橡胶树树皮中HbPIP1;2和HbPIP2;2基因的克隆与生物信息学分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
巴西橡胶树(Hevea brasiliensis)俗称橡胶树,是一种产胶植物,由它生产的胶乳制成的天然橡胶广泛运用于人们日常生活的各个方面并有着不可替代的作用。由于橡胶树对生长条件的要求较高,中国的植胶区主要集中在海南、云南和广东的热带和南亚热带地区,在植胶面积有限的情况下,提高橡胶树的产量就成为满足天然橡胶需求增长的重要途径。排胶作为限制橡胶树产量的主要因素,与胶乳的粘度和排胶时间的长短密切相关,而胶乳粘度又与胶乳中的含水量呈负相关。水通道蛋白(Aquaporin,AQP)作为植物体内水分跨膜运输的高效、专一的蛋白通道,普遍存在于植物体的各个器官中,在植物的水分代谢与运输中起着不可替代的作用。而关于橡胶树体内的水通道蛋白的研究成果表明,水通道蛋白无论是在水分运输方面还是在产量方面,都有很重要的作用。但这些研究只局限于部分水通道蛋白,需要理清的东西很多。因此,克隆和系统研究巴西橡胶树中水通道蛋白,对阐明橡胶树韧皮部水分平衡及其对水分胁迫等的响应机制,进而提高橡胶树的产量具有重要意义。
     本研究以橡胶树“热研7-33-97”为材料,克隆了2个水通道蛋白基因(HbPIP1;2和HbPIP2;2),并且对这两个基因编码的蛋白进行了生物信息学的分析和结构功能的预测。主要的研究结果如下:
     1根据GenBank中已经公布的不同植物的水通道蛋白基因的保守氨基酸序列,设计两对简并引物,然后利用RACE技术克隆得到了两个橡胶树树皮水通道蛋白基因的全长cDNA,分别命名为HbPIP1;2和HbPIP2;2,序列已提交至GenBank,登录号为HQ328777和HQ328778。HbPIP1;2编码273个氨基酸,分子量为29.15kD,等电点为8.55;HbPIP2;2编码278个氨基酸,分子量为29.78kD,等电点为8.20。
     2对HbPIP1;2和HbPIP2;2基因编码的氨基酸序列生物信息学分析表明,它们除了含有水通道蛋白基因家族的信号序列“SGXHXNPAVT”外,并且含有质膜水通道蛋白PIP的两个高度保守序列,“GGGANXXXXGY”和“TGI/TNPARSL/FGAAI/VI/VF/YN”。进一步在NCBI上对其进行Blast比对,结果表明HbPIP1;2属于PIP1亚类,HbPIP2;2属于PIP2亚类。
     3核苷酸和氨基酸序列比对表明,HbPIP1;2和HbPIP2;2均含有植物水通道蛋白典型的6个跨膜结构域;为疏水性蛋白;不存在信号肽,为非分泌性蛋白;对它们的磷酸化位点预测表明HbPIP1;2具有9个磷酸化位点,HbPIP2;2具有7个磷酸化位点;同时,HbPIP1;2和HbPIP2;2都具有2个二硫键。氨基酸序列的同源性分析表明HbPIP1;2和HbPIP2;2与同科蓖麻水通道蛋白基因RcPIP1-3和RcPIP2-1的同源性分别为91%和89%,与已经公布的HbPIP1,HbPIP2,HbPIP1;1,HbPIP2;1和HbTIP1;1的同源性分别为:61%,55%,57%,66%。38%和56%,58%,59%,61%,36%,并具有相同功能域。因此推测HbPIP1;2和HbPIP2;2都属于水通蛋白基因家族的新成员。
     4结构预测表明,HbPIP1;2和HbPIP2;2两个蛋白比较相似,随机卷曲在整个蛋白的二级结构中所占比例最大,而α-螺旋和延伸链所占比例相当,并且这两者分散于整个蛋白质中。通过PDB在线搜索水通道蛋白的同源模板,利用Swiss Mode Seve程序对HbPIP1;2和HbPIP2;2的三级结构进行了在线预测。
The Hevea brasiliensis is commonly called rubber tree, it can produce natural rubber, which is widely used in all aspects of people's daily life and cannot be replaced. Due to rubber tree can only grow well under superior condition, the mainly planting regions of China are Hainan, Yunnan, Guangdong tropical and Subtropical regions, since the rubber cultivation areas are very limited, increasing of the yield of rubber tree has become a major way to meet the nature rubber demand. Latex yield depends on the characteritics of latex flow, including its velocity and duration, latex viscosity which is inversely related to its water content. Aquaporin, as the specific and efficient transmembrane water channel of plant, is widespread exist in all organts of plant and cannot be replaced in water metabolism and transport. Researches on the aquaporins of rubber tree showed that they played a very important role in both water transportation and latex yield. However, the researches were only limited to partial aquaporins, of which there have been some questions to be answered. So, clonging and system research on the aquaporins of rubber tree will be helpful to clarify the water balance in phloem and the mechanism of water stress, and then important for improving latex yield.
     In this study, we have cloned two aquaporin genes(HbPIP1;2 and HbPIP2;2)from the bark of rubber tree (CATAS7-33-97) and analyzed the characteristics of the encoding proteins with bioinformatic method, then predicted the functions. The main results are as follows:
     1. Degenerate primers were designed based on the conserved amino acid sequence of the published AQPs from different plant species, the method of RACE was adopted and two full-length cDNAs encoding aquaporin genes were cloned from the bark of rubber tree, named HbPIP1;2 and HbPIP2;2, their sequences have been deposited in GenBank, with accession numbers were HQ328777and HQ328778. The HbPIP1;2 encoding 273 amino acids with molecular weight 29.15kD and theoretical pI 8.55; and the HbPIP2;2 encoding 278 amino acids with molecular weight 29.78kD and theoretical pI 8.20.
     2. Bioinformatic analysis on the encoding amino acid sequence of HbPIP1;2 and HbPIP2;2 showed that both HbPIP1;2 and HbPIP2;2 possess the MIP family signal consensus sequence“SGXHXNPAVT”and the highly conservative sequences“GGGANXXXXGY”and“TGI/TNPARSL/FGAAI/VI/VF/YN”of the higher plant are the typical structure of plasma intrinsic proteins. Comparison of their Blast based on the NCBI, showed that HbPIP1;2 belongs to PIP1 subfamily and HbPIP2;2 to PIP2 subfamily.
     3. The analysis on the nucleic acid and amino acid sequence homology showed that both HbPIP1;2 and HbPIP2;2 contained six transmembrane areas, and were predicted hydrophobic protein, without signal peptide and secretory proteins. HbPIP1;2 has nine phosphorylation sites and HbPIP2;2 seven phosphorylation sites. Meanwhile, both of them have two disulfide bonds. The amino acid homology of HbPIP1;2 and HbPIP2;2 reaches more than 91% and 89% with Ricinus communis (RcPIP1-3 and RcPIP2-1), the HbPIP1;2 and HbPIP2;2 have 61%,55%,57%,66%。38% and 56%,58%,59%,61%,and 36% homology respectively compared with the published aquaporin genes of the HbPIP1,HbPIP2,HbPIP1;1,HbPIP2;1 and HbTIP1;1. Therefore, the HbPIP1;2 and HbPIP2;2 are new members of plant aquaporin family.
     4. The predicted secondary structure of HbPIP1;2 and HbPIP2;2, demonstrated that the random coil is the main motif the two proteins. Alpha helix and extended strand spread to the whole secondary structure of proteins and share the equal ratio. By searching the homologous template of aquaporins with Swiss Mode Seve software online the predictedtertiary structure were given.
引文
曹志方,赵南明,刘强. 2000.植物膜水通道蛋白.生命的化学, 20(1):13-16
    陈达志. 1981.胶乳代谢.热作译从, 5:5-12
    崔香环. 2004.蚕豆类水孔蛋白基因的克隆、表达分析及其在气孔运动中的作用. [博士学位论文].北京:中国农业大学
    董玉芝. 2006.渗透胁迫下白花柳SSH文库构建及质膜水孔蛋白基因克隆.[博士学位论文].哈尔滨:东北林业大学
    段翠芳,曾日中,黎瑜. 2004.激素对巴西橡胶树橡胶生物合成的调控.热带农业科学, 24(5): 61-68
    杜金友,陈晓阳,胡东南,高琼,陈佳. 2004.干旱胁迫条件下几种胡枝子渗透物质变化的研究.华北农学报, 19(S1):41-44
    范思伟. 1987.巴西株胶胶乳再生机理的研究.热作译从, 4:4-9
    郝秉中,吴继林. 1996.橡胶树乳管切割后的堵塞研究I.热带作作物学报, 17(1):1-6
    何康,黄宗道. 1987.热带北缘橡胶栽培.广州:广东科学技术出版社: 83-89
    黄宗道. 2001.我国天然橡胶业面临的挑战和发展战略.中国工程科学, 3(2): 28-32
    江军. 2008.全球天然橡胶供给短缺状态将持续到2014年.世界热带农业信息,8: 83-85
    雷琴,夏敦岭,任小林. 2005.水孔蛋白与植物的水分运输.水土保持研究,12(3):81-85
    李兵. 2006.植物水通道蛋白生理作用的研究进展.现代农业科技, 143-145
    刘洋,何心尧,马红波. 2006.用CTAB-PVP法提取棉花各组织总RNA的研究.中国农业大学学报, (1):53-56
    王芳. 2006.甘草质膜水通道蛋白GuPIP1的分子克隆、定位和表达调控. [博士学位论文].长春:东北师范大学
    王生毅. 2003.干旱胁迫对番茄根系水导的影响及液泡膜水通道蛋白表达量检测研究.[硕士学位论文陕西杨凌:西北农林科技大学
    王彦梅,张正斌,柴团耀,徐萍,赵鸿彬. 2005.植物水通道蛋白研究进展.西北农林科技大学(自然科学版), 33(11): 106-108
    王秉忠, 1988.橡胶栽培学.北京:农业出版社: 213-218
    谢学立,刘菊华,徐碧玉,金志强. 2008.香蕉水通道蛋白基因的克隆与表达分析.安徽农业科学, 36 (29): 12596-12599
    许海平,傅国华. 2007.我国天然橡胶产业发展趋势.中国热带农业, 2: 15-16
    徐继忠,陈海江,章文才. 2001.外源多胺对富士苹果花和幼果内源多胺与激素的影响.园艺学报, 28 (3): 206- 210
    徐成德. 2009.我国天然橡胶市场分析和产业安全对策.中国热带农业, 01: 22-23
    许人俊. 2006.中国天然橡胶事业发展的前前后后.纵横, 9: 31-33
    杨惠敏,张晓艳,王根轩. 2005.植物水通道的生理生态特性及其参与气孔运动的研究进展.植物学通报, 22(3):276-283
    于秋菊,林忠平,李景富. 2002.植物水孔蛋白研究进展.北京大学学报(自然科学), 38(6): 856-857
    张军锋. 2002.小麦水孔蛋白基因(aqp)克隆及其表达的初步研究. [硕士学位论文].陕西杨凌:西北农林科技大学
    庄海燕. 2010.巴西橡胶树水通道蛋白基因cDNA的克隆及其在乙烯利刺激下表达的初步分析.[硕学位论文].陕西杨凌:西北农林科技大学
    祝艺懿,韩渊怀,李正国,陈国平,殷幼平. 2007.红树林植物木榄水通道基因的克隆和表达.植物生理学通讯, 43(3): 438-442
    Abul R A, Yoshihiro S. 2004. Phosphorylation of plasma membrane aquaporin regulates temperature dependent opening of tulip petals. Plant Cell Physiol, 455: 608-617
    Aharon R, Shahak Y, Wininger S, Bendov R, Kapulnik Y, Galili G. 2003. Over expression of a plasma membrane aquaporin in transgenic tobacco improves plant vigor under favorable growth conditions but not under drought or salt stress. Plant Cell, 15: 439-447
    Archer B J. 1976. Hevamine: a crystalline basic protein from Hevea brasiliensis latex. Phytoehemlstry, 15:297-300
    Barrieu F, Chaumont F, Chrispeels M J. 1998. High expression of the tonoplast aquaporin ZmTIP1 in epidermal and conducting tissues of maize. Plant Physiology, 117(4): 1153-1163
    Biela A, Grote K, Otto B, Hoth S, Hedrich R, Kaldenhoff R. 1999. The Nicotiana tabacum plasma membrane aquaporin NtAQP1 is mercury-insensitive and permeable for glycerol. Plant Physiology, 18(5): 565-570
    Boatman S G. 1966. Preliminary physiological studies on the promotion of latex ?ow by plant growth regulators. Indian Journal of Natural Rubber Research, 19: 243-58
    Borgnia M, Nielsen S, Engel A, Agre P. 1999a. Cellular and molecular biology of the aquaporin water channels. Annu Rev Biochem, 68:425-58
    Borgnia M, Kozono D, Calamita G, Maloney P. Agre P. 1999b. Functional reconstitution and characterization of AqpZ. the E.coli water channel protein. Plant Molecular Biology, 291: 169-179 Boyer J S. 1985. Water transport. Annual Revew of Plant Physiology,36:473-516
    Breton F, Coupe M, Sanler C, Raikhel N. 1995. Demonstratlon ofβ-1,3-glueanase activities in lutolds of Hevea braslliensis latex. Indian Journal of Natural Rubber Research, 10(1): 37-45 Buttery B R, Boatman S G. 1964. Turgor Pressures in Phloem: Measurements on Hevea Latex. Science, 145(3629): 285-286
    Buttery B R, Boatman S G. 1966. Manometric measurement of turgor pressures in laticiferous phloem tissues. Journal of Experimental Botany, 17 (51): 283
    Buttery B R, Boatman S G. 1967. Effects of tapping, wounding and growth regulators on turgor pressure in hevea frasiuensismuellarg. Journal of Experimental Botany, 18 (57): 645-659
    Cardosa M J, Hamid S, Sunderasan E. 1994. B-serum is highly immunogenic when compared to C-serum using enzyme immunoasssys. Journal of Rubber Research, 9: 205-211
    ChaPPell J. 1995. Bjochemistry and moleular biology of the isoprenoid synthesis pathway in plants. Annual Revew of Plant Physiology, 46:521-547
    Chaumont F, Wojcik E, Chrispeels M J, Jung R, Barrieu F. 2001. Aquaporins constitute a large and highly divergent protein family in maize. Plant Physiology, 125(3): 1206-1215
    Chen G P, Kim S H, Grierson D, Wilson I D. 2001. Inhibiting expression of a tomato ripening associated membrane protein increases organic acids and reduces sugar levels of fruit. Planta, 212(5-6): 799-807
    Chen S C, Peng S Q, Huang G X, Wu K X, Fu X H, Chen Z Q. 2003. Association of decreased expression of a Myb-related transcreption factor with the TDP (tapping panel dryness) disease in rubber tree. Plant Molecular Biology, 51(1): 51-58
    Chrispeels M J, Maurel C. 1994. Aquaporins: The molecular basis of facilitated water movement through living plant cells. Plant Phyiol, 105:9-13
    Daniel J A, Yeager M. 2005. PhosPhorylation of aquaporin PvTIP3:1 defined by mass speetrometry and moleeular modeling. Bioehemistry, (44):14443-1445
    Daniels M J, Chaumont F, Mirkov T E, Chrispeels M J. 1996. Characterization of a new vacuolar membrane aquaporin sensitive to mercury at a unique site. The Plant Cell, 8(4): 587-599
    D′Auzac J, Jacob J, Chrestin L H. 1989. Physiology of Rubber Tree Latex. Plant Physiol Biochem, 31: 470-475
    D′Auzac J, Prevot C, Jacob J. 1995. What′s new about lutoids ? A vacuolar system model from Hevea latex. Plant Physiol Biochem, 33:765-768
    Daniels M J, Mirkov T E, Chrispeels M J. 1994. The plasma membrane of arabidopsis thaliana contains a mercury-insensitive aquaporin that is a homolog of the tonoplast water channel protein TIP. The Plant Physiol, 106:1325-1333
    D′Auzac J, Jacob J, Prevot C. 1997. The regulation of cispolyisoprene production. Plant Physiol, 1;273-331
    Defay E, Sanier C, Hébant C. 1989. Distribution of plasmodesmata in the phloem of Hevea brasiliensis in relation to laticifer loading. The Plant Cell, 149:155-62
    Fetter K, Vanwilder V, Moshelion M, Chaumont F. 2004. Interactions between plasma membrane aquaporins modulate their water channel activity. The Plant Cell, 16: 215-228
    Fortin M G, Morrison N A, Verma P S. 1987. Nodulin-26, a peribacteroid membrane nodulin is expressed independently of the development of the peribacteroid compartment. Nucleic Acids Research, 15: 813-824
    Gao Y P, Young L, Bonham-Smith P, Gusta L V. 1999. Characterization and expression of plasma and tonoplast membrane aquaporins in primed seed of Brassica napus during germination under stress conditions. Plant Molecular Biology, 40: 635-644
    Gerbeau P, Guclu J, Ripoche P, Maurel C .1999. Aquaporin Nt-TIP a can account for the high permeability of tobacco cell vacuolar membrane to small neutral solutes. The Plant Journal , 18: 577-587
    Gooding, E. 1952.“Studies in the physiology of latex”2. Latex flow on tapping hevea brasiliensis associated changes in trunk diameter and latex concentration. New Phytologist, 51 (1): 11-29
    Hao B Z, Wu J L. 2000. Laticifer differentiation in Hevea brasiliensis, induction by exogenous jasmonic acid and linolenic acid. Bioehemistry, 85:37-43
    Henzler T, Waterhouse R N, Smyth A J,Carvajal M, Cooke D T, Schaffner A R, Steudle E, Clarkson D T. 1999. Diurnal variation In hydraulic conductivity and rootpressure can be correlated with the expression of putative aquaporins in the roots of Lotus japonicus. Planta, 210, 50-60
    Javot H, Maurel C. 2002. The role of aquaporins in root water uptake. Annals of Botany, 90, 301-313 Johansson I, Larsson C, Ek B, Kjillborn P. 1996. The major integral proteins of spinach leaf plasma membranes are putative aquaporins and are phosphorylated in response to Ca2+ and apoplastic water potential. The Plant Cell, 8(5): 1181-1191
    Johanson U, Karlsson M, Johansson I. 2001. The complete set of genes encoding major intrinsic proteins in arabidopsis provides a framework for a new nomenclature for major intrinsic proteins in plants. The Plant Physiol, 126:1358-1369
    Jung J S, Preston G M, Smith B L, Guggino W B, Agre P. 1994. Molecular structure of the water channel
    through aquaporin CHIP: the hourglass model. Journal of Biological Chemistry, 269: 48-54 Kaldenhoff R, Grote K, Zhu J. 1998. Significance of plasmalemma Aquaporins for water transport in Arabidopsis thaliana. The Plant Journal, 14 (1):121-128
    Kaldenhoff R, Fischer M. 2006. Aquaporins in plants. Acta Physiol, 187:169-176
    Kammerloher W, Fischer U, Piechottka G P, Schaffner A R. 1994. Water channels in the plant plasma membrane cloned by immunoselection from an expression system. The Plant Journal, 6(2): 187-199
    Karlsson M, Fotiadis D, Sj?vall S, Johansson I, Hedfalk K, Engel A, Kjellbom P .2003. Reconstitution of water channel function of an aquaporin over expressed and purified from Pichia pastoris. FEBS Letters, 537: 68-72
    Kjellbom P, Larsson C, Johannson I, Karlsson M, Johansson U. 1999. Aquaporins and water homeostasisin plants. Trends in Plant Science, 4:308-314
    Kongsawadworakul P, Chrestin H. 2003. Laser diffraction: a new tool for identification and studies of physiological effectors involved in aggregation-coagulation of the rubber particles from Hevea latex. Plant Cell Physiol, 44:707-17
    Kung K, Dong H S, Jemo Y, Jong K. 2000. Genes expressed in the latex of Hevea brasiliensis. Tree Physiology, 20:503-510
    Ludevid D, Hofie H, Himelblau E, Chrispeels M J. 1992. The expression pattern of the tonoplast intrinsic proteinγ-TIP in Arabidopsis thalianais correlated with cell enlargement. Plant Physiology, 100(4): 1633-1639
    Maurel C, Reizer J, Schroeder J I. 1993. The vacuolar membrane proteinγ- TIP creates water specific channels in Xenopusoocytes. European Molecular Biology Organization, 12:2241-2247
    Maurel C. 1997. Aquaporins and water permeability of plant membranes. Annual Revew of Plant Physiology Plant Molecular Biology, 48, 399-429
    Maurel C, Chrispeels M J. 2001. Aquaporins: A molecular entry into plant water relations. Plant Physiology, 125,135-138
    Martin M N. 1991. The latex of Hevea braslliensis contains high Ievels of both chltlnases/iysozymes. Plant Physiol, 95:469-475
    Moshelion M, Becker D, Biela A, Uehlein N, Hedrich R, Otto B, Levi H, Moran N, Kaldenhoff R. 2002. Plasma membrane aquaporins in the motor cells of Samanea saman: diurnal and circadian regulation. Plant Cell, 14: 727-739 Net, C. F. 2010.改善我国天胶供给格局迫在眉睫.
    Ranasinghe M S. and Milburn J A. 1995. Xylem conduction and cavitation in hevea brasiliensis. Journal of Experimental Botany, 46 (11): 1693 -1700
    Reizer J, Reizer A, Saier M H. 1993. The MIP family of integral membrane channel proteins: sequence comparisions, evolutionary relationships, reconstructed pathways of evolution, and proposed functional differentiation of the two repeated halves of the proteins. Crit Rev Biochem Mol Biol, 28 (3): 235-257
    Kaldenhoff R, Fische M. 2006. Aquaporins in plants. Acta Physiol, 187, 169-176
    Robinson D G, Sieber H, Kammerloher W. 1996. PIP1 aquaporins are concentrated in plasmalemma somes of a rabidopsis thaliana mesophyll. Plant Physiol, 110:645-649
    Sailajadevi T, Nair R B, Dey S K, Devakumar A S, Licy J, Kothandaraman R, Sethuraj M R. 2000. Impact of weather on yield and yield components in some elite hevea clones. Indian Journal of Natural Rubber Research, 13 (1/2): 98-102
    Shiratake K, Kanayama Y, Maeshima M, Yamaki S.1997. Changes in H(+)pumps and a tonoplast intrinsic protein of vacuolar membranes during the development of pear fruit, Plant and Cell Physiology, 38: 1039-1045
    Sreelatha S.2003. Biochemical factors influencing latex flow during stress tapping frequency and stimulation in hevea brasiliensis, Mahatma Gandhi University. Ph.D.
    Steudle E, Zimmermann U, Zillikens J. 1994. Effect of cell turgor on hydraulic conductivity and elasticmodulus of elodea leaf cells. Planta, 154:371-80
    Steudle E. 1989. Water flow in plants and its coupling to other processes: an overview. Plant Physiol, 174:183-225
    Steudle E, Henzler T. 1995.Water channels in plants: do basic concepts of water transport change? Journal of Membrane Biology ,46:1067-1076
    Takeshi Y, Mlehio S, Akitada N. 1995. Plant defense-related proteins eluting from Iatex gloves and ammonlated latex: potential latex allergens. Indian Journal of Natural Rubber Research, 10(1):100-107
    Tungngeon K, Kongsawadworakul P, Viboonijub U, Katsuhara M, Brunel N, Sakr S, Narangajana J, Chrestin H. 2009. Involvement of HbPIP2;1 and HbPIP1;1 aquaporins in ethylene stimulation of latex yield, through regulation of water exchanges between inner liber and latex cells in Hevea brasiliensis. Plant Physiol, 51(2): 843-856
    Tungngoen K, Sakr S, Kongsawadworakul P. 2006. Aquaporin genes expression in the trunk phloem and in the laticifers of rubber tree. International Natural Rubber Conference Vietnam, 125-134
    Tungngoen K, Viboonjun U, Kongsawadworakul P, Katsuhara M, Brunel N, Sakr S, Narangajana J, Chrestin H. 2010. Hormonal treatment of the bark of rubber trees increases latex yield through latex dilution in relation with the differential expression of two aquaporin genes. Plant Physiol, doi:10.1016/j.jplph. 2010.06.009
    Tyerman S D, Bohnert H J, Maurel C, Steudle E, Smith A C. 1999. Plant aquaporins:their molecular biology, biophysics and significance for plant water relations. Journal of Experimental Botany, 50, 1055-1071
    Tyerman S D, Niemietz C M, Bramley H. 2002. Plant aquaporins multifunctional water and solute channels with expanding roles. Plant Cell and Environment, 25,173-194
    Van Gils G. 1951. Studies on the latex viscosity. I: in?uence of the dry rubber content. Arch Rubbercult, 28:61-64
    Walz T, Smith B L, Agre P, Engel A. 1994. The three-dimensional structure of human erythrocyte aquaporin CHIP. Plant Molecular Biology, 13(13): 2985-2993
    Walz T, Hirai T, Murata K, Heymann B, Mitsuoka K, Fujiyoshi Y, Smith B L, Agre P, Engel A. 1997. The three-dimension structure of aquaporin-1. Nature, 387(6633): 624-629
    Weig A, Deswarte C, Chrispeels M J .1997. The major intrinsic protein family of Arabidopsis has 23 members that form three distinct groups with functional aquaporins in each group. Plant Physiology, 114:1347-1357
    Wu J L, Hao B Z, Tan H Y. 2002. Wound-induced differentiation in Hevea brasiliensis shoots mediated by Jasmonic acid. Journal of Rubber Research, 5 (1):53-63
    Yamada S, Katsuhara M, Kelly W B, Michalowski C, Bohnert H. 1995. A family of transcripts encoding the water channel proteins: tissue-specific expression in the commonice plant. Plant Cell, 7: 1129-1142
    Yamamoto Y T, Taylor C G, Acedo G H, Cheng C L, Conking M A. 1991. Characterization of cisacting sequence regulating root-specific gene expressin in tobacco. Plant Cell, 3:371-382
    Yeang H Y. 2005. The kinetics of latex ?ow from the rubber tree in relation to latex vessels plugging and turgor pressure. Indian Journal of Natural Rubber Research, 8:160-81
    Yu Q J, Lin Z P, Li J F. 2002. Research progress in plant aquaporin. Acta Scientianrum Naturalium Universitatis Pekinensis, 38(6):855-866

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700