新型水仙生物碱Narciclasine影响植物根发育的特征及调控机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
天然产物Narciclasine (NCS)是一种从水仙鳞茎中提取的新型水仙生物碱,具生长与发育以及对环境刺激响应中发挥着关键作用。根据已有的研究成果和植物对NCS的一些特殊生理响应,推断NCS可能通过干扰生长素信号传导或生长素运输等进而影响了一些依赖生长素的生长发育过程。为此,本研究主要以模式植物拟南芥与水稻等为实验材料,对NCS影响依赖生长素的生长发育过程等问题进行深入研究。主要研究结果如下:
     1.NCS抑制了拟南芥根对生长素的生理响应。
     NCS通过干扰拟南芥根对外源生长素的敏感性进而抑制了生长素促进侧根及根毛的发育。与野生型相比,生长素信号突变体axrl-3和axrl-12的主根伸长对低浓度NCS的抑制作用表现出适度抗性,表明NCS可能间接影响了SCFTIR1/AFB泛素连接酶复合物介导的生长素信号传导。利用生长素响应GUS报告基因、生长素响应的天然型启动子基因.IAA12::GUS, IAA13::GUS及qRT-PCR检测发现,NCS对生长素响应基因的表达具有明显的抑制作用;ELASA检测结果表明NCS处理对拟南芥幼苗中的IAA含量没有产生明显影响,表明NCS并未影响生长素的生物合成。利用拟南芥HS::AXR3NT-GUS报告系分析发现NCS能够缓解SCFTIR1/AFB复合物介导的生长素诱导Aux/IAA蛋白的泛素化降解过程;生化实验结果表明,NCS对Aux/IAA蛋白稳定性的作用不是通过影响26S蛋白酶体的活性来实现;体外Pull-down结果表明,NCS处理并不能促进Myc-TIR1与IAA7/AXR2(Aux/IAA proteins)相互作用,说明NCS可能是通过改变SCFTIRl/AFB复合物某些上游元件进而对生长素信号产生抑制作用。综上所述,NCS抑制拟南芥根对生长素的响应可能是通过作用于生长素信号传导途径来实现。
     2.NCS通过调节生长素运输蛋白的表达进而影响生长素的运输。
     NCS处理能引起拟南芥幼苗的根失去向地性,这与生长素运输抑制TIBA和NPA处理后的特征类似。DR5::GUS报告基因检测结果显示NCS扰乱了拟南芥根尖生长素的正常分布;通过淀粉粒染色发现NCS处理影响依赖生长素的根冠小柱细胞的正常发育;在向重力刺激下,DR5-GFP报告系显微分析发现NCS抑制了生长素迅速向根尖底侧细胞中的迅速积累,这些结果说明NCS对根向地性及根尖生长素再分布的影响与生长素运输有关。BY-2细胞中[3H]IAA的积累实验表明NCS抑制了生长素运输载体介导[3H]IAA的内流及外流。利用包含PINs-GFP, AUX1-YFP融合蛋白的转基因拟南芥检测发现,NCS处理12h拟南芥根中生长素外流载体蛋白PINs和内流载体蛋白AUXl的表达丰度明显降低;qRT-PCR进一步分析发现NCS在转录水平也能调节生长素运输载体基因的表达,说明NCS在转录水平及蛋白水平均能调节生长素运输蛋白的表达。
     3.NCS影响了生长素载体蛋白的胞内转运。
     对生长素载体蛋白亚细胞定位分析发现,尽管NCS没有影响PINs及AUXl蛋白在细胞质膜上的定位,但是PIN2-GFP, PIN3-GFP, PIN4-GFP, PIN7-GFP和AUX1-YFP却在胞内迅速内化并形成蛋白聚集物,我们将这类蛋白聚集物称为“NCS小体”。利用标记囊泡的荧光染料FM4-64染色发现NCS促进了植物细胞的胞吞作用。将NCS处理过的PIN2-GFP幼苗进行FM4-64染色发现,以NCS小体形式存在的PIN2-GFP与FM4-64标记的囊泡发生部分重合,说明NCS通过细胞的胞吞作用诱导质膜上的生长素运输蛋白内陷到胞内形成蛋白聚集物。蛋白质合成抑制剂CHX和NCS共同处理的结果表明,NCS产生这种细胞效应独立于蛋白质的合成及新合成蛋白质向质膜的转运。NCS处理对BRIl-GFP、PIP2-GFP和GFP-LTI6b三种膜融合蛋白的膜定位及胞内转运未产生明显影响,说明NCS对膜蛋白的作用具有选择性。利用ARA7-GFP, NAG-GFP, SYP22-YFP和SYP61-CFP特殊的内膜系统标记系亚细胞定位分析发现,NCS对内膜系统的影响也具有选择性。此外,利用微丝骨架ABD2-GFP转基因系分析发现NCS处理后破坏了肌动蛋白微丝的结构,导致束状的蛋白微丝减少。通过对内体小泡标记蛋白ARA7-GFP的分析发现NCS处理后减缓了内体小泡的运输速率。
     4.NCS影响了水稻幼苗根系的发育。
     NCS抑制了水稻根的生长、减少了侧根数目,但是促进不定根的形成。进一步研究发现NCS明显抑制了外源生长素对水稻根系的促进作用,这与拟南芥中的研究结果类似,暗示NCS可能也影响了水稻中生长素运输及信号转导等过程。利用水稻DR5:GUS转基因系发现NCS明显干扰了生长素对DR5:GUS报告基因的诱导作用,说明NCS可能通过影响生长素信号传导过程抑制了水稻中生长素响应基因的表达。RT-PCR结果显示NCS能够影响水稻根中生长素运输基因的表达。通过对[3H]-IAA放射性检测发现NCS影响了水稻根中生长素向顶和向基的运输,这些结果表明NCS对水稻根中生长素运输也有影响。NCS处理引起水稻根呈螺旋状生长,我们推测可能是NCS影响生长素的运输使得其在水稻根中的分布改变所致。
Natural product narciclasine (NCS) is a new Amaryllidaceae alkaloid isolated from Narcissus tazetta bulbs and possesses a broad range of biological activities such as antimitotic and antiviral functions. A broad range of inhibitory effects of NCS in plant were found, however, it is still poorly understood about the molecular mechanisms of NCS involvement in plant developmental responses. The plant hormone auxin plays a central role in the regulation of plant growth and development, as well as in responses to environmental stimuli. Basing on the preliminary studies and some special physiology responses of NCS to plant, we hypothesized that NCS may act as an auxin response inhibitor through interfering with auxin signaling pathway or/and auxin transport to affect the auxin-mediated growth and development process. In the present study, the model plant Arabidopsis and rice was used as materials to further study the mechanism of the effects of NCS on the auxin-mediated growth and development process. The main results are as follows:
     1. NCS inhibits the physiological responses of Arabidopsis root to auxin.
     The inhibitory effects of NCS on auxin-inducible lateral root and root hair formation by altering the sensitivity of Arabidopsis roots to auxin were demonstrated. The auxin insensitive mutant axr1-3and axr1-12showed a modest resistance to lower concentrations of NCS in primary root elongation compared to WT seedlings, indicating that NCS may indirectly affect theFTIR1/AFB complex-mediated auxin signaling. It was also found that NCS inhibited the expression of primary auxin-inducible genes in Arabidopsis roots using DR5::GUS reporter gene, native auxin promoters (IAA12::GUS, LAA13::GUS) and quantitative reverse transcription PCR analysis. It was further indicated that NCS treatment did not affect the endogenous IAA content in Arabidopsis roots by ELISA assaysis, demonstrating that NCS dose not inhibit auxin biosynthesis. Analysis of Arabidopsis HS::AXR3NT-GUS line showed that NCS relieved the auxin-enhanced degradation of Aux/1AA repressor modulated by the SCFTIR1ubiquitin-proteasome pathway. Biochemical experiments indicated that the impairment of NCS on the degradation of Aux/IAA proteins was not achieved by inhibiting the26S proteasome activity. In addition, the pull-down assay in vitro demonstrated that NCS did not alter the auxin-stimulated interaction between IAA7/AXR2(Aux/IAA proteins) and the F-box protein TIRl activity, suggesting that the inhibition of NCS to auxin signaling maybe by modulating to the some upstream elements of SCFTIR1/AFB complex. In conclusion, NCS inhibits the responses of Arabidopsis roots to auxin by probably affecting on auxin signaling transduction.
     2. NCS affects auxin transport through modulating the expression of auxin transport proteins in Arabidopsis roots.
     NCS treatments can cause defects in root gravitropism of Arabidopsis seedlings, which is similar to the characteristic of auxin transport inhibitors TIBA and NPA. The results by DR5::GUS reporter detection showed that the distribution of auxin in Arabidopsis root tips was disturbed by NCS. NCS also affected the auxin-dependent organization of columella cells by starch grain staining. After stimulation of gravity, NCS inhibited asymmetry auxin flow, and no auxin accumulation occurred at the lower side of the root by detecting of auxin response reporter DR5rev::GFP. These results suggested that NCS disturbed asymmetric auxin distribution and root gravitropic responses associated with related to auxin transport in Arabidopsis roots. NCS inhibited both cellular [3H]-IAA import and export by [3H]-IAA radiotracer transport assay in cultured BY-2cells. Using transgenic plants containing the promoters of PINs and AUX1, we found that the expression levels of PIN proteins and AUX1are substantially reduced after12h NCS treatments. qRT-PCR analysis further showed that the expressions of auxin transport genes in Arabidopsis roots was also regulated under NCS treatment. These results indicated that NCS negatively modulates auxin transport in the root is due to a general reduction of auxin carrier protein expression at the transcriptional level and protein level.
     3. NCS affects the intracellular trafficking of auxin carrier proteins.
     The analysis to the subcellular localization of auxin carrier proteins in the root tips of Arabidopsis seedlings showed that NCS did not affect the localization of PINs and AUXI proteins in the plasma membrane but PIN2-GFP, PIN3-GFP, PIN4-GFP, PIN7-GFP and AUX1-YFP in the plasma membrane were rapid internalized and formed intracellular agglomerations that we termed as "NCS bodies". The observation of fluorescent images showed that NCS promoted general endocytosis traced by styryl dye FM4-64staining labeled vesicles. Results further indicated that NCS-induced intracellular compartments of PIN2-GFP partially co-localized by the staining to PIN2-GFP seedlings in NCS treatment with the membrane-selective endocytic tracer FM4-64, suggesting that the internalization of auxin carrier proteins and formation intracellular agglomerations induced by NCS was dependent on endocytosis pathway. The treatments of CHX (an inhibitor of protein biosynthesis) and NCS indicated that the effect of NCS on endocytosis was independent of protein synthesis and the delivery of newly synthesized proteins to the PM. Furthermore, the membrane localization and the intracellular transfor of the three membrane fusion proteins BRI1-GFP, PIP2-GFP and LTI6B-GFP was not affected by NCS treatment, demonstrating that the effect of NCS on the stability of membrane proteins has pronounced proteins specificity. The analysisi of subcellular localization by using endomembrane markers ARA7-GFP, NAG-GFP, SYP22-YFP and SYP61-CFP showed that NCS also exhibited the specificity. In addition, the results by using the transgenic plant ABD2-GFP of actin cytoskeleton demonstrated that NCS could disrupt the structure of actin cytoskeletal organization and lead to decrease in the protein filaments. Using real-time live-cell microscopy, we also found that NCS influences actin-based vesicle motility through endosomal markers protein ARA7-GFP.
     4. NCS modulates the development of root system in rice seedlings.
     NCS inhibits rice root growth and diminishes the number of lateral roots, but it promotes adventitious root formation in rice seedlings. NCS also inhibits the promotion of exogenous auxin on rice root architecture, which is similar to the observations in Arabidopsis, suggesting that NCS may also interferred with auxin signaling or auxin transport in rice seedlings. Histochemical staining showed that auxin-induced DR5gene expression was markedly decreased in rice root tips after NCS treatment, impling that the inhibitory effect of NCS on auxin-responsive gene expression is also achieved by directly affecting the auxin signaling. Semiquantitative RT-PCR analysis demonstrated that NCS inhibited the expression of putative OsPIN genes in rice roots. The assay of in nanoscale [3H]-IAA radiotracer transport in rice roots showed that NCS reduced the acropetal or basipetal [3H]-IAA transport, respectively. These results revealed that NCS also affects auxin transport in rice roots. Very interesting, the phenotype of spiral roots was observed in0.5μM NCS treatment, which maybe due to the alteration in auxin distribution by disruption of auxin transport in NCS treatment.
引文
1. Alonso. J.M., Hirayama, T., Roman, G., Nourizadeh, S., Ecker, J.R. EIN2, a Bifunctional Transducer of Ethylene and Stress Responses in Arabidopsis. Science.1999,284: 2148-2152.
    2. Attia, K.A., Abdelkhalik, A.F., Ammar, M.H., Wei, C., Yang, J., Lightfoot, D.A., El-Sayed, W.M., El-Shemy, H.A. Antisense phenotypes reveal a functional expression of OsARF1, an auxin response factor, in transgenic rice. Current Issues Mol Biol.2009,11:129-134.
    3. Bainbridge, K., Guyomarch, S., Bayer, E., Swarup, R., Bennett, M., Mandel, T., Kuhlemeier, C. Auxin influx carriers stabilize phyllotactic patterning. Genes Dev.2008,22:810-823.
    4. Bak, S., Tax, F.E., Feldmann, K.A., Galbraith, D.W., Feyereisen, R. CYP83B1, a cytochrome P450 at the metabolic branch point in auxin and indole glucosinolate biosynthesis in Arabidopsis. Plant Cell.2001,13:101-111.
    5. Barbez, E., Kubes, M., Rolcik, J., Beziat, C., Pencik, A., Wang, B., Rosquete, M.R., Zhu, J., Dobrev, P.I,, Lee, Y., Zazimalova, E., Petrasek, J., Geisler, M., Friml, J., Kleine-Vehn, J.A novel putative auxin carrier family regulates intracellular auxin homeostasis in plants. Nature.2012,485:119-122.
    6. Barlier, I., Kowalczyk, M., Marchant, A., Ljung, K., Bhalerao, R., Bennett, M., Sandberg, G., Bellini, C. The SUR2 gene of Arabidopsis thaliana encodes the cytochrome P450 CYP83B1, a modulator of auxin homeostasis. Proc Natl Acad Sci U S A.2000,97:14819-14824.
    7. Benkova, E., Michniewicz, M., Sauer, M., Teichmann, T., Seifertova, D., Jurgens, G., Friml, J. Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell.2003,115:591-602.
    8. Bennett, M.J., Marchant, A., Green, H.G., May, S.T., Ward, S.P., Millner, P.A., Walker, A.R., Schulz, B., Feldmann, K.A. Arabidopsis AUX1 gene:a permease-like regulator of root gravitropism. Science.1996,273:948-950.
    9. Berger, S., Bell, E., Mullet, J.E. Two methyl jasmonateinsensitive mutants show altered expression of AtVsp in response to methyl jasmonate and wounding. Plant Physiol.1996, 111:525-531.
    10. Bezhenova, E.D., Aliev, K.V., Zairov, V.B. Farmakol. Alkaloid Ser. Glik 1972:100.
    11. Bi, Y.R., Yung, K.H., Wong, Y.H. Physiological effects of narciclasine from the mucilage of Narcissus tazetta L. bulbs. Plant Sci.1998,135:103-108.
    12. Bi, Y.R., Zhang, L.X., Guo, J.K., Yung, K.H., Wong, Y.S. Narciclasine alters chloroplast membrane structure and inhibits 5-aminolevulinic acid and chlorophyll binding protein accumulation in wheat (Triticum aestivum) leaves. N Z J Crop Hortic Sci.2003,31:335-343.
    13. Bishopp, A., Benkova, E., Helariutta, Y. Sending mixed messages:auxin-cytokinin crosstalk in roots. Curr Opin Plant Biol.2011,14:10-16.
    14. Blakeslee, J.J., Bandyopadhyay, A., Lee, O.R., Mravec, J., Titapiwatanakun, B., Sauer, M., Makam, S.N., Cheng, Y., Bouchard, R., Adamec, J., Geisler, M., Nagashima, A., Sakai, T., Martinoia, E., Friml, J., Peer, W.A., Murphy, A.S. Interactions among PIN-FORMED and P-glycoprotein auxin transporters in Arabidopsis. Plant Cell.2007,19:131-147.
    15. Blilou, I., Xu, J., Wildwater, M., Willemsen, V., Paponov, I., Friml, J., Heidstra, R., Aida, M., Palme, K., Scheres, B. The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature.2005,433:39-44.
    16. Boerjan, W., Cervera, M.T., Delarue, M., Beeckman, T., Dewitte, W., Bellini, C., Caboche, M., Van Onckelen, H., Van Montagu, M., Inze, D. Superroot, a recessive mutation in Arabidopsis, confers auxin overproduction. Plant Cell.1995,7:1405-1419.
    17. Bolte, S., Talbot, C., Boutte, Y., Catrice, O., Read, N.D., Satiat-Jeunemaitre, B. FM-dyes as experimental probes for dissecting vesicle trafficking in living plant cells. J Microsc.2004, 214:159-173.
    18. Bonifacino, J.S., Rojas, R. Retrograde transport from endosomes to the trans-Golgi network. Nature Reviews Molecular Cell Biology.2006,7:568-579.
    19. Braun, N., Wyrzykowska, J., Muller, P., David, K., Couch, D., Perrot-Rechenmann, C., Fleming, A. J. Conditional Repression of AUXIN BINDING PROTEIN 1 Reveals That It Coordinates Cell Division and Cell Expansion during Postembryonic Shoot Development in Arabidopsis and Tobacco. Plant Cell.2008,20:2746-2762.
    20. Carrasco, L., Fresno, M., Vazquez, D. Narciclasine:an antitumour alkaloid which blocks peptide bond formation by eukaryotic ribosomes. FEBS Lett.1975,52:236-239.
    21. Casimiro, I., Marchant, A., Bhalerao, R.P., Beeckman, T., Dhooge, S., Swarup, R., Graham, N., Inze, D., Sandberg, G., Casero, P.J., Bennett, M. Auxin transport promotes Arabidopsis lateral root initiation. Plant Cell.2001,13:843-852.
    22. Ceriotti, G. Narciclasine:an antimitotic substance from narcissus bulbs. Nature.1967, 213:595-596.
    23. Chapman, E.J., Estelle, M. Mechanism of auxin-regulated gene expression in plants. Annu Rev Genet.2009a,43:265-285.
    24. Chen, J.G., Ullah, H., Young, J.C., Sussman, M.R., Jones, A.M. ABP1 is required for organized cell elongation and division in Arabidopsis embryogenesis. Genes Dev.2001, 15:902-911.
    25. Cheng, Y.F., Dai, X. H., Zhao, Y. Auxin synthesized by the YUCCA flavin monooxygenases is essential for embryogenesis and leaf formation in Arabidopsis. Plant Cell.2007, 19:2430-2439.
    26. Cheng, Y.F., Dai, X.H., Zhao, Y. AtCAND1, a HEAT-repeat protein that participates in auxin signaling in Arabidopsis. Plant Physiol.2004,135:1020-1026.
    27. Cheng, Y.F., Dai, X.H., Zhao, YD. Auxin biosynthesis by the YUCCA flavin monooxygenases controls the formation of floral organs and vascular tissues in Arabidopsis. Genes Dev.2006,20:1790-1799.
    28. Cheung, A.Y., Chen, C.Y.H., Glaven, R.H., de Graaf, B.H.J., Vidali, L., Hepler, P.K., Wu, H.M. Rab2 GTPase regulates vesicle trafficking between the endoplasmic reticulum and the Golgi bodies and is important to pollen tube growth. Plant Cell.2002,14:945-962.
    29. Cho, M., Lee, S.H., Cho, H.T. P-glycoprotein4 displays auxin efflux transporter-like action in Arabidopsis root hair cells and tobacco cells. Plant Cell.2007,19:3930-3943.
    30. Chuang, H.W., Zhang, W., Gray, W.M. Arabidopsis ETA2, an apparent ortholog of the human cullin-interacting protein CAND1, is required for auxin responses mediated by the SCF(TIR1) ubiquitin ligase. Plant Cell.2004,16:1883-1897.
    31. Cole, R.A., Fowler, J.E. Polarized growth:Maintaining focus on the tip. Curr Opin Plant Biol.2006,9:579-588.
    32. Cook, J.W., Loudon, J.D. The Alkaloids. New York:Academic Press.1952, p.331.
    33. Coudert, Y., Perin, C., Courtois, B., Khong, N.G., Gantet, P. Genetic control of root development in rice, the model cereal. Trends Plant Sci.15:219-226.
    34. D'Agostino, I.B., Deruere, J., Kieber, J.J. Characterization of the response of the Arabidopsis response regulator gene family to cytokinin. Plant Physiol.2000,124:1706-1717.
    35. Dan, C., Kelly, A., Bernard, O., Minden, A. Cytoskeletal changes regulated by the PAK4 serinePthreonine kinase are mediated by LIM kinase1 and cofilin. J Biol Chem.2001, 276:32115-32121.
    36. David, K.M., Couch, D., Braun, N., Brown, S., Grosclaude, J., Perrot-Rechenmann, C. The auxin-binding protein 1 is essential for the control of cell cycle. Plant J.2007,50:197-206.
    37. Delbarre, A., Muller, P., Imhoff, V., Guern, J. Comparison of mechanisms controlling uptake and accumulation of 2,4-dichlorophenoxy-acetic acid, naphthalene-1-acetic acid, and indole-3-acetic acid in suspension-cultured tobacco cells. Planta.1996,198:532-541.
    38. De Rybel, B., Audenaert, D., Beeckman, T., Kepinski, S. The past, present, and future of chemical biology in auxin research. ACS Chem Biol.2009,4:987-998.
    39. De Smet, I., Tetsumura, T., De Rybel, B., Frey, N.F., Laplaze, L., Casimiro,I., Swarup, R., Naudts, M., Vanneste, S., Audenaert, D., Inze, D., Bennett, M.J., Beeckman, T. Auxin-dependent regulation of lateral root positioning in the basal meristem of Arabidopsis. Development.2007,134:681-690.
    40. Del Pozo, J.C., Dharmasiri, S., Hellmann, H., Walker, L., Gray, W.M., Estelle, M. AXR1-ECR1-dependent conjugation of RUB] to the Arabidopsis cullin AtCUL1 is required for auxin response. Plant Cell.2002,14:421-433.
    41. DeLeo, P., Dalesandro, G., DeSantis, A., Arrigoni, Q. Inhibitory effect of lycorine on cell division and cell elongation. Plant Cell physiol.1973,14:481-486.
    42. Dharmasiri, N., Dharmasiri, S., Estelle, M. The F-box protein TIR1 is an auxin receptor. Nature.2005a,435:441-445.
    43. Dharmasiri, N., Dharmasiri, S., Weijers, D., Lechner, E., Yamada, M., Hobbie, L. Ehrismann, J.S., Jurgens, G., Estelle, M. Plant development is regulated by a family of auxin receptor F box proteins. Developmental Cell.2005b,9:109-119.
    44. Dharmasiri, S., Dharmasiri, N., Hellmann, H., Estelle, M. The RUB/Nedd8 conjugation pathway is required for early development in Arabidopsis. Embo J.2003,22:1762-1770.
    45. Dhonukshe, P., Aniento, F., Hwang, I., Robinson, D.G., Mravec, J., Stierhof, Y.D., Friml, J. Clathrin-mediated constitutive endocytosis of PIN auxin efflux carriers in Arabidopsis. Current Biol.2007,17:520-527.
    46. Dhonukshe, P., Grigoriev, I., Fischer, R., Tominaga, M., Robinson, D.G., Hasek, J., Paciorek, T., Petrasek, J., Seifertova, D., Tejos, R., Meisel. L.A., Zazimalova, E., Gadella, T.W., Stierhof, YD., Ueda, T., Oiwa, K., Akhmanova, A., Brock, R., Spang, A., Friml, J. Auxin transport inhibitors impair vesicle motility and actin cytoskeleton dynamics in diverse eukaryotes. Proc Natl Acad Sci U S A.2008a,105:4489-4494.
    47. Dhonukshe, P., Tanaka, H., Goh, T., Ebine. K., Mahonen, A.P., Prasad, K., Blilou, I., Geldner, N., Xu, J., Uemura, T., Chory, J., Ueda. T., Nakano, A., Scheres, B., Friml, J. Generation of cell polarity in plants links endocytosis, auxin distribution and cell fate decisions. Nature. 2008b,456:962-975.
    48. Diekmann, W., Venis, M.A., Robinson, D.G. Auxin induce clustering of the auxin-binding protein at the surface of maize coleoptile protoplasts. Proc Natl Acad Sci U S A.1995, 92:3425-3429.
    49. Ding, Z., Wang, B., Moreno, I., Duplakova, N., Simon, S., Carraro, N., Reemmer, J., Pencik, A., Chen, X., Tejos, R., Skupa, P., Pollmann, S., Mravec, J., Petrasek, J., Zazimalova, E., Honys, D., Rolcik, J., Murphy, A., Orellana, A., Geisler, M., Friml, J. ER-localized auxin transporter PIN8 regulates auxin homeostasis and male gametophyte development in Arabidopsis. Nat Commun.2012,3,941.
    50. Drakakaki, G., Robert, S., Szatmari, A.M., Brown, M.Q., Nagawa, S., Van Damme, D., Leonard, M., Yang, Z., Girke, T., Schmid, S.L., Russinova, E., Friml, J., Raikhel, N.V., Hicks, G.R. Clusters of bioactive compounds target dynamic endomembrane networks in vivo. Proc Natl Acad Sci U S A.2011,108:17850-17855.
    51. Dreher, K.A., Brown, J., Saw, R.E., Callis, J. The Arabidopsis Aux/IAA protein family has diversified in degradation and auxin responsiveness. Plant Cell.2006,18:699-714.
    52. Du, C., Xu, Y., Wang, Y., Chong, K. Adenosine diphosphate ribosylation factor-GTPase-activating protein stimulates the transport of AUX1 endosome, which relies on actin cytoskeletal organization in rice root development. J Integr Plant Biol.2011, 53:698-709.
    53. Dumont, P., Ingrassia, L., Rouzeau, S., Ribaucour, F., Thomas, S., Roland, I., Darro, F., Lefranc, F., Kiss, R. The Amaryllidaceae isocarbostyril narciclasine induces apoptosis by activation of the death receptor and/or mitochondrial pathways in cancer cells but not in normal fibroblasts. Neoplasia.2007,9:766-776.
    54. Edelbluth, E., Kaldewey, H. Auxin in scapes, flower buds, flowers, and fruits of daffodil (Narcissuspseudonarcissus L.). Planta.1976,131:285-291.
    55. Effendi, Y., Rietz, S., Fischer, U., Scherer, G.F.E. The heterozygous abpl/ABP1 insertional mutant has defects in functions requiring polar auxin transport and in regulation of early auxin-regulated genes. Plant J.2011,65:282-294.
    56. Essl, D., Dirnberger, D., Gomord, V., Strasser, R., Faye, L., Glossl, J., Steinkellner, H. The N-terminal 77 amino acids from tobacco N-acetylglucosaminyltransferase I are sufficient to retain a reporter protein in the Golgi apparatus of Nicotiana benthamiana cells. FEBS Lett. 1999,453:169-173.
    57. Evidente, A., Andolfi, A., Abou-Donia, A.H., Touema, S.M., Hammoda, H.M., Shawky, E., Motta, A. (-)-Amarbellisine, a lycorine-type alkaloid from Amaryllis belladonna L. growing in Egypt. Phytochemistry.2004,65:2113-2118.
    58. Feraru,E., Friml, J. PIN polar targeting. Plant Physiol.2008,147:1553-1559.
    59. Feng, S., Shen, Y., Sullivan, J.A., Rubio, V., Xiong, Y, Sun, T.P., Deng, X.W. Arabidopsis CAND1, an unmodified CUL1-interacting protein, is involved in multiple developmental pathways controlled by ubiquitin/proteasome-mediated protein Degradation. Plant Cell. 2004,16:1870-1882.
    60. Friml, J., Benkova, E., Blilou, I., Wisniewska, J., Hamann, T., Ljung, K., Woody, S., Sandberg, G., Scheres, B., Jurgens, G., Palme, K. AtPIN4 mediates sink-driven auxin gradients and root patterning in Arabidopsis. Cell,2002a,108:661-673.
    61. Friml, J., Vieten, A., Sauer, M., Weijers, D., Schwarz, H., Hamann, T., Offringa, R., Jurgens, G. Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis. Nature. 2003,426:147-153.
    62. Friml, J., Wisniewska, J., Benkova, E., Mendgen, K., Palme, K. Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis. Nature.2002b,415:806-809.
    63. Fujinami, K., Tanahashi, N., Tanaka, K., Ichihara, A., Cejka, Z., Baumeister, W., Miyawaki, M., Sato, T., Nakagawa, H. Purification and characterization of the 26 S proteasome from spinach leaves. J Biol Chem.1994,269:25905-25910.
    64. Fukaki, H., Taniguchi, N., Tasaka, M. PICKLE is required for SOLITARY-ROOT/IAA14-mediated repression of ARF7 and ARF19 activity during Arabidopsis lateral root initiation. Plant J,2006,48:380-389.
    65. Furusawa, E., Irie, H., Combs, D., Wildman, W.C. Therapeutic activity of pretazettine on Rauscher leukemia:comparison with the related Amaryllidaceae alkaloids. Chemotherapy. 1980,26:36-45.
    66. Gabrielsen, B., Monath, T.P., Huggins, J.W., Kefauver, D.F., Pettit, G.R., Groszek, G., Hollingshead, M. Antiviral (RNA) activity of selected Amaryllidaceae isoquinoline constituents and synthesis of related substances. J Nat Products.1992,55:1569-81.
    67. Galvan-Ampudia, C.S., Offringa, R. Plant evolution:AGC kinases tell the auxin tale. Trends Plant Sci.2007,12:541-547.
    68. Galweiler, L., Guan, C.H., Muller, A., Wisman, E., Mendgen, K., Yephremov, A., Palme, K. Regulation of polar auxin transport by AtPIN1 in Arabidopsis vascular tissue. Science.1998, 282:2226-2230.
    69. Garcia, D., Collier, S. A., Byrne, M.E., Martienssen, R.A. Specification of leaf polarity in Arabidopsis via the trans-acting siRNA pathway. Curr Biol.2006,16:933-938.
    70. Geisler, M., Murphy, A.S. The ABC of auxin transport:The role of p-glycoproteins in plant development. Febs Letters.2006,580:1094-1102.
    71. Geldner, N., Anders, N., Wolters, H., Keicher, J., Kornberger, W., Muller, P., Delbarre, A., Ueda, T., Nakano, A., Jurgens, G. The Arabidopsis GNOM ARF-GEF mediates endosomal recycling, auxin transport, and auxin-dependent plant growth. Cell.2003,112:219-230.
    72. Geldner, N., Hyman, D.L., Wang, X., Schumacher, K... Chory, J. Endosomal signaling of plant steroid receptor kinase BRI1. Genes Dev.2007,21:1598-1602.
    73. Geldner, N., Friml, J., Stierhof, Y.D., Jurgens. G., Palme, K. Auxin transport inhibitors block PIN1 cycling and vesicle trafficking. Nature.2001,413:425-428.
    74. Geldner, N., Richter, S., Vieten, A., Marquardt, S., Torres-Ruiz, R.A., Mayer, U., Jurgens, G. Partial loss-of-function alleles reveal a role for GNOM in auxin transport-related, post-embryonic development of Arabidopsis. Development.2004,13:389-400.
    75. Gil, P., Dewey, E., Friml, J., Zhao, Y., Snowden, K.C., Putterill, J., Palme, K., Estelle, M., Chory, J. BIG:a calossin-like protein required for polar auxin transport in Arabidopsis. Genes Dev.2001,15:1985-1997.
    76. Gleason, C., Foley, R.C., Singh, K.B. Mutant Analysis in Arabidopsis Provides Insight into the Molecular Mode of Action of the Auxinic Herbicide Dicamba. Plos One.2011,6:e17245.
    77. Gray, W.M., del Pozo, J.C., Walker, L., Hobbie, L., Risseeuw, E., Banks, T., William L. Crosby, W.L., Yang, M., Ma, H., Estelle, M. Identification of an SCF ubiquitin-ligase complex required for auxin response in Arabidopsis thaliana. Genes Dev.1999, 13:1678-1691.
    78. Gray, W.M., Kepinski, S., Rouse, D., Leyser, O., Estelle, M. Auxin regulates SCF(TIR1)-dependent degradation of AUX/IAA proteins. Nature.2001,414:271-276.
    79. Gray, W.M., Muskett, P.R., Chuang, H.W., Parker, J.E. Arabidopsis SGTlb is required for SCFTIR1-mediated auxin response. Plant Cell.2003,315:1310-1319.
    80. Greenham, K., Santner, A., Castillejo, C., Mooney, S., Sairanen, I., Ljung, K., Estelle, M. The AFB4 Auxin Receptor Is a Negative Regulator of Auxin Signaling in Seedlings. Current Biology.2011,21:520-525.
    81. Guilfoyle, T.J., Hagen, G. Auxin response factors. Curr Opin Plant Biol.2007,10:453-460.
    82. Gutierrez, L., Bussell, J.D., Pacurar, D.I., Schwambach, J., Pacurar, M., Bellini, C. Phenotypic Plasticity of Adventitious Rooting in Arabidopsis Is Controlled by Complex Regulation of AUXIN RESPONSE FACTOR Transcripts and MicroRNA Abundance. Plant Cell.2009,21:3119-3132.
    83. Guzman, P., Ecker, J.R. Exploiting the triple response of Arabidopsis to identify ethylene-related mutants. Plant Cell.1990,2:513-523.
    84. Hagen, G, Guilfoyle, T. Auxin-responsive gene expression:genes, promoters and regulatory factors. Plant Mol Biol.2002,49:373-385.
    85. Hardtke, C.S., Berleth, T. The Arabidopsis gene MONOPTEROS encodes a transcription factor mediating embryo axis formation and vascular development. Embo Journal.1998, 17:1405-1411.
    86. Harper, R.M., Stowe-Evans, E.L., Luesse, D.R., Muto, H., Tatematsu, K., Watahiki, M.K., Yamamoto, K., Liscum, E. The NPH4 locus encodes the auxin response factor ARF7, a conditional regulator of differential growth in aerial Arabidopsis tissue. Plant Cell.2000, 12:757-770.
    87. Hayashi, K. The interaction and integration of auxin signaling components. Plant Cell Physiol.2012,53:965-975.
    88. Hayashi, K., Jones A.M., Ogino, K., Yamazoe, A., Oono, Y., Inoguchi, M., Kondo, H., mozaki, H. Yokonolide B, a novel inhibitor of auxin action, blocks degradation of AUX/IAA factors. J Biol Chem.2003,278:23797-23806.
    89. Hayashi, K., Tan, X., Zheng, N., Hatate, T., Kimura, Y., Kepinski, S., Nozaki, H. Small-molecule agonists and antagonists of F-box protein-substrate interactions in auxin perception and signaling. Proc Natl Acad Sci U S A.2008,105:5632-5637.
    90. Hicks, G.R., Raikhel, N.V. Advances in dissecting endomembrane trafficking with small molecules. Curr Opin Plant Biol.2010,13:706-713.
    91. Himanen, K., Boucheron, E., Vanneste, S., De Almeida Engler, J., Inze, D., Beeckman, T. Auxin-mediated cell cycle activation during early lateral root initiation. Plant Cell.2002, 14:2339-2351.
    92. Hochholdinger, F., Zimmermann, R. Conserved and diverse mechanisms in root development. Curr Opinion Plant Biol.2008,11:70-74.
    93. Hoyerova, K., Perry, L., Hand, P., Lankova, M., Kocabek, T., May, S., Kottova, J., Paces, J., Napier, R., Zazimalova, E. Functional characterization of PaLAX1, a putative auxin permease, in heterologous plant systems. Plant Physiol.2008,146:1128-1141.
    94. Hunter, C., Willmann, M.R., Wu, G., Yoshikawa, M., de la Luz Gutierrez-Nava, M., Poethig, R.S. Trans-acting siRNA-mediated repression of ETTIN and ARF4 regulates heteroblasty in Arabidopsis. Development.2006,133:2973-2981.
    95. Isogai, Y., Nomoto, S., Noma, T., Okamoto, T. Isolation of para-hydroxyphenylacetic acid from scape-sprouting bulbs of Lycoris radiata Herb. Plant Growth Substances. Tokyo: Hirokawa Publishing Co.1974. p.9-14.
    96. Jaffe, A.B., Hall, A. Rho GTPases:biochemistry and biology. Annu Rev Cell Dev Biol.2005, 21:247-269.
    97. Jaillais, Y., Fobis-Loisy, I., Miege, C., Gaude, T. Evidence for a sorting endosome in Arabidopsis root cells. Plant J.2008,53:237-247.
    98. Jaillais, Y., Fobis-Loisy, I., Miege, C, Rollin, C., Gaude, T. AtSNX1 defines an endosome for auxin-carrier trafficking in Arabidopsis. Nature.2006,443:106-109.
    99. Jaillais, Y., Santambrogio, M., Rozier, F., Fobis-Loisy, I., Miege, C., Gaude, T. The retromer protein VPS29 links cell polarity and organ initiation in plants. Cell.2007,130:1057-1070.
    100. Jain, M., Kaur, R., Garg, R., Thakur, J.K., Tyagi, A.K., Khurana, J.R. Structure and expression analysis of early-auxin-responsive Aux/IAA gene family in rice (Oryza sativa). Funct Integr Genomics.2006,6:47-59.
    101. Jimenez, A., Sanchez, L., Vazquez, D. Location of resistance to the alkaloid narciclasine in the 60S ribosomal subunit. FEBS Lett.1975a,55:53-56.
    102. Jimenez, A., Sanchez, L., Vazquez, D. Yeast ribosomal sensitivity and resistance to the Amaryllidaceae alkaloids. FEBS Lett.1975b,60:66-70.
    103. Jones, A.M., Herman, E.M. KDEL-Containing Auxin-Binding Protein Is Secreted to the Plasma Membrane and Cell Wall. Plant Physiol.1993,101:595-606.
    104. Jones, A.M.,Im, K.H., Savka, M.A., Wu, M.J., DeWitt, N.G., Shillito, R., Binns, A.N. Auxin-dependent cell expansion mediated by overexpressed auxin-binding protein 1. Science.1998,282:1114-1117.
    105. Kepinski, S., Leyser. O. Auxin-induced SCFTIR1-Aux/IAA interaction involves stable modification of the SCFTIR1 complex. Proc Natl Acad Sci U S A.2004,101:12381-12386.
    106. Kepinski, S., Leyser, O. The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature. 2005,435:446-451.
    107. Kim, J.Y, Henrichs, S., Bailly, A., Vincenzetti, V., Sovero, V., Mancuso, S., Pollmann, S., Kim, D.. Geisler, M., Nam, H.G. Identification of an ABCB/P-glycoprotein-specific Inhibitor of Auxin Transport by Chemical Genomics. J Biol Chem.2010,285:23307-23315.
    108. Kim, J.. Harter. K., Theologis, A. Protein-protein interactions among the Aux/IAA proteins. Proc Natl Acad Sci U S A.1997,94:11786-11791.
    109. Kitomi, Y., Ogawa, A., Kitano, H., Inukai, Y. CRL4 regulates crown root formation through auxin transport in rice. Plant Root.2008,2:19-28.
    110. Kleine-Vehn, J., Dhonukshe, P., Sauer, M., Brewer, P.B., Wisniewska, J., Paciorek, T., Benkova, E., Friml, J. ARF GEF-dependent transcytosis and polar delivery of PIN auxin carriers in Arabidopsis. Curr Biol.2008a,18:526-531.
    111. Kleine-Vehn, J., Dhonukshe, P., Swarup, R., Bennett, M., Friml, J. Subcellular trafficking of the Arabidopsis auxin influx carrier AUX1 uses a novel pathway distinct from PIN1. Plant Cell.2006,18:3171-3181.
    112. Kleine-Vehn, J., Friml, J. Polar Targeting and Endocytic Recycling in Auxin-Dependent Plant Development. Annu Rev Cell Dev Biol.2008,24:447-473.
    113. Kleine-Vehn, J., Huang, F., Naramoto, S., Zhang, J., Michniewicz, M., Offringa, R., Friml, J. PIN Auxin Efflux Carrier Polarity Is Regulated by PINOID Kinase-Mediated Recruitment into GNOM-Independent Trafficking in Arabidopsis. Plant Cell.2009,21:3839-3849.
    114. Kleine-Vehn, J., Langowski, L., Wisniewska, J., Dhonukshe, P., Brewer, P.B., Friml, J. Cellular and molecular requirements for polar PIN targeting and transcytosis in plants. Mol Plant.2008b,1:1056-1066.
    115. Kornienko, A., Evidente, A. Chemistry, biology, and medicinal potential of narciclasine and its congeners. Chem Rev.2008,108:1982-2014.
    116. Kowalczyk, M., Sandberg, G. Quantitative analysis of indole-3-acetic acid metabolites in Arabidopsis. Plant Physiol.2001,127:1845-1853.
    117.Krecek, P., Skupa, P., Libus, J., Naramoto, S., Tejos, R., Friml, J., Zazimalova, E. The PIN-FORMED (PEN) protein family of auxin transporters. Genome Biol.2009,10:249
    118. Last, R.L., Bissinger, P.H., Mahoney, D.J., Radwanski, E.R., Fink, G.R. Tryptophan mutants in Arabidopsis:the consequences of duplicated tryptophan synthase beta genes. Plant Cell. 1991,3:345-358.
    119. Lefranc, F., Sauvage, S., Van Goietsenoven, G., Megalizzi, V., Lamoral-Theys, D., Debeir, O., Spiegl-Kreinecker, S., Berger, W., Mathieu, V., Decaestecker, C., Kiss, R. Narciclasine, a plant growthmodulator, activates Rho and stress fibers in glioblastoma cells. Mol Cancer Ther.2009,8:1739-1750.
    120. Leblanc, N., David, K., Grosclaude, J., Pradier, J.M., Barbier-Brygoo, H., Labiau, S., Perrot-Rechenmann, C. A novel immunological approach establishes that the auxin-binding protein, Nt-abp1, is an element involved in auxin signaling at the plasma membrane. J Biol Chem.1999,274:8314-28320.
    121. Leblanc, N., Roux, C., Pradier, J.M., PerrotRechenmann, C. Characterization of two cDNAs encoding auxin-binding proteins in Nicotiana tabacum. Plant Mol Biol.1997,33:679-689.
    122. Lefranc, F., Sauvage, S., Van Goietsenoven, G., Megalizzi, V., Lamoral-Theys, D., Debeir, O., Spiegl-Kreinecker, S., Berger, W., Mathieu, V., Decaestecker, C., Kiss, R. Narciclasine, a plant growth modulator, activates Rho and stress fibers in glioblastoma cells. Mol Cancer Ther.2009,8:1739-1750.
    123. Lewis, D.R., Miller, N.D., Splitt, B.L., Wu, G., Spalding, E.P. Separating the roles of acropetal and basipetal auxin transport on gravitropism with mutations in two Arabidopsis Multidrug Resistance-Like ABC transporter genes. Plant Cell.2007,19:1838-1850.
    124. Leyser, H.M., Pickett, F.B., Dharmasiri, S., Estelle, M. Mutations in the AXR3 gene of Arabidopsis result in altered auxin response including ectopic expression from the SAUR-AC1 promoter. Plant J.1996 10:403-413.
    125. Li, H., Johnson, P., Stepanova, A., Alonso. J.M., Ecker, J.R. Convergence of signaling of differential cell growth pathways in the control in Arabidopsis. Dev Cell.2004,7:193-204.
    126. Li, H., Tiwari, S.B., Hagen, G., Guilfoyle, T.J. Identical Amino Acid Substitutions in the Repression Domain of Auxin/Indole-3-Acetic Acid Proteins Have Contrasting Effects on Auxin Signaling. Plant Physiol.2011a,155:1252-1263.
    127. Li, J.F., Bush, J., Xiong, Y., Li, L., McCormack, M. Large-Scale Protein-Protein Interaction Analysis in Arabidopsis Mesophyll Protoplasts by Split Firefly Luciferase Complementation. Plos One.2011b,6:e27364.
    128. Liljegren, S.J., Leslie, M.E., Darnielle, L., Lewis, M.W., Taylor, S.M., Luo, R., Geldner, N., Chory, J., Randazzo, P.A., Yanofsky, M.F., Ecker, J.R. Regulation of membrane trafficking and organ separation by the NEVERSHED ARF-GAP protein. Development.2009, 136:1909-1918.
    129. Lin, R.C., Wang, H.Y. Two homologous ATP-binding cassette transporter proteins, AtMDR1 and AtPGP1, regulate Arabidopsis photomorphogenesis and root development by mediating polar auxin transport. Plant Physiol.2005,138:949-964.
    130. Lincoln, C., Britton, J.H., Estelle, M. Growth and development of the axrl mutants of Arabidopsis. Plant Cell.1990,2:1071-1080.
    131.Liscum, E., Reed, J.W. Genetics of Aux/IAA and ARF action in plant growth and development. Plant Mol Biol.2002,49:387-400.
    132. Liu, J., Furukawa, M., Matsumoto, T., Xiong, Y. NEDD8 modification of CUL1 dissociates p120 (CAND1), an inhibitor of CUL1-SKP1 binding and SCF ligases. Mol Cell.2002, 10:1511-1518.
    133. Liu, P.P., Montgomery, T.A., Fahlgren, N., Kasschau, K.D., Nonogaki, H., Carrington, J.C. Repression of AUXIN RESPONSE FACTOR 10 by microRNA160 is critical for seed germination and post-germination stages. Plant J.2007,52:133-146.
    134. Liu, S., Wang, J., Wang, L., Wang, X., Xue, Y., Wu, P., Shou, H. Adventitious root formation in rice requires OsGNOM1 and is mediated by the OsPINs family. Cell Res.2009, 19:1110-1119.
    135. Ljung, K., Bhalerao, R.P., Sandberg, G. Sites and homeostatic control of auxin biosynthesis in Arabidopsis during vegetative growth. Plant J.2001,28:465-474.
    136. Ljung, K., Hull, A.K., Celenza, J., Yamada, M., Estelle, M., Normanly, J., Sandberg, G. Sites and regulation of auxin biosynthesis in Arabidopsis roots. Plant Cell.2005, 17:1090-1104.
    137. Louw, C.A.. Regnier, T.J., Korsten, L. Medicinal bulbous plants of South Africa and their traditional relevance in the control of infectious diseases. J Ethnopharmacol.2002, 82:147-154.
    138. Ludwig-Mueller, J. Auxin conjugates:their role for plant development and in the evolution of land plants. J Exp Bot.2011.62:1757-1773.
    139. Luschnig, C, Gaxiola, R.A., Grisafi. P., Fink, G.R. EIR1, a root-specific protein involved in auxin transport, is required for gravitropism in Arabidopsis thaliana. Genes Dev.1998, 12:2175-2187.
    140. Malamy, J.E., Benfey, P.N. Organization and cell differentiation in lateral roots of Arabidopsis thaliana. Development.1997,124:33-44.
    141.Mallory, A.C., Bartel, D.P., Bartel, B. MicroRNA-directed regulation of Arabidopsis AUXIN RESPONSE FACTOR17 is essential for proper development and modulates expression of early auxin response genes. Plant Cell.2005,17:1360-1375.
    142. Mano, Y., Nemoto, K. The pathway of auxin biosynthesis in plants. J Exp Bot.2012, 63:2853-2872.
    143. Maraschin Fdos, S., Memelink, J., Offringa, R. Auxin-induced, SCF(TIR1)-mediated poly-ubiquitination marks AUX/IAA proteins for degradation. Plant J.2009,59:100-109.
    144. Marchant, A., Bhalerao, R., Casimiro, I., Eklof, J., Casero, P.J., Bennett, M., Sandberg, G. AUX1 promotes lateral root formation by facilitating indole-3-acetic acid distribution between sink and source tissues in the Arabidopsis seedling. Plant Cell.2002,14:589-597.
    145. Marchant, A., Kargul, J., May, S.T., Muller, P., Delbarre, A., Perrot-Rechenmann, C., Bennett, M.J. AUX1 regulates root gravitropism in Arabidopsis by facilitating auxin uptake within root apical tissues. EMBO J.1999,18:2066-2073.
    146. Masucci, J.D., Schiefelbein, J.W. Hormones act downstream of TTG and GL2 to promote root hair outgrowth during epidermis development in the Arabidopsis root. Plant Cell.1996, 8:1505-1517.
    147. McSteen, P. Auxin and Monocot Development. Cold Spring Harb Perspect Biol.2010, 10:a001479.
    148. Memon, A.R. The role of ADP-ribosylation factor and SARI in vesicular trafficking in plants. Biochim Biophys Acta.2004,1664:9-30.
    149. Men, S., Boutte, Y., Ikeda, Y, Li, X., Palme, K., Stierhof, Y.D., Hartmann, M.A., Moritz, T., Grebe, M. Sterol-dependent endocytosis mediates post-cytokinetic acquisition of PIN2 auxin efflux carrier polarity. Nature Cell Biol.2008,10:237-244.
    150. Morris, D.A.Transmembrane auxin carrier systems-dynamic regulators of polar auxin transport. Plant Growth Regul.2000,32:161-172.
    151. Mravec, J., Skupa, P., Bailly, A., Hoyerova, K., Krecek, P., Bielach, A., Petrasek, J., Zhang, J., Gaykova, V., Stierhof, Y.D., Dobrev, P. I., Schwarzerova, K., Rolcik, J., Seifertova, D., Luschnig, C., Benkova, E., Zazimalova, E., Geisler, M., Friml, J. Subcellular homeostasis of phytohormone auxin is mediated by the ER-localized PIN5 transporter. Nature.2009, 459:1136-1140.
    152. Muday, G.K., Murphy, A.S. An emerging model of auxin transport regulation. Plant Cell. 2002,14:293-299.
    153. Muller, A., Guan, C.H., Galweiler, L., Tanzler, P., Huijser, P., Marchant, A., Parry, G., Bennett, M., Wisman, E., Palme, K. AtPIN2 defines a locus of Arabidopsis for root gravitropism control. Embo J,1998,17:6903-6911.
    154. Muto, H., Nagao, I., Demura, T., Fukuda, H., Kinjo, M., Yamamoto, K.T. Fluorescence cross-correlation analyses of the molecular interaction between an Aux/IAA protein, MSG2/IAA19, and protein-protein interaction domains of auxin response factors of Arabidopsis expressed in HeLa cells. Plant Cell Physiol.2006,47:1095-1101.
    155. Na, X.F., Hu, Y.F., Yue, K., Lu, H.X., Jia, P.F., Wang, H.H., Wang, X.M., Bi, Y.R. Concentration-dependent effects of narciclasine on cell cycle progression in Arabidopsis root tips. BMC Plant Biol.2011a,11:184.
    156. Na, X., Hu, Y., Yue, K., Lu, H., Jia, P., Wang, H., Wang, X., Bi, Y. Narciclasine modulates polar auxin transport in Arabidopsis roots. J Plant Physiol.2011b,168:1149-1156.
    157.Nagpal, P., Ellis, C.M., Weber, H., Ploense, S.E., Barkawi, L.S., Guilfoyle, T.J., Hagen, G., Alonso, J.M., Cohen, J.D., Farmer, E.E., Ecker, J.R., Reed, J.W. Auxin response factors ARF6 and ARF8 promote jasmonic acid production and flower maturation. Development. 2005,132:4107-4118.
    158. Nakamura, A., Umemura, I., Gomi, K., Hasegawa, Y., Kitano, H., Sazuka, T., Matsuoka, M. Production and characterization of auxin-insensitive rice by overexpression of a mutagenized rice IAA protein. Plant J.2006,46:297-306.
    159. Nakano, R.T., Matsushima, R., Ueda, H., Tamura, K., Shimada, T., Li, L., Hayashi, Y., Kondo, M., Nishimura, M., Hara-Nishimura, I. GNOM-LIKE1/ERMO1 and SEC24a/ERMO2 Are Required for Maintenance of Endoplasmic Reticulum Morphology in Arabidopsis thaliana. Plant Cell.2009,21:3672-3685.
    160. Napier, R.M., David, K.M., Perrot-Rechenmann, C. A short history of auxin-binding proteins. Plant Mol Biol.2002,49:339-348.
    161. Nick, P., Han, M.J., An, G. Auxin stimulates its own transport by shaping actin filaments. Plant Physiol.2009,151:155-167.
    162. Niedergang-Kamien, E., Leopold, A.C. Inhibitors of polar auxin transport. Plant Physiol. 1957,10:29-38.
    163. Nielsen, E., Cheung, A.Y., Ueda, T. The regulatory RAB and ARF GTPases for vesicular trafficking. Plant Physiol.2008,147:1516-1526.
    164. Normanly, J. Approaching cellular and molecular resolution of auxin biosynthesis and metabolism. Cold Spring Harb Perspect Biol.2010,2:a001594.
    165. Normanly, J., Slovin, J.P., Cohen, J.D. Rethinking Auxin Biosynthesis and Metabolism. Plant Physiol.1995,107:323-329.
    166. Ohashi, K., Nagata, K., Maekawa, M., Ishizaki, T., Narumiya, S., Mizuno, K. Rho-associated kinase ROCK activates LIM-kinase1 by phosphorylation at threonine 508 within the activation loop. J Biol Chem.2000,275:3577-3582.
    167. Okamoto, T., Torii, Y., lsogai, Y. Lycoricidinol and lycoricidine new plant growth regulators in the bulbs of Lycoris. Chem Parn Bull.1968,16:1860-1864.
    168. Okushima, Y., Overvoorde, P.J., Arima, K., Alonso, J. M., Chan, A., Chang, C., Ecker, J.R., Hughes, B., Lui, A., Nguyen, D., Onodera, C, Quach, H., Smith, A., Yu, G.X., Theologis, A. Functional genomic analysis of the AUXIN RESPONSE FACTOR gene family members in Arabidopsis thaliana:Unique and overlapping functions of ARF7 and ARF19. Plant Cell. 2005,17:444-463.
    169. Oono, Y., Ooura, C., Rahman. A., Aspuria, E.T., Hayashi, K., Tanaka. A., Uchimiya, H. p-Chlorophenoxyisobutyric acid impairs auxin response in Arabidopsis root. Plant Physiol. 2003,133:1135-1147.
    170. Ostin, A., Kowalyczk, M., Bhalerao, R.P., Sandberg, G. Metabolism of indole-3-acetic acid in Arabidopsis. Plant Physiol.1998,118:285-296.
    171. Ouellet, F., Overvoorde, P.J., Theologis, A. IAA17/AXR3:biochemical insight into an auxin mutant phenotype. Plant Cell.2001,13:829-841.
    172. Ouyang, J., Shao, X., Li, J. Indole-3-glycerol phosphate, a branchpoint of indole-3-acetic acid biosynthesis from the tryptophan biosynthetic pathway in Arabidopsis thaliana. Plant J. 2000,24:327-333.
    173. Overvoorde, P.J., Okushima, Y., Alonso, J.M., Chan, A., Chang, C., Ecker, J.R., Hughes, B., Liu, A., Onodera, C., Quach, H., Smith, A., Yu, G., Theologis, A. Functional genomic analysis of the AUXIN/INDOLE-3-ACETIC ACID gene family members in Arabidopsis thaliana. Plant Cell.2005,17:3282-3300.
    174. Paciorek, T., Zazimalova, E., Ruthardt, N., Petrasek, J., Stierhof, Y.D., Kleine-Vehn, J., Morris, D. A., Emans, N., Jurgens, G., Geldner, N., Friml, J. Auxin inhibits endocytosis and promotes its own efflux from cells. Nature.2005,435:1251-1256.
    175. Paponov, I.A., Teale,W.D., Trebar, M., Blilou, I., Palme, K. The PIN auxin efflux facilitators:evolutionary and functional perspectives. Trends Plant Sci.2005,10:170-177.
    176. Peer, W.A., Blakeslee, J.J., Yang, H., Murphy, A.S. Seven things we think we know about auxin transport. Mol Plant.2011,4:487-504.
    177. Peer, W.A., Murphy, A.S. Flavonoids and auxin transport:modulators or regulators? Trends Plant Sci.2007,12:556-563.
    178. Pelagio-Flores, R., Ortiz-Castro, R., Mendez-Bravo, A., Macias-Rodriguez, L., Lopez-Bucio, J. Serotonin, a tryptophan-derived signal conserved in plants and animals, regulates root system architecture probably acting as a natural auxin inhibitor in Arabidopsis thaliana. Plant Cell Physiol.2011,52:490-508.
    179. Penninckx, I.A., Thomma, B.P., Buchala, A., Metraux, J.P., Broekaert, W.F. Concomitant activation of jasmonate and ethylene response pathways is required for induction of a plant defensin gene in Arabidopsis. Plant Cell.1998,10:2103-2113.
    180. Petersson, S.V., Johansson, A.I., Kowalczyk, M., Makoveychuk, A., Wang, J.Y., Moritz, T., Grebe, M., Benfey, P.N., Sandberg, G., Ljung, K. An auxin gradient and maximum in the Arabidopsis root apex shown by high-resolution cell-specific analysis of IAA distribution and synthesis. Plant Cell.2009,21:1659-1668.
    181. Petrasek, J., Cerna, A., Schwarzerova, K., Elckner, M., Morris, D.A., Zazimalova, E. Do phytotropins inhibit auxin efflux by impairing vesicle traffic? Plant Physiol.2003, 131:254-263.
    182. Petrasek, J., Friml, J. Auxin transport routes in plant development. Development.2009, 136:2675-2688.
    183. Petrasek, J., Mravec, J., Bouchard, R., Blakeslee, J.J., Abas, M., Seifertova, D., Wisniewska, J., Tadele, Z., Kubes, M., Covanova, M., Dhonukshe, P., Skupa, P., Benkova, E., Perry, L., Krecek, P., Lee, O.R., Fink, G.R., Geisler, M., Murphy, A.S., Luschnig, C., Zazimalova, E., Friml, J. PIN proteins perform a rate-limiting function in cellular auxin efflux. Science.2006, 312:914-918.
    184. Pickart, CM. Mechanisms underlying ubiquitination. Annu Rev Biochem.2001, 70:503-533.
    185. Pickett, F.B., Wilson, A.K., Estelle, M. The auxl Mutation of Arabidopsis Confers Both Auxin and Ethylene Resistance. Plant Physiol.1990,94:1462-1466.
    186. Pimpl, P., Hanton, S.L., Taylor, J.P., Pinto-daSilva, L.L., Denecke, J. The GTPase ARFlp controls the sequence-specific vacuolar sorting route to the lytic vacuole. Plant Cell.2003, 15:1242-1256.
    187. Piozzi, F., Fuganti, C., Mondelli, R., Ceriotto, G. Narciclasine and narciprimine. Tetrahedron.1968,24:1119-1131.
    188. Pitts, R.J., Cernac, A., Estelle, M. Auxin and ethylene promote root hair elongation in Arabidopsis. Plant J.1998,16:553-560.
    189. Rademacher, E.H., Moller, B., Lokerse, A.S., Llavata-Peris, C.I., van den Berg, W., Weijers, D.A cellular expression map of the Arabidopsis AUXIN RESPONSE FACTOR gene family. Plant J.2011,68:597-606.
    190. Radwanski, E.R., Barczak, A.J., Last, R.L. Characterization of tryptophan synthase alpha subunit mutants of Arabidopsis thaliana. Mol Gen Genet.1996,253:353-361.
    191. Rahman, A., Bannigan, A., Sulaman, W., Pechter, P., Blancaflor, E.B., Baskin, T.I. Auxin, actin and growth of the Arabidopsis thaliana primary root. Plant J.2007,50:514-528.
    192. Ramos, J.A., Zenser, N., Leyser, O., Callis, J. Rapid degradation of auxin/indoleacetic acid proteins requires conserved amino acids of domain Ⅱ and is proteasome dependent. Plant Cell.2001,13:2349-2360.
    193. Rebouillat, J., Dievart, A., Verdeil, L., Escoute, J., Giese, G., Breitler, C., Gantet, P., Espeout, S., Guiderdoni, E., Perin, C. Molecular Genetics of Rice Root Development. Rice. 2009,2:15-34.
    194. Reinhardt, D., Pesce, E.R., Stieger, P., Mandel, T., Baltensperger, K., Bennett, M., Traas, J., Friml, J., Kuhlemeier, C. Regulation of phyllotaxis by polar auxin transport. Nature.2003, 426:255-260.
    195. Reyes, F.C., Buono, R., Otegui, M.S. Plant endosomal trafficking pathways. Curr Opin Plant Biol.2011,14:666-673.
    196. Robert, S., Chary, S.N., Drakakaki, G., Li, S., Yang, Z., Raikhel, N.V., Hicks, G.R. Endosidinl defines a compartment involved in endocytosis of the brassinosteroid receptor BRI1 and the auxin transporters PIN2 and AUX1. Proc Natl Acad Sci U S A.2008, 105:8464-8469.
    197. Robert, S., Kleine-Vehn, J., Barbez, E., Sauer, M., Paciorek, T., Baster, P., Vanneste, S., Zhang, J., Simon, S., Covanova, M., Hayashi, K., Dhonukshe, P., Yang, Z., Bednarek, S.Y., Jones, A.M., Luschnig, C., Aniento, F., Zazimalova, E., Friml, J. ABP1 Mediates Auxin Inhibition of Clathrin-Dependent Endocytosis in Arabidopsis. Cell.2010,143:111-121.
    198. Rojas-Pierce, M., Titapiwatanakun, B., Sohn, E.J., Fang, F., Larive, C.K., Blakeslee, J., Cheng, Y., Cuttler, S., Peer, W.A., Murphy, A.S., Raikhel, N.V. Arabidopsis P-glycoprotein 19 participates in the inhibition of Gravitropism by gravacin. Chem Biol. 2007,14:1366-1376.
    199. Rouse. D., Mackay, P., Stirnberg, P., Estelle, M., Leyser, O. Changes in auxin response from mutations in an AUX/IAA gene. Science.1998,279:1371-1373.
    200. Ruegger, M., Dewey, E., Gray, W.M., Hobbie, L., Turner, J., Estelle, M. The TIR1 protein of Arabidopsis functions in auxin response and is related to human SKP2 and yeast grrlp. Genes Dev.1998,12:198-207.
    201.Ruegger, M., Dewey, E., Hobbie, L., Brown, D., Bernasconi, P., Turner, J., Muday, G., Estelle, M. Reduced naphthylphthalamic acid binding in the tir3 mutant of Arabidopsis is associated with a reduction in polar auxin transport and diverse morphological defects. Plant Cell.1997,9:745-757.
    202. Sabatini, S., Beis, D., Wolkenfelt, H., Murfett, J., Guilfoyle, T., Malamy, J., Benfey, P., Leyser, O., Bechtold, N., Weisbeek, P., Scheres, B. An auxin-dependent distal organizer of pattern and polarity in the Arabidopsis root. Cell.1999,99:463-472.
    203. Samaj, J., Miiller, J., Beck, M., Bohm, N., Menzel, D. Vesicular trafficking, cytoskeleton and signalling in root hairs and pollen tubes. Trends Plant Sci.2006, 11:594-600.
    204. Sanderfoot, A.A., Kovaleva, V., Bassham, D.C., Raikhel, N.V. Interaction between synthaxins identify at least five SNARE complexes within the Golgi, prevacuolar system of Arabidopsis cells. Mol Biol Cell.2001,12:3733-3743.
    205. Santner, A., Estelle, M. Recent advances and emerging trends in plant hormone signalling. Nature.2009,459:1071-1078.
    206. Sasse, J.M., Wardrop, J J., Rowan, K.S., Aspinall, D., Coombe, B.G., Paleg, L.G., Buta, J.G. Some physiological effects of podolactone-type inhibitors. Physiol Plantarum.1982, 55:51-59.
    207. Sasse, J.M., Cerana, R., Colombo, R. The effects of podoiactone-type inhibitors on fusiocdn-indueed growth and proton efflux. Physiol Plantarum.1984,62:303-308.
    208. Scarpella, E., Marcos, D., Friml, J., Berleth, T. Control of leaf vascular patterning by polar auxin transport. Genes Dev.2006,20:1015-1027.
    209. Sessions, R.A., Zambryski, P.C. Arabidopsis gynoecium structure in the wild and in ettin mutants. Development.1995,121:1519-1532.
    210. Shalata, A., Mittova, V., Volokita, M., Guy, M., Tal, M. Response of the cultivated tomato and its wild salt-tolerant relative Lycopersiconpennellii to salt-dependent oxidative stress: The root antioxidative system. Physiol Plantarum.2001,112:487-494.
    211. Silverstone, A.L., Jung, H.S., Dill, A., Kawaide, H., Kamiya, Y., Sun, T-p. Repressing a repressor:Gibberellin-induced rapid reduction of the RGA protein in Arabidopsis. Plant Cell. 2001,13:1555-1566.
    212. Solano, R., Stepanova, A., Chao, Q., Ecker, J.R. Nuclear events in ethylene signaling:A transcriptional cascade mediated by ETHYLENE-INSENSITIVE3 and ETHYLENERESPONSE-FACTOR1. Genes Dev.1998,12:3703-3714.
    213. Song, Y., You, J., Xiong, L. Characterization of OsIAA 1 gene, a member of rice Aux/IAA family involved in auxin and brassinosteroid hormone responses and plant morphogenesis. Plant Mol Biol.2009,70:297-309.
    214. Staswick, P.E. The tryptophan conjugates of jasmonic and indole-3-acetic acids are endogenous auxin inhibitors. Plant Physiol.2009,150:1310-1321.
    215. Staswick, P.E., Serban, B., Rowe, M., Tiryaki, I., Maldonado, M.T., Maldonado, M.C., Suza, W. Characterization of an Arabidopsis enzyme family that conjugates amino acids to indole-3-acetic acid. Plant Cell.2005,17:616-627.
    216. Steffens, B., Feckler, C., Palme, K., Christian, M., Bottger, M., Luthen, H. The auxin signal for protoplast swelling is perceived by extracellular ABP1. Plant J.2001,27:591-599.
    217. Steinmann. T., Geldner, N., Grebe, M., Mangold, S., Jackson, C.L., Paris, S., Galweiler, L., Palme, K., Jurgens, G. Coordinated polar localization of auxin efflux carrier PIN1 by GNOM ARF GEF. Science.1999,286:316-318.
    218. Stepanova, A.N., Robertson-Hoyt, J., Yun, J., Benavente, L.M., Xie, D.Y., Dolezal, K., Schlereth, A., Juergens, G., Alonso, J.M. TAA1-mediated auxin biosynthesis is essential for hormone crosstalk and plant development. Cell.2008,133:177-191.
    219. Sungur, C., Miller, S., Bergholz, J., Hoye, R.C., Brisbois, R.G., Overvoorde, P. The Small Molecule 2-Furylacrylic Acid Inhibits Auxin-Mediated Responses in Arabidopsis thaliana. Plant Cell Physiol.2007,48:1693-1701.
    220. Surpin, M., Rojas-Pierce, M., Carter, C., Hicks, G.R., Vasquez, J., Raikhel, N.V. The power of chemical genomics to study the link between endomembrane system components and the gravitropic response. Proc Natl Acad Sci U S A.2005,102:4902-4907.
    221. Swarup, K., Benkova, E., Swarup, R., Casimiro, I., Peret, B., Yang, Y., Parry, G., Nielsen, E., De Smet, I., Vanneste, S., Levesque, M.P., Carrier, D., James, N., Calvo, V., Ljung, K., Kramer, E., Roberts, R., Graham, N., Marillonnet, S., Patel, K., Jones, J.D., Taylor, C.G., Schachtman, D.P., May, S., Sandberg, G., Benfey, P., Friml, J., Kerr, I., Beeckman, T., Laplaze, L., Bennett, M.J. The auxin influx carrier LAX3 promotes lateral root emergence. Nat Cell Biol.2008,10:946-954.
    222. Swarup, R., Friml, J., Marchant, A., Ljung, K., Sandberg, G., Palme, K., Bennett, M. Localization of the auxin permease AUX1 suggests two functionally distinct hormone transport pathways operate in the Arabidopsis root apex. Genes Dev.2001,15:2648-2653.
    223. Swarup, R., Kramer, E.M., Perry, P., Knox, K., Leyser, H.M., Haseloff, J., Beemster, G.T., Bhalerao, R., Bennett, M.J. Root gravitropism requires lateral root cap and epidermal cells for transport and response to a mobile auxin signal. Nat Cell Biol.2005,7:1057-1065.
    224. Szemenyei, H., Hannon, M., Long, J.A. TOPLESS mediates auxin-dependent transcriptional repression during Arabidopsis embryogenesis. Science.2008, 319:1384-1386.
    225. Tanaka, H., Dhonukshe, P., Brewer, P.B., Friml, J. Spatiotemporal asymmetric auxin distribution:A means to coordinate plant development. Cell Mol Life Sci.2006, 63:2738-2754.
    226. Tam, Y.Y., Epstein, E., Normanly, J. Characterization of auxin conjugates in Arabidopsis. Low steady-state levels of indole-3-acetyl-aspartate, indole-3-acetyl-glutamate, and indole-3-aceryl-glucose. Plant Physiol.2000,123:589-596.
    227. Tan, X., Calderon-Villalobos, L.I.A., Sharon, M., Zheng, C., Robinson, C.V., Estelle, M., Zheng, N. Mechanism of auxin perception by the TIR1 ubiquitin ligase. Nature.2007, 446:640-645.
    228. Tao, Y, Ferrer, J.L., Ljung, K., Pojer, F.. Hong, F., Long, J.A., Li, L., Moreno, J.E., Bowman, M. E., Ivans, L.J., Cheng, Y., Lim, J., Zhao, Y., Ballare, C.L., Sandberg, G., Noel, J.P., Chory. J. Rapid synthesis of auxin via a new tryptophan-dependent pathway is required for shade avoidance in plants. Cell.2008,133:164-176.
    229. Teh. O.k., Moore,1. An ARF-GEF acting at the Golgi and in selective endocytosis in polarized plant cells. Nature.2007,448:493-496.
    230. Terasaka, K., Blakeslee. J.J., Titapiwatanakun, B., Peer, W.A., Bandyopadhyay. A., Makam. S.N., Lee, O.R., Richards, E.L., Murphy, A.S., Sato, F., Yazaki, K. PGP4, an ATP binding cassette P-glycoprotein, catalyzes auxin transport in Arabidopsis thaliana roots. Plant Cell. 2005,17:2922-2939.
    231.Timpte, C. Auxin binding protein:curiouser and curiouser. Trends Plant Sci.2001, 6:586-590.
    232. Titapiwatanakun, B., Blakeslee, J.J., Bandyopadhyay, A., Yang, H., Mravec, J., Sauer, M., Cheng, Y., Adamec, J., Nagashima. A., Geisler, M., Sakai, T., Friml, J., Peer, W.A., Murphy, A.S. ABCB19/PGP19 stabilises PIN1 in membrane microdomains in Arabidopsis. Plant J. 2009,57:27-44.
    233. Tiwari, S.B., Hagen, G., Guilfoyle, T. The roles of auxin response factor domains in auxin-responsive transcription. Plant Cell.2003,15:533-543.
    234. Tiwari, S.B., Wang, X.J., Hagen, G., Guilfoyle, T.J. AUX/IAA proteins are active repressors, and their stability and activity are modulated by auxin. Plant Cell.2001,13:2809-2822.
    235. Tromas, A., Braun, N., Muller, P., Khodus, T., Paponov, I.A., Palme, K., Ljung, K., Lee, J.Y., Benfey, P., Murray, J.A.H., Scheres, B., Perrot-Rechenmann, C. The AUXIN BINDING PROTEIN 1 Is Required for Differential Auxin Responses Mediating Root Growth. Plos One.2009,4:e6648.
    236. Tromas, A., Perrot-Rechenmann, C. Recent progress in auxin biology. C R Biol.2010, 333:297-306.
    237. Tsuda, E., Yang, H., Nishimura, T., Uehara, Y., Sakai, T., Furutani, M., Koshiba, T., Hirose, M., Nozaki, H., Murphy, A.S., Hayashi. K.I. Alkoxy-auxins are selective inhibitors of auxin transport mediated by PIN, ABCB and AUX1 transporters. J Biol Chem.2010, 236:2854-2864.
    238. Ueda, T., Uemura, T., Sato, M.H., Nakano, A. Functional differentiation of endosomes in Arabidopsis cells. Plant J.2004,40:783-789.
    239. Ugartechea-Chirino, Y., Swarup, R., Swarup, K., Peret, B., Whitworth, M., Bennett, M., Bougourd, S. The AUX1 LAX family of auxin influx carriers is required for the establishment of embryonic root cell organization in Arabidopsis thaliana. Ann Bot.2010, 105:277-289.
    240. Ulmasov, T., Hagen, G., Guilfoyle, T.J. ARF1, a transcription factor that binds to auxin response elements. Science.1997a,276:1865-1868.
    241. Ulmasov, T., Murfett, J., Hagen, G., Guilfoyle, T.,J. Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements. Plant Cell.1997b,9:1963-1971.
    242. Van Goietsenoven, G., Mathieu, V., Lefranc, F., Kornienko, A., Evidente, A., Kiss, R. Narciclasine as well as other Amaryllidaceae Isocarbostyrils are Promising GTP-ase Targeting Agents against Brain Cancers. Med Res Rev.2012,33:439-455.
    243. Vandenbussche, F., Petrasek, J., Zadnikova, P., Hoyerova, K., Pesek, B., Raz, V., Swarup, R., Bennett, M., Zazimalova, E., Benkova, E., Van Der Straeten, D. The auxin influx carriers AUX1 and LAX3 are involved in auxin-ethylene interactions during apical hook development in Arabidopsis thaliana seedlings. Development.2010,137:597-606.
    244. Vanneste, S., Friml, J. Auxin:a trigger for change in plant development. Cell.2009,136: 1005-1016.
    245. Vernoux, T., Brunoud, G., Farcot, E., Morin, V., Van den Daele, H., Legrand, J., Oliva, M., Das, P., Larrieu, A., Wells, D., Guedon, Y., Armitage, L., Picard, F., Guyomarc'h, S., Cellier, C., Parry, G., Koumproglou, R., Doonan, J.H., Estelle, M., Godin, C., Kepinski, S., Bennett, M., De Veylder, L., Traas, J. The auxin signalling network translates dynamic input into robust patterning at the shoot apex. Mol Syst Biol.2011,7:508.
    246. Vieten, A., Sauer, M., Brewer, P.B., Friml, J. Molecular and cellular aspects of auxin-transport-mediated development. Trends Plant Sci.2007,12:160-168.
    247. Walsh, T.A., Neal, R., Merlo, A.O., Honma, M., Hicks, G.R., Wolff, K., Matsumura, W., Davies, J.P. Mutations in an auxin receptor homolog AFB5 and in SGT1b confer resistance to synthetic picolinate auxins and not to 2,4-dichlorophenoxyacetic acid or indole-3-acetic acid in arabidopsis. Plant Physiol.2006,142:542-552.
    248. Wang, D., Pei, K., Fu, Y., Sun, Z., Li, S., Liu, H.L., Tang, K., Han, B., Tao, Y. Genome-wide analysis of the auxin response factors (ARF) gene family in rice (Oryza sativa). Gene.2007,394:13-24.
    249. Wang, J.R., Hu, H., Wang, G.H., Li, J., Chen, J.Y., Wu, P. Expression of PIN genes in rice (Oryza sativa L.):tissue specificity and regulation by hormones. Mol Plant.2009,2:823-31.
    250. Wang, W., Eddy, R., Condeelis, J. The cofilin pathway in breast cancer invasion and metastasis. Nat Rev Cancer.2007,7:429-440.
    251. Wang, Y.S., Yoo, C.M., Blancaflor, E.B. Improved imaging of actin filaments in transgenic Arabidopsis plants expressing a green fluorescent protein fusion to the C- and N-termini of the fimbrin actinbinding domain 2. New Phytol.2008,177:525-536.
    252. Weijers, D., Benkova, E., Jager, K.E., Schlereth, A., Hamann, T., Kientz, M., Wilmoth, J.C., Reed, J.W., Jurgens, G. Developmental specificity of auxin response by pairs of ARF and Aux/IAA transcriptional regulators. EMBO J.2005,24:1874-1885.
    253. Willemsen, V., Friml, J., Grebe, M., van den Toorn, A., Palme, K., Scheres, B. Cell polarity and PIN protein positioning in Arabidopsis require STEROL METHYLTRANSFERASE1 function. Plant Cell.2003,15:612-625.
    254. Woo, E.J., Marshall, J., Bauly, J., Chen, J.G., Venis, M., Napier, R.M., Pickersgill, R.W. Crystal structure of auxin-binding protein 1 in complex with auxin. Embo J.2002, 21:2877-2885.
    255. Woodward, A.W., Bartel, B. Auxin:Regulation, action, and interaction. Ann Bot.2005,95: 707-735.
    256. Worby, C.A., Dixon, J.E. Sorting out the cellular functions of sorting nexins. Nature Rev Mol Cell Biol.2002,3:919-931.
    257. Worley, C.K., Zenser, N., Ramos, J., Rouse, D., Leyser, O., Theologis, A., Callis, J. Degradation of Aux/IAA proteins is essential for normal auxin signalling. Plant J.2000, 21.-553-562.
    258. Wu, G., Lewis, D.R., Spalding, E.P. Mutations in Arabidopsis multidrug resistance-like ABC transporters separate the roles of acropetal and basipetal auxin transport in lateral root development. Plant Cell.2007,19:1826-1837.
    259. Wu, G, Otegui, M.S., Spalding, E.P. The ER-Localized TWD1 Immunophilin Is Necessary for Localization of Multidrug Resistance-Like Proteins Required for Polar Auxin Transport in Arabidopsis Roots. Plant Cell.2010,22:3295-3304.
    260. Wu, M.F., Tian, Q., Reed, J.W. Arabidopsis microRNA167 controls patterns of ARF6 and ARF8 expression, and regulates both female and male reproduction. Development.2006, 133:4211-4218.
    261. Xu, J., Scheres, B. Dissection of Arabidopsis ADP-RIBOSYLATION FACTOR 1 functions in epidermal cell polarity. Plant Cell.2005,17:525-536.
    262. Xu, M., Zhu, L., Shou, H.X., Wu, P. A PIN1 family gene, OsPIN1, involved in auxin-dependent adventitious root emergence and tillering in rice. Plant Cell Physiol.2005, 46:1674-1681.
    263. Xu, T., Wen, M., Nagawa, S., Fu, Y., Chen, J.G., Wu, M.J., Perrot-Rechenmann, C., Friml, J., Jones, A.M., Yang, Z. Cell Surface-and Rho GTPase-Based Auxin Signaling Controls Cellular Interdigitation in Arabidopsis. Cell.2010,143:99-110.
    264. Yamagami, M., Haga, K., Napier, R.M., Iino, M. Two distinct signaling pathways participate in auxin-induced swelling of pea epidermal protoplasts. Plant Physiol.2004, 134:735-747.
    265. Yamazoe, A., Hayashi, K., Kepinski, S., Leyser, O., Nozaki, H. Characterization of terfestatin A, a new specific inhibitor for auxin signaling. Plant Physiol.2005,139:779-789.
    266. Yang, H., Murphy, A.S. Functional expression and characterization of Arabidopsis ABCB, AUX 1 and PIN auxin transporters in Schizosaccharomyces pombe. Plant J.2009, 59:179-191.
    267. Yang, J., Zhang, J., Wang, Z., Zhu, Q., Wang, W. Hormonal changes in the grains of rice subjected to water stress during grain filling. Plant Physiol.2001,127:315-323.
    268. Yang, X., Lee, S., So, J.H., Dharmasiri, S., Dharmasiri, N., Ge, L., Jensen, C., Hangarter, R., Hobbie, L., Estelle, M. The IAA1 protein is encoded by AXR5 and is a substrate of SCF(TIRl). Plant J.2004,40:772-782.
    269. Yang, X., Song, L., Xue, H.W. Membrane Steroid Binding Protein 1 (MSBP1) Stimulates Tropism by Regulating Vesicle Trafficking and Auxin Redistribution. Mol Plant.2008, 1:1077-1087.
    270. Yang, Y., Hammes, U.Z., Taylor, C.G., Schachtman, D.P., Nielsen, E. High-affinity auxin transport by the AUX 1 influx carrier protein. Curr Biol.2006,16:1123-1127.
    271. Yao, H.Y., Xue, H.W. Signals and mechanisms affecting vesicular trafficking during root growth. Curr Opin Plant Biol. 2011,14:571-579.
    272. Zadnikova, P., Petrasek, J., Marhavy, P., Raz, V., Vandenbussche, F., Ding, Z., Schwarzerova, K., Morita, M.T., Tasaka, M., Hejatko, J., Van Der Straeten, D., Friml, J., Benkova, E. Role of PIN-mediated auxin efflux in apical hook development of Arabidopsis thaliana. Development 2010,137:607-617.
    273. Zakirov, U.B., Umarova, S.S. Farmakol. Alkaloid Ser. Glik 1971:96.
    274. Zazimalova, E., Murphy, A.S., Yang, H., Hoyerova, K., Hosek, P. Auxin transporters--why so many? Cold Spring Harb Perspect Biol,2010,2:a001552.
    275. Zhang, R., Wang, B., Ouyang, J., Li, J., Wang, Y. Arabidopsis indole synthase, a homolog of tryptophan synthase alpha, is an enzyme involved in the Trp-independent indole-containing metabolite biosynthesis. J Integr Plant Biol.2008,50:1070-1077.
    276. Zhao, Y. Auxin Biosynthesis and Its Role in Plant Development. In:S. Merchant, W.R. Briggs, D. Ort, Ann Rev Plant Biol.2010,61:49-64.
    277. Zhao, Y., Christensen, S.K., Fankhauser, C., Cashman, J.R., Cohen, J.D., Weigel, D., Chory, J.A role for flavin monooxygenase-like enzymes in auxin biosynthesis. Science.2001, 291:306-309.
    278. Zhao, Y., Hu, Y., Dai, M., Huang, L., Zhou, D.X. The WUSCHEL-related homeobox gene WOX11 is required to activate shoot-borne crown root development in rice. Plant Cell.2009, 21:736-748.
    279. Zhao, Y., Hull, A.K., Gupta, N.R., Goss, K.A., Alonso, J., Ecker, J.R., Normanly, J., Chory, J., Celenza, J.L. Trp-dependent auxin biosynthesis in Arabidopsis:involvement of cytochrome P450s CYP79B2 and CYP79B3. Genes Dev,2002,16:3100-3112.
    280. Zheng, J., Yang, X., Harrell, J.M., Ryzhikov, S., Shim, E.H., Lykke-Andersen, K., Wei, N., Sun, H., Kobayashi, R., Zhang, H. CAND1 binds to unneddylated CUL1 and regulates the formation of SCF ubiquitin E3 ligase complex. Mol Cell.2002a,10:1519-1526.
    281. Zheng, N., Schulman, B.A., Song, L., Miller, J.J., Jeffrey, P.D., Wang, P., Chu, C., Koepp, D.M., Elledge, S.J., Pagano, M., Conaway, R.C., Conaway, J.W., Harper, J.W., Pavletich, N.P. Structure of the Cull-Rbxl-Skpl-F boxSkp2 SCF ubiquitin ligase complex. Nature. 2002b,416:703-709.
    282.曹日强,傅庭治,张正仁.伪石蒜碱、前多花水仙碱盐酸盐对细胞延长及分裂的抑制作用.植物生理学报.1979,5(4):417-419.
    283.贾献慧,周铜水,郑颖等.石蒜科植物生物碱的药理学研究中医药学刊.2001,19(6):573-5741.
    284.刘小磊,马晓红,史益敏.几种荷兰水仙的化感作用初探.上海交通大学学报.2010,29(6):46-50.
    285.江苏省植物研究所,中国医学科学院药物研究所等.新华本草纲目(第一册).上海科技出版社.1988.
    286.吴寿金,赵泰等.现代中草药成分化学.北京中国医药科技出版社.2002.
    287.朱汝幸,蒋晶,龚建平等.几种天然生物碱对小麦与酵母细胞延长与分裂的抑制以及对蛋白质核酸合成的影响.植物生理学通讯.1984,(1):22-25.
    288.科学出版社.中国植物志.科学出版社.2010

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700