colloids and Surfaces B: Biointerfaces,2008,66 (2),155-162.
    [28] L.G.Yu ,K.A.Khor, H.Li,et al. Effect of spark plasma sintering on microstructure and in vitro behavior of plasma sprayed HA coatings.Bio materials,2003,24(16),2695-2705.
    [29] J.L.Ong, L.C.Lucas ,W.R.Lacefield,et al. Structure, solubility and bond strength of thin calcium phosphate coatings produced by ion beam sputter deposition. Biomaterials ,1992,13(4),249-254.
    [30] S.Salman, O.Gunduz, S.Yilmaz, et al. Sintering effect on mechanical properties of composites of natural hydroxyapatite and titanium. Ceramics International ,2009,35(7),2965-2971.
    [31] Hae-Won Kim, Young-Hag Koh, Long-Hao Li,et al. Hydroxyapatite coating on titanium substrate with titania buffer layer processed by sol-gel method.Biomaterials,2004,25(13),2533-2538.
    [32] Takamasa Onoki, Kazuyuki Hosoi, Toshiyuki Hashida.. New technique for bonding hydroxyapatite ceramics and titanium by the hydrothermalhot-pressing method. Scripta Materialia 2005,52(8),767-770.
    [33] Allison A Campbell, John C Linehan. Surface-induced mineralization A new method for producing calcium phosphate coatings.Biomataerials,1996, 9,32(1) 111-118.
    [34] X.Cui, H-M.Kim, M.Kawashita,et al. Preparation of bioactive titania films on titanium metal via anodic oxidation. Dental Materials,2009,25(1),80-86.
    [35]王迎军,李尚周等。生物活性陶瓷涂层制备工艺的比较研究。生物医学工程杂志,1999,16(增刊),7-9。
    [36] Jifeng Sun,Yong Han,Xin Huang. Hydroxyapatite coatings prepared by micro-arc oxidation in Ca-and-P containing electrolyte. Surface and Coating Technology2007;201: 5655-5658.
    [37] Li Jianxue,Zhang Yumei,Wu Guofeng,et al. Effects of microarc oxidation treatment on bonding strength of titanium-procelain composite. Rare Metal Materials and Engineering 2008,37(3):495-498.
    [38] Yong Han, Jifeng Sun, Xin Huang. Formation mechanism of HA-based coatings by microarc oxidation. Electrochemistry Communications 2008;10:510-513.
    [39] Yaming Wang,Tingquan Lei,Bailing Jiang,et al. Growth, microstructure and mechanical properties of microarc oxidation coatings on titanium alloy in phyosphate-containing solution. Applied Surface Science,2004;233:258- 267
    [40] Yaming Wang,Tingquan Lei,Bailing Jiang,et al. Dependence of growth features of microarc oxidation coatings of titanium alloy on control modes of alternate pulse. Materials Letters,2004;58:1907-1911.
    [41] S. Aota, M. Nomizu , K.M. Yamada.The Short Amino-Acid-Sequence Pro-His-Ser-Arg-Asn in Human Fibronectin Enhances Cell-Adhesive Function. Bio Chemical 1994;269: 24756–24761.
    [42]薛文斌,邓志威,来永春等。有色金属表面微弧氧化技术评述。金属热处理,2000,25(1):1-3.
    [43]蒋百灵,徐胜,时惠英等。电参数对钛合金微弧氧化生物活性陶瓷层钙磷成分的影响。中国有色金属学报,2005,15(2):264-266.
    [44] Song WH,Jun YK,Han Y,er al. Biomimetic apatite coatings on micro-arc oxidized titania. Biomaterials.2004;25(17):3341-3349.
    [45] Yong Han,Seong-Hyeon Hong,Kewei Xu. Structure and in vitro bioactivity of titania-based films by micro-arc oxidation. Surface and Coatings Technology 2003;168:249-258.
    [46] Chen JZ,Yu-long Shi YL,Wang L, et al. Preparation and properties of hydroxyapatite-containing titania coating by micro-arc oxidation. Materials Letters,2006,60(20):2538-2543.
    [47] Ellingsen JE. A study on the mechanism of protein adsorption to TiO2.Biomaterials,1991,12(6):593-596.
    [48] Kandori K,Sawai S,Yamamoto Y,Saito H,et al. Adsorption of albumin an calcium hydroxyapatite. Colloid and Surface,1992,68(4):283-289.
    [49] Carinci F, Pezzetti F,Volinia S, et al. Analysis of osteoblast-like MG63 cell’s response to a rough implant surface by means of DAN microarray. Oral Implantol,2003,29(5):215-20.
    [50] Kasemo B. Biocompatibility of titanium implants: surface science aspects. Proth Dent,1983,49(6):823-827.
    [51] Links J,Boyan BD,Blanchard CR,et al. Response of MG63 osteoblast-like cells to titanium and titanium alloy is dependent on surface roughness and composition.Biomaterials,1998,19(23):2219-2232.
    [52]李峰,刘斌,赵信义等。含锶磷酸钙骨水泥的细胞毒性。中国现代医学杂志,2006,16(20).
    [53]司徒镇强,吴军正主编。细胞培养技术。西安。世界图书出版社。1996.P115.
    [54] Josee Coulombe,Helene Faure,Bruno Robin,et al. In vitro effects of strontium ranelate on extracellular calcium-sensing receptor. Biochemical and Biophysical Research Communications 2004;323:1184-1190.
    [55] Chengtie Wu, Yogambha Rsmaswamy, Danielle Kwik,et al .The effect of strontium incorporation into CaSiO3 ceramics on their physical and biological properties. Biomaterials 28(2007) 3171-3181.
    [56] R. Lange, F. Luthen, U. Beck, et al., Cell-extracellular matrix interaction and physico-chemical characteristics of titanium surfaces depend on the roughness of the material. Biomol Eng 19 (2002):255–261.
    [57]黄辉,马轩祥,付涛。生物材料表面固定黏附肽调节小鼠成骨细胞骨钙素的表达。实用口腔医学杂志,2001,17(2):86-88
    [58]孙婕,刘宁,尹国友。骨桥蛋白与生物矿化。中国骨质疏松杂志,2008,5,14(5):360-363.
    [59]李建学,张玉梅,憨勇等,不同时间对钛表面微弧氧化处理后与瓷结合强度的影响,第四军医大学学报,2006;27(23)
    [60] Borgs De Conick J,Kotecky R. Does the roughness of the substrate enhance wetting? Phys Rev Lett 1995;74;2292-4
    [61] Xiaolong Zhu, Jun Chen ,Lutz Scheideler. Effects of topography and composition of titanium surface oxides on osteoblast responses. Biomaterias 25(2004)4087-4103.
    [62] Lim.Y. J Oshida.Y . Surface characterization of variously treated titanium materials. Oral Maxillofac, Implants 2002;16,333-342
    [63] Keller JC,SchneiderG,Stanford CM,et al. Effects of implant microtopograghy on osteoblast cell attachment.Implant Dent,2003, 12(2):175-181.
    [64] Hallab N J,Bundy K J,O'Connor K,et al .Evaluation of Metallic and Polymeric Biomaterial Surface Energy and Surface RoughnessCharacteristics for Directed Cell Adhesion. Tissue Engineering.2001; 7(1):55-71
    [65] D.D.Deligianni,N.Katasala,S.Ladas,et al. Effect of surface roughness of titanium alloy Ti6Al4V on human bone marrow cell response and protein adsorption. Biomaterials 2001;22:1241-1251.
    [66] K.Anselme .Osteoblast adhesion on biomaterials .Biomaterials2000;21: 667-681.
    [67] Martin JY,Schwartz Z, Hummert TW, et al .Effect of titanium surface roughness on proliferation ,differentiation and protein synthesis of human osteoblast-like cells (MG63);Biomed Mater Res 1995 ;29(3):389-401.
    [68] K.Hatano,H.Inoue,T.Kojo,et al. Effects of surface roughness on proliferation and alkaline phosphatase expression of rat callvarial cell culture on polystyrene. Bone1999.,25(4):439-445.
    [69] Schwart Z,J.Lincks ,Boyan BD,et al. Response of MG63 osteblast-like cells to titanium and titanium ally is dependent on surface roughness and composition. Biomaterials 19(1998)2219-2232.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700