钒酸盐非线性光学晶体的设计、合成与生长研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
非线性光学晶体材料的研究一直备受材料学者的关注,近年来,钒酸盐非线性光学晶体的研究开始引起人们的注意。由于具有高价态的d0电子组态的过渡金属离子易受二阶Jahn-Teller效应影响,在含有MO6n-离子的理想的八面体配位场中,HOMO和HOLO轨道杂化将会使HOMO能级下降,体系更加稳定,它驱使MO_6~(n-)基团沿着正八面体的二次、三次或四次轴方向发生畸变,从而形成不对称的结构,有利于形成非中心对称结构的晶体。钒极易与氧结合形成钒氧多面体且易发生畸变,因此钒作为二阶非线性晶体材料中重要的元素应受到广泛的关注。
     红外非线性光学晶体K_3V_5O_14的结构早已经见诸报道,但是最近几年才有学者对其性质进行陆续的研究。本论文利用坩埚下降法对其进行了生长实验,通过高温固相法和液相法分别对多晶原料进行了合成。经过X-射线粉末衍射图证实,高温固相法合成原料纯度比较高,可用于K_3V_5O_14的生长。生长得到的晶体为多晶棒,但是里面包含质量比较好的片状单晶,可以作为下次生长的籽晶。对所得晶体的光、热、倍频等性质进行了测定,结果表明:K_3V_5O_14在1000-4000 cm~(-1)透过率高达85%;采用TG-DTA测定其熔点为413℃;激光倍频实验得出K_3V_5O_14晶体的倍频系数为KDP的3.7倍,是一种比较好的二阶非线性光学晶体。并且对晶体的成分进行了深入的分析。
     利用Rb_2CO_3与V_2O_5,通过高温固相反应得到了一种与K_3V_5O_14异质同晶的化合物Rb_3V_5O_14。Rb_3V_5O_14属于三斜晶系,P31m空间群,晶胞参数为:由V50143-结构单元形成了二维层状结构,Rb~+填充在层与层之间。通过X-射线粉末衍射图谱证实合成所得产物为Rb_3V_5O_14纯相。Rb_3V_5O_14具有非中心对称的晶体结构,经过粉末倍频测试,非线性光学系数约为KDP的4.2倍;在1100-4000 cm~(-1)的透过率高达80%以上;熔点为398℃。
     利用C_s2CO_3与V_2O_5,通过高温固相反应得到了一种新的的化合物CsV_2O_5。CsV_2O_5属于正交晶系,Ima2空间群,晶胞参数为:a通过磁性测试与顺磁共振测试证明了该化合物中含有一个正四价的钒原子,且V~(4+)和V~(5+)都与氧形成钒氧四面体结构。对所得晶体的光、热、倍频等性质进行了测定,结果表明:C_sV_2O_5在1000-7500 cm~(-1)透过率高达85%;其熔点为455℃;激光倍频实验得出该晶体的倍频系数为KDP的8.1倍,可以做为一种潜在的红外非线性光学晶体材料。另外,利用坩埚下降法对其进行了生长实验。
In recent years, researches have been paid much attention to researches on nonlinear optical crystal materials, thus researches on nonlinear optical vanadate crystal began to attract professor's eyes. Transition metal ions with a high-valent d0 electronic configuration was affected by second-order Jahn-Teller, in the ideal octahedral field that containing MO6n-, HOMO and HOLO changing their own orbital makes HOMO energy level lower and makes the system more stable, which makes MO6n- group along the octahedron occurs for two times, three times or even four times to form the asymmetric structure that is conducive to the formation of noncentrosymmetrical crystal structure. Vanadium can easily combine with oxygen to form vanadium-oxygen polyhedron and prone to distortion, so vanadium as important element of second-order nonlinear crystal materials should be widely concerned.
     It has been reported the structure of K_3V_5O_14, a kind of infrared nonlinear optical crystal, but few scholars did research on its properties until recent years. Using the Bridgman-Stockbarger method to make a research experiment on its growth, we have succeeded in synthesizing polycrystalline materials by high-temperature solid-phase method and liquid-phase method. After X-ray powder diffraction pattern confirmed that the high-temperature solid-phase synthesis can make relatively high purity of raw materials, which can be used in growthing the K_3V_5O_14. The crystals grow to be a multi-crystal rod, but which contains a relatively good quality single crystal flakes that can be used as the seed of growth. The obtained crystals were measured including light, heat, SHG and other properties, results showed that: K_3V_5O_14 transmission rate is up to 85% in the 1000-4000cm-1; its melting point is 413℃determined by using TG-DTA; the second harmonic output intensity of K_3V_5O_14 was 3.7 times as large as KDP, which is a good second-order nonlinear optical crystal. In addition, I make an in-depth analysis on the composition of the crystals.
     A new compound of Rb_3V_5O_14 has been prepared by reaction of Rb2CO3 and V2O5, through the high-temperature solid-phase method, which was similar to K_3V_5O_14. The X-ray single-crystal showed that Rb3V5014 crystallizes in a triclinic space group P31m with it can be viewed as a layered compound of V50143- unit that are capped by Rb+. By X-ray powder diffraction patterns, it is confirmed that the resultant of reaction is synthetic Rb3V5014 pure phase. Rb_3V_5O_14 is noncentrosymmetric crystal structure, after Second harmonic generation measurements, nonlinear optical coefficient was about 4.2 times of the KDP: its transmission rate is also up to 80%; its melting point is 398℃.
     A new compound of C_sV_2O_5 has been prepared by reaction of Cs2CO3 and V2O5, through high-temperature solid-phase method, the resultant of reaction is a kind of new compound C_sV_2O_5. C_sV_2O_5 belongs to orthorhombic system, Ima2 space group , unit cell parameters: By paramagnetic resonance test and magnetic test, it is proved that the compound contains a series of tetravalent vanadium atoms, thus V4+and V5+are existed by combining with oxygen to form tetrahedral structure of vanadium oxide. The obtained crystals were measured including light, heat, SGH and other properties, results showed that: C_sV_2O_5 transmission rate is up to 85% in the 1000-4000 cm~(-1); its melting point is 455℃determined by using TG-DTA; the second harmonic output intensity of C_sV_2O_5 was 8.1 times as large as KDP, which can serve as a potential infrared nonlinear optical crystal materials. In addition, a growth experiment of it has made by using the Bridgman-Stockbarger method.
引文
[1]李湘洲.材料与材料科学.科学出版社, 1984: 60.
    [2]张克从,王希敏.人工晶体的发展.人工晶体学报, 1998, 31(3): 230-237.
    [3] J. L. Luce, K. I. Schaffers, D. A. Keszler. Structure of the borate Li14Be5B(BO3)9. Inorganic Chemistry, 1994, 33: 2453-2455.
    [4] R. Norrestam. The crystal structure of monoclinic LiMgBO3. Zeitschrift fuerKristallo grap hie, 1989, 187: 103-110.
    [5] M. Schlaeger, R. Hoppe. Darstellung und Aufbau von BaLi(BO3). Zeitschrift fuer Anorganische und Allgemeine Chemie, 1993, 619: 976-982.
    [6]张克从,王希敏.非线性光学晶体材料科学.科学出版社, 2005: 79.
    [7] CHEN Chang-Zhang(陈长章), CHEN Chuang-Tian(陈创天), GAO Dong-Shou(高冬寿). Proceedings of the Fifth Chinese Crystal Growth(五次全国晶体生长会议文集), Beijing , 1979. 44.
    [8] CHEN Chuang-Tian(陈创天), WU Bo-chang(吴柏昌), JIANG Ai-Dong(将爱栋). Zhong guo Ke xue B in China Ser. 1984, 7: 598-601.
    [9] CHEN Chuang—Tian(陈创天), WU Bo-Chang(吴柏昌). Zhong guo Ke xue yuan Yuan kan of Chbt. J. chin. Acad. of Sci, 1999, 6: 456-457.
    [10]张克从,王希敏.非线性光学晶体材料科学(第二版).北京:科学出版社, 2005: 26.
    [11] D. A. Kleinman. Theory of second harmonic generation of light. Physical Review, 962, 128(4): 1761-1775.
    [12]梁栋材. X射线晶体学基础.北京:科学出版社, 1991.
    [13]张克从,王希敏.非线性光学晶体材料科学(第二版).北京:科学出版社, 2005年1月: 80.
    [14]朱世富、李正辉等.硒镓银单晶体的生长及其应用.人工晶体学报, 1993, (3):296-299.
    [15]杨春晖,张建.新型中、远红外波段非线性光学晶体磷化锗锌.人工晶体学报, 2004, 33(2): 141-143.
    [16] Yokotani A, Nishida Y, Fujioka K, et al. A chromogenic limulus test for detection of microbes that decreases the laser damage threshold of potassium dihydrogen phosphate crystals.J.Appl. Phys Lett, 1987, 61 (9): 4696-4698.
    [17]王希敏,刘富强,张克从.高激光损伤阈值KDP晶体的生长.人工晶体学报,1992, 21(3): 286-294.
    [18]温金珂,汪洪.朱亚平等. MG: Fe;NiNbO3晶体的光折变和光生伏特效应.人工晶体学报,1989, 18(3): 222-224.
    [19]孔勇发,许京军,李冠等.优良全息光折变存储材料—双掺铌酸锂晶体.人工晶体学报, 2002, 31(3): 310-313.
    [20]孙敦陆,杭寅,张连瀚等.化学计量比LiNbO3晶体的畴结构及完整性研究.人工晶体学报, 2002, 31(3): 314-317.
    [21] Xuean Chena, Li Zhang , Xinan Chang, etal. LiMoO3(IO3): A new molybdenyl iodate based on WO3-type sheets with large SHG response. Journal of Alloys and Compounds, 2007, 428: 54–58.
    [22]汪爱栋,陈荣,林绮等.人工晶体, 1986, 15(2): 103-109.
    [23]赵书清,张红武,黄朝恩等.人工晶体, 1989, 18(1): 9-17.
    [24] J. Feinberg. Self-pumped, continuous-wave phase conjuqator using internal reflection. Opt. Lett, 1982, 7(10): 486-488.
    [25] D. Rytz, M. B. Klein and R. A. Mullen, et al. High-efficiency fast response in photorefractive BaTiO3 at 120 oC. Appl. Phys. Lett. 1988, 52(21): 1759-1761.
    [26] J. T. Lin and C Chen. Choosing a nonlinear crystal: recent advances in materials science have led to more efficient nonlinear crystals. Lasers. Optronics., 1987, 6(11): 59-63.
    [27] J. T. Lin, C. E. Huang and J. O. Yao. Applications and features of a new nonliear crystal: lithium triborate. Conference on Lasers and Electro-optics, 1989, 348-350.
    [28] H. A. Lu, L. A. wills and B. W. Wessels, et al. Second harmonic generation and crystalline structure of corona poled BaTiO3 thin films. Opt. Mater., 1993, 2(3): 169-173.
    [29]李云阁,吴以成,张国春,等.非线性光学晶体Na3La9O3(BO3)8的生长研究.人工晶体学报, 2005, 34(3): 387-389.
    [30] Adamiv V T, Burak Y V, Teslyuk I M.Growth and Properties of New Nonlinear LiKB407 Single Crystal. Journal of Crystal Growth, 2006, 289: 157—160.
    [31]张国春,吴以成,傅佩珍,等.一种新的非线性光学材料-Na3Sm2(BO3)3.人工晶体学报, 2001, 30(3): 227-231.
    [32]戚华,陈创天.一种新型紫外非线性光学材料Ba2Be2B2O7.人工晶体学报, 2001, 30(1): 59-62.
    [33] Hu Z G, Masashi Yoshimura, Yusuke Mori, et a1. Growth of a New Nonlinear Optical Crystal-BaA1BO3F2. Journal of Crystal Growth, 2004, 260: 287-290.
    [34] Komatsu R, Ono Y, Kajitani T, et a1. Optical Properties of a New Nonlinear Borate crystal LiRbB407. Journal of Crystal Growth, 2003, 257: 165-168.
    [35] Ishwar Bhat S, Mohan Rao P, BhatA P, et a1. Growth and Characterization of a New Promising NLO Mixed Borate crystal. Journal of Crystal Growth, 2001, 233: 208-210.
    [36] Tang Ding yuan, XiaYounan, Wu Bohuang, et a1. Growth of a New UV Nonlinear Optical Crystal: KBe2(BO3)F2. Journal of Crystal Growth, 2001, 222:125-129.
    [37] Wu Yieheng, Wang Guofu, Fu Peizhen, et a1. A Nnew Nnonlinear Ooptieal Ccrystal一Zn3BPO7[J]. Journal of Crystal Growth, 2001, 229: 205—207.
    [38]常新安,陈丹,臧和贵,等.非线性晶体研究进展.人工晶体学报, 2007, 36(2): 328-333.
    [39]陈霞,毕丽峰,雷新荣. SBN系列人工晶体的合成与初步研究.材料导报, 2003, l7: 250-251.
    [40] J. S. O. Evans, J. Huang, and A. W. Sleight. Synthesis and Structure of ACa9(VO4)7 Compounds, A = Bi or a Rare Earth. Journal of Solid State Chemistry, 2001,157: 255-260.
    [41] Li G H, Su G B, Zhuang X X. K3V5O14—a New IR Nonlinear 0ptical Material.人工晶体学报, 2004, 33(4): 559-561.
    [42] Isaenko L, Vasilyeva I, Merkulov A, et a1. Growth of New Nonlinear Crystals LiMX2(M = A1, In, Ga; X =S, Se, Te) for the Mid-IR Optics. Journal of Crystal Growth, 2005, 275: 217-223.
    [43]吴海信,张维,石奇,等.红外非线性晶体材料AgGa1-χIχSe2的生长和性能表征.人工晶体学报, 2005, 34(3): 408-411.
    [44]李真一,刘立强,孙海清,等.新型红外非线性光学晶体CsGeBr3的研究.激光与红外, 2006, 36(4): 308-310.
    [45]叶成,方世壁.有机非线性光学.化学通报, 1990, 6: 5-12.
    [46] Srinivasan P, Gunasekaran M, Kanagasekaran T, et a1. 2, 4, 6-trinitrophenol (TNP): An Organic Material for Nonlinear Optical (NLO) Applications.Journal of Crystal Growth, 2006, 289: 639-646.
    [47] Xua D, Wang X Q, Yu w T, et a1. Crystal Structure and Characterization of a Novel Organic Nonlinear Optical Crystal: 1-arginine Trifluoroacetate .Journal of Crystal Growth, 2003, 253: 48l-487.
    [48] Shen J, Zheng J, Che Y X, et a1. Growth and Properties of Organic Nonlinear Optical Crystals: 1-tartaric Acid-nicotinamide and d-tartaric Acinicotinamide. Journal of Crystal Growth, 2003, 257: 136-140.
    [49] Tanusri Pal, Tanusree Kar, Wang X Q, et a1. Growth and Characterization of Nonlinear Optical Material, LAHC1Br-a New Member of L-arglnine Halide Family. Journal of Crystal Growth, 2002, 235: 523-528.
    [50] Vasantha K, Dhanuskodi S. Single Crystal Growth and Characterization of Phase-matchable 1-arglnlne Maleate: a Potential Nonlinear Pptical Material. Journal of Crystal Growth, 2004, 269: 333-341.
    [51] Ramesh Kumar G, Goknl Raj S, Mohan R, et a1. Growth and Characterization of New Nonlinear Optical L-threonium Acetate Single Crystals. Journal of Crystal Growth, 2005, 283: 193-197.
    [52] Dhanuskodi S, Angeh Mary P A. Growth and Characterization of a New Nonlinear Optical Crystal—ammonlum Borodilactate. Journal of Crystal Growth, 2003, 253: 424-428.
    [53] Bairava Ganesh R, Kannan V, Meera K, et a1. Synthesis, Growth and Characterization of a New Nonlinear Optical Crystal Sodiunl Acid Phthalate. Journal of Crystal Growth, 2005, 282:429-433.
    [54] Milton Boaz B, Leyo Bajesh A, Xavier S, et a1. Growth and Characterization of a New Nonlinear Optical Somiorganic Lithium Paranitrophenolate Trihydrate (NO2—C6H4—OLi·3H2O) Single Crystal. Journal of Crystal Growth, 2004, 262: 531-535.
    [55] C. C. Frazier, M. A. Harvey and M. P. Cockerham, et al. Second-harmonic generation in transition-metal-organic compounds. J. Phys. Chem, 1986, 90(22): 5703-5706.
    [56] M. L. H. Green, S. R. Marder and M. E. Thompson, et al. Synthesis and structure of (cis)-[1-ferrocenyl-2-(4-nitrophenyl)ethylene], an organotransiton metal compound with a large second- order optical nonlinearity. Nature, 1987, 330 (6146): 360-362.
    [57] Jian-Gong Pan, Gong-Jun Zhang, Yue-Qing Zheng, et al. Growth and characterization of a novel nonlinear optical crystal zinc succinate, Zn(C4H4O4). Journal of crystal growth, 2007, 308(1): 89-92.
    [58] Selvakumar S., Rajasekar S A., Thamizharasan K, et a1. Thermal, Dielectric and Photoconduefivity Studies on Pure, Mg2+ and Zn2+ Doped BTCC Single Crystals. Materials Chemistry and Physics, 2005, 93: 356-360.
    [59] Kannan V, Raiesh N P, Bairava Ganesh R, et a1. Growth and Characterization of Bisthiourea-zinc Acetate, a New Nonlinear Optical Material. Journal of Crystal Growth, 2004, 269: 565-569.
    [60] Rajesh N P, Kannsn V, Ashoka M, et a1. A New Nonlinear Optical Semi-organic Material: Cadmium Thiourea Acetate. Journal of Crystal Growth, 2004, 262 : 561-566.
    [61] Zomitza Glavcheva, Himhito Umezawa, Shuji Okada, et a1. New Pyfidinium—metal Iodide Complexes Toward Nonlinear Optical Materials. Materials Letters, 2004, 58: 2466-2471.
    [62]高春波,吕广田,隗明,等.硫氰酸锰及其相关衍生物的合成及化学表征.山东化工, 2002, 9-12.
    [63] S. K. Kurtz and T. T. Perry. A powder technique for the evaluation of nonlinear optical materials. J. appl. Phys, 1968, 39: 3798-3813.
    [64] J. M. Halbout, S. Blit, and C. L. Tang. Evaluation of the phase-matching properties of nonlinear optical materials in the powder form. IEEE J. Quantum Electron, 1981, QE-17: 513-517.
    [65] Elizabeth E. Hamilton, Phillip E. Fanwick, and Jonathan J. Wilker. The Elusive Vanadate (V3O9)3-: Isolation, Crystal Structure, and Nonaqueous Solution Behavior. J. Am. Chem. Soc., 2002, 124 (1): 78-82.
    [66] Thomas A. Albrecht, Charlotte L. Stern, and Kenneth R. Poeppelmeier. The Ag2O-V2O5-HF(aq) System and Crystal Structure ofα-Ag3VO4. Inorg. Chem., 2007, 46: 1704-1708.
    [67] S. B. Rasmussen, S. Boghosian, K. Nielsen, et al. Crystal Structure and Spectroscopic Properties of CsVO2SO4. Inor, Chem., 2004, 43: 3697-3701.
    [68] Chun-Yi Li, Chan-Yen Hsieh, Hsiu-Mei Lin,et al. High-Temperature, High-Pressure Hydrothermal Synthesis, CrystalStructure, and Solid State NMR Spectroscopy of a New Vanadium(IV) Silicate: Rb2(VO)(Si4O10)·xH2O. Inorg. Chem., 2001, 41: 4206-4210.
    [69] P. Millet, R. Enjalbert, and J. Galy. Cu(VO)(SeO3)2 (A) and (B) Forms: Synthesis and Crystal Structuresof New Copper(II)+Vanadyl(IV) Diselenites. Journal of Solid State Chemistry, 1999, 147: 296-303.
    [70] D. A. Karydis, S. Boghosian, K. Nielsen, et al. Crystal Structure and Spectroscopic Properties of Na2K6(VO)2(SO4)7. Inorg Chem., 2001, 41: 2417-2421.
    [71] Guo Liu and J. E. Grendan. Magnetic Properties of Fresnite-Type Vanadium Oxides A2V3O8(A = K, Rb, NH4). Jouranl of Soid State Chemistry, 1995, 114: 499-505.
    [72] Kyu-Seok Lee and Young-Uk Kwon. A New Layered Mixed-Valent Potassium Vanadium Selenite, KV2Se07. Inorg. Chem., 1995, 34: 4178-4181.
    [73] K. Martin and I. D. Brown. Out-of- Center Distortions around Octahedrally Coordinated d0 Transition Metals. Journal of solid state chemistry, 1995, 115: 395-406.
    [74] Wheeler R. A., Whangbo M. H. Symmetric vs. asymmetric linear M-X-M linkages in molecules, polymers, and extended networks. J. Am. Chem. Soc. , 1986, 108: 2222-2236.
    [75] S. K. Kang, H. Tang, T. A. Albright. Structures for d0 ML6 and ML5 complexes. J. Am. Chem. Soc., 1993. 115: 1971-1981.
    [76] R. E. Cohen. Origin of Ferroelectricity in Perovskite Oxides. Nature, 1992, 358: 136.
    [77] J. K. Burdett,“Molecular Shapes”. Wiley-Interscience, New York, 1980.
    [78] Kunz, Martin, Brown. Out-of-Center Distortions around Octahedrally Coordinated d0Transition Metals. J. Solid State Chem, 1995, 115: 395-406.
    [79] P. Shiv Halasyamani and Kenneth R. Poeppelmeier. Noncentrosymmetric Oxides. Chem. Mater., 1998, 10: 2753-2769.
    [80] JinFan Huang and Arthur W. Sletght. The Apatite Structure Without an Inevrsion Center in a New Bismuth Calcium Vanadium Oide: BiCa4V3O13.
    [81] J. S. O. Evans, J. Huang, and A. W. Sleight. Synthesis and Structure of ACa9(VO4)7 Compounds, A = Bi or a Rare Earth. Journal of Solid State Chemistry, 2001, 157: 255-260.
    [82] Zhoubin Lin, Guofu Wang, Lizhen Zhang. Growth of a new nonlinear optical crystal YCa9(VO4)7. Journal of Crystal Growth, 2007, 304: 233–235.
    [83] Xiaolin Hu, Xin Chen, Naifeng Zhuang,et al. Growth, nonlinear frequency-doubling and spectral properties of Nd:Ca8.53K1.09La0.95(VO4)7 crystal. Journal of Crystal Growth, 2008, 310: 5423–5427.
    [84] Tatiana Y. Shvareva, James V. Beitz, Evert C. Duin,et al. Polar Open-Framework Structure, Optical Properties, and Electron Paramagnetic Resonance of the Mixed-Metal Uranyl Phosphate. Cs2[UO2(VO2)2(PO4)2]·0.59H2O. Chem. Mater., 2005, 17: 6219-6222.
    [85] Richard E. Sykora, Kang Min Ok, P. Shiv Halasyamani, et al. New One-Dimensional Vanadyl Iodates: Hydrothermal Preparation, Structures, and NLO Properties of A[VO2(IO3)2] (A =K, Rb) and A[(VO)2(IO3)3O2] (A = NH4, Rb, Cs). Chem. Mater, 2002, 14: 2741-2749.
    [86] Kannadka Ramesha, Jagannatha Gopalakrishnan. Chimie douce synthesis of a new nonlinear optical material: Ba1.5VOSi2O7. Solid State Sciences, 2001, 3: 113–119.
    [87]左演生.材料现代分析方法.北京工业大学出版社, 2000:214.
    [88] X. Z. Yan, Y. F. Zhu, T.. Luo, et al. Sencond harmonic measurement of micro-crystalline powder of biological acridone samples.激光技术, 1998, 22(6): 328-332.
    [89] S. K. Kurtz, T.T. Perry, A Powder Technique for the evaluation of nonlinear Optica Materials. J. Appl. Phys, 1968, 39(8): 3798-3813.
    [90]邵宗书,邢光彩,蒋民华,等.粉末倍频效应一种探索非线性光学晶体材料的有效方法.山东大学学报, 1987, 22(4): 118-123.
    [91]刘桂香,鲁毅,金香.粉末倍频系数的模拟研究.应用光学, 2009, 30(3): 457-459.
    [92]常新安,代美娟,藏和贵,等. ZTS晶体生长及其非线性光学性质研究.人工晶体学报, 2008, 37(2): 403-405.
    [93]常新安,华晓晓,藏和贵,等. Al3+: KTP晶体生长及其非相关性质研究.人工晶体学报, 2008, 37(3): 572-576.
    [94]曹阳,王志明,钟学军,等.粉末测试技术在探索新型有机倍频材料中的应用.中国激光, 1992, A19(8): 627-633.
    [95]张克从,王皖燕,王希敏,等. KTNP晶体生长、结构与粉末倍频效应的研究.北京工业大学学报, 1998, 24(1): 1-8.
    [96] A.M. Bystr?m, H.T. Evans. The crystal structure of K3V5O14. Acta Chem. Scan., 1959, 13: 377-394.
    [97] A.D. Kelmers. A portion of the system NH3-V2O5-H2O at 30°C. J. Inorg.Nucl. Chem., 1961, 17:168-173.
    [98] Guohui Li, Genbo Su, Xinxin Zhuang, et al. Characterization and properties of a new IR nonlinear optical crystal: K3V5O14. Optical Materials, 2004, 27: 539–542.
    [99] G. M. Sheldrick, SHELXS 97 Program for Solution of Crystal Structures, University of G?ttingen, G?ttingen, Germany, 1997.
    [100] G. M. Sheldrick, SHELXL 97 Program for Solution of Crystal Structures, University of G?ttingen, G?ttingen, Germany, 1997.
    [101] A. Bystrom, K. A. Wihelmi, and O. Brotzen. Acta Chem. Scand., 1950, 4: 1119-1130.
    [102] J.P. Dougherty, S. K. Kurtz, A second harmonic analyzer for the detection of non-centrosymmetry J. Appl. Crystallogr. 1976, 9: 145–158.
    [103] C.V Ramana, O.M. Hussain. Microstructural features of pulsedlaser deposited V2O5 thin films Applied Surface Science, 2003, 207: 135-138.
    [104] Hidetoshi Miyazaki, Hiroyasu Sakamura, Masayuki Kamei. Electrochemical evaluation of oriented vanadium oxide films deposited by reactive of magnetron sputtering. Solid State Ionics, 1999, 122: 223-229.
    [105] C. V Ramana, O. M. Hussain, B. Srinivasulu. NaiduPhysical investigations on electron-beam evaporated vanadium pentoxide films. Material Science and Engineering, 1998, B52: 32-39.
    [106] S. Deki, Y. Aoi, A. Kajinami. A novel wet process for the preparation of vanadium dioxide thin film. Journal of Materials Science, 1997, 32: 4269-4273.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700