GhKNL1在棉花(Gossypium hirsutum)纤维发育中的功能及GhAGP31冷胁迫应答研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
棉花是世界上最重要的纤维作物之一。棉纤维是由胚珠外表皮分化而成的高度伸长和增厚的单细胞毛状突起,是研究细胞的伸长和细胞壁纤维素合成的很好模式材料。在棉纤维发育过程中,纤维细胞壁发育通常可分为初生壁和次生壁两个阶段。初生壁阶段一系列复杂的调控影响棉纤维细胞密度和长度,纤维素合成与次生壁沉积最终影响棉纤维的产量和品质。因此,克隆棉纤维次生壁合成相关基因,研究棉纤维发育分子机制,对棉纤维品质改良具有重要意义。本文从棉花中分离了一个KNOX基因和一个细胞壁蛋白基因,并对这两个基因的表达模式及功能进行了研究,获得的主要研究结果如下:
     1. GhKNL1基因在棉纤维细胞次生壁发育阶段高水平表达
     从棉花中分离鉴定了1个Ⅱ类KNOX蛋白基因,命名为GhKNL1。RT-PCR结果表明,该基因在棉纤维发育初期和其它组织中表达量较低,随着棉纤维发育到次生壁加厚阶段,该基因表达量逐渐升高,达到最高值。分离了该基因的启动子(GhKNL1p)片段,构建了PBI-GhKNL1p::GUS融合表达载体,通过浸花法转化拟南芥,对获得的转基因植株进行GUS活性染色,结果显示GUS信号在拟南芥幼嫩以及成熟组织的维管系统中较强,而在其它组织中基本检测不到。
     利用棉花胚珠离体培养技术进一步分析了激素对该基因在棉纤维中表达的影响。结果表明,ABA、KT和GA对GhKNL1对基因表达没有显著影响,以上结果说明GhKNL1基因可能是纤维次生壁发育相关的基因,可能不参与棉纤维次生发育过程中的激素应答。
     2. GhKNL1蛋白定位于细胞核中
     构建GhKNL1基因与eGFP的融合表达载体,转化拟南芥,筛选获得转基因植株,激光共聚焦显微镜下观察表明,GhKNL1蛋白定位于细胞核中。
     3. GhKNL1蛋白相互作用分析
     酵母自激活分析显示GhKNL1没有转录激活活性。有报道指出,KNOX蛋白通常形成复合体发挥功能。为了研究GhKNL1蛋白能否形成同源或者异源二聚体,利用酵母双杂交系统分析了GhKNL1蛋白相互作用的情况,结果显示GhKNL1蛋白可以形成同源二聚体。从棉花中分离了一个OFP基因,命名为GhOFP4,该基因在棉纤维次生壁发育过程中高水平表达。亚细胞定位结果显示GhOFP4蛋白定位于细胞核中,酵母双杂交证明GhKNL1蛋白能与GhOFP4相互作用。以上结果表明GhKNL1可能通过形成复合体的形式参与棉纤维发育过程。
     4.过量表达和显性抑制GhKNL1导致拟南芥茎中维管束间纤维细胞壁变薄
     为了研究该基因对植物次生发育的影响,我们构建了该基因过量表达载体和显性抑制载体,转化模式植物拟南芥,获得转基因植株及其后代株系。选取表达量不同的T2代转基因植株株系进行研究,组织染色和透射电镜结果显示,与野生型相比,过量表达和显性抑制转基因拟南芥主茎的维管束间纤维细胞壁明显变薄。RT-PCR结果显示,一些次生壁合成基因的表达量显著下降。同时,GhKNL1过量表达能在一定程度上恢复拟南芥knat7突变体茎中导管细胞形态异常以及种子表面粘液形成缺陷的表型。以上结果说明GhKNL1基因可能负调控拟南芥茎细胞的次生壁形成。
     5. GhKNL1基因的显性抑制导致转基因棉花纤维发育异常
     为了研究GhKNL1在棉纤维发育中的功能,通过棉花遗传转化,获得大量GhKNL1显性抑制转基因棉花植株。结果表明,GhKNL1显性抑制转基因棉花的营养生长过程和野生型差异不大,只是棉桃变小、纤维变短、纤维产量下降。纤维半薄切片分析结果显示,转基因棉花胚珠表面纤维细胞的起始滞后,5-20DPA纤维细胞排列松散、形态不规则。与切片结果相一致,转基因棉花20DPA纤维中一些与细胞伸长和次生壁合成相关基因的表达量明显降低。以上结果说明,GhKNL1基因可能在棉纤维伸长和次生壁形成过程中具有重要的调控作用。
     6. GhAGP31基因分离鉴定及功能研究
     GhAGP31是一个编码非典型阿拉伯半乳聚糖蛋白的基因,GhAGP31蛋白包含非典型AGP具有的一些特征结构域:信号肽、N端富含组氨酸的结构域、中间一段富含脯氨酸的结构域和一段具有半胱氨酸的‘PAC’结构域。亚细胞定位显示该蛋白定位于细胞壁上。GhAGP31基因主要在根、下胚轴和胚珠中表达量较高。GhAGP31基因的表达量随着根的发育有所下降。进一步研究发现,冷处理会诱导GhAGP31基因在根中的表达。同样冷处理后,GhAGP31p::GUS转基因拟南芥根中GUS基因的表达显著上升。GhAGP31基因的过量表达明显提高了酵母细胞和拟南芥对冷胁迫的耐受性。以上结果说明GhAGP31蛋白可能参与棉花发育的冷胁迫应答过程。
Cotton is the most important textile fiber crop in the world. Cotton fiber, a highly elongated and thickened single cell derived from the ovule epidermis, provides an excellent system for studies on cell elongation and cell wall cellulose biosynthesis. Cotton fiber cell wall is usually divided into two categories:the primary cell wall (PCW) and the secondary cell wall (SCW) during cotton fiber development. A series of complex regulations in PCW stage finally affect fiber cell intensity and length. Cellulose synthesis and SCW deposition in later phase determine cotton fiber yield and quality at last. Therefore, it is a vital significance for us to clone the genes related to SCW synthesis and study its molecular mechanism to improve the yield and quality of cotton fibers. In this study, a cotton KNOX gene and a gene encoding cell wall protein were insolated in cotton. The expression patterns and functions of these two genes have been characterized. The main results are as following:
     1. GhKNL1gene is highly expressed during the fiber development of SCW synthesis
     One full-length cDNA encoding a Class Ⅱ knotted-like homeobox protein (KNOX) was isolated from cotton and designated as GhKNLl. The result of RT-PCR indicated that GhKNL1transcripts were accumulated at low level in elongating fibers and other tissues, but gradually reached the highest level as fiber further developed to SCW stage. The promoter fragment upstream of the GhKNL1was isolated and GhKNLlp::GUS fusion expression vector was constructed and transformed into Arabidopsis by Agrobacterium-mediated method. The expression of GUS gene driven by GhKNL1promoter was only detected in vascular systems of young and matured tissues. However, there was almost not detected in other tissues.
     The relationships between phytohormones and GhKNLl were further analyzed in vitro culture of cotton ovules. The expression level of GhKNLl gene was not regulated by ABA, KT and GA treatments. These results indicated that GhKNL1is a gene related to fiber development of SCW synthesis, and may be involved in the SCW synthesis, and does not response to phytohormones.
     2. GhKNL1protein is localized in cell nucleus
     To evaluate subcellular localization of GhKNL1protein, a GhKNL1::eGFP chimeric gene was constructed and introduced into Arabidopsis thaliana. Transgenic plants were selected on a selective medium and observed under SP5Meta confocal laser scanning microscopy. The results indicated that GhKNL1was localized in the nucleus.
     3. Analysis the interactions of GhKNL1protein
     The result of transcription activation activity suggested that GhKNL1protein lacks the activity of transcriptional activation. It has reported that KNOX transcription factors can form into complex to have function. In order to determine the interactions of GhKNL1protein, yeast two-hybrid system was employed. The result indicated that GhKNL1can combine into homodimers. A cotton gene GhOFP4was predominantly expressed in the fiber development of SCW synthesis. The result of subcellular localization showed that GhOFP4protein is localized in cell nucleus. Yeast two-hybrid analysis showed that GhKNLl proteins can interact with GhOFP4in cells. These results indicated that GhKNL1protein could playe a role as heterodimer or heterodimers in the fiber development.
     4. GhKNL1-dominant repression and KNL1overexpression transgenic Arabidopsis have the same phenotype of thinner interfascicular fibers cell wall in the inflorescence stem
     To further investigate KNL1functions in the regulation of secondary wall formation, the over expression and suppression function of KNL1vectors were constructed and introduced into Arabidopsis thaliana, and T2generation plants with different expression levels were used to further analyzed. Histological staining and TEM (Transmission Electron Microscope) revealed that there was a striking decrease in the secondary wall thickness of the interfascicular fibers of stem in transgenic plants compared with the wild type. The results of RT-PCR showed that the expression levels of SCW synthesis related genes were down-regulated in transgenic plants. In addition, complementation experiment suggested that overexpression of KNL1could rescue the irx phenotype of stems and seed coat mucilage in knat7mutant at some extent. These results suggested that the cotton gene KNL1negatively regulated SCW synthesis and was functionally conserved in regulation of SCW formation in Arabidopsis.
     5. Dominant repression of GhKNLl hinders fiber development
     In order to investigate the function of GhKNLl protein, a large number of GhKNL1-dominant repression transgenic plants were generated by genetic transformation of cotton. The vegetative growth and flower development of these transgenic lines were similar with wild type. However, the bolls of transgenic plants were much smaller than those of wild type, and the yield of mature fibers was declined. The result of semi-thin sections showed that the fiber initials in transgenic cotton plants were delayed, and even a lot of5-20DPA fiber cells were abnormal and disordered, compared with those of wild type. Being consistent with the above phenotype, the expressions of the genes related to fiber elongation and secondary cell wall synthesis were down-regulated in transgenic fibers. These results indicate that cotton KNL1may play an important role in fiber cell elongation and secondary cell wall formation of cotton fiber cells.
     6. Molecular characterization of GhAGP31and its roles in root development
     A gene (including its cDNA), designated GhAGP31, encoding a non-classical AGP protein was isolated from cotton (Gossypium hirsutum). The deduced GhAGP31protein contains the conserved features of non-classical AGPs:a putative signal peptide, N-terminal histidine-rich stretch, middle repetitive proline-rich domain and a cysteine-containing 'PAC' domain. GFP fluorescence assay demonstrated that GhAGP31protein was localised on cell walls. GhAGP31transcripts were mainly detected in roots, hypocotyls and ovules. In particular, expression of GhAGP31was decreased during the development of roots. Further study demonstrated that GhAGP31expression in cotton roots was remarkably up-regulated by cold stress. Expression of the GUS gene driven by the GhAGP31promoter was also dramatically enhanced in roots of transgenic Arabidopsis seedlings under cold treatment. Additionally, overexpression of GhAGP31in yeast and Arabidopsis significantly improved the freezing tolerance of yeast cells and cold tolerance of Arabidopsis seedlings. These data implied that GhAGP31protein may be involved in the response to cold stress during early root development of cotton.
引文
1.贺新强,崔克明(2002)植物细胞次生壁形成的研究进展。植物学通报,19:513-522。
    2.黄耿青(2008)棉纤维发育相关的细胞壁蛋白基因克隆及其表达调控和亚细胞定位分析。华中师范大学博士学位论文。
    3.李春苑,阮美煜,贾海燕,王崇英(2009)同源异型盒基因Ⅰ类KNOX的表达调控及在植物形态建成中的作用。细胞生物学杂志,31:635-640。
    4.蒋建雄,张天真,王志成,易自力(2004)棉纤维细胞次生壁纤维素生物合成的分子生物学研究进展。高技术通讯,14:103-106。
    5.秦丽霞(2012)棉花GhGalT1基因的表达及功能研究。华中师范大学硕士学位论文。
    6.宋东亮,沈君辉,李来庚(2008)高等植物细胞壁中纤维素的合成。植物生理学通讯,44:791-796。
    7.田敏,夏琼梅,李纪元(2007)植物的次生生长及其分子调控。遗传,29:1324-1330。
    8.张庆虎(2009)两个棉纤维发育相关基因的功能初步分析。南京农业大学硕士学位论文。
    9.张则婷(2010)棉花14-3-3蛋白在纤维发育中的功能表达和相互作用研究。华中师范大学博士学位论文。
    10. Aleman L, Kitamura J, Abdel-mageed H, Lee J, Sun Y, Nakajima M, Ueguchi-Tanaka M, Matsuoka M, Allen RD. (2008) Functional analysis of cotton orthologs of GA signal transduction factors GID1 and SLR1. Plant Mol Biol.68:1-16.
    11. Amor Y, Haigler CH, Johnson S, Wainscott M, Delmer DP. (1995) A membrane-associated form of sucrose synthase and its potential role in synthesis of cellulose and callose in plants. Proc. Natl. Acad. Sci. USA 92:9353-9357.
    12. Aohara T, Kotake T, Kaneko Y, Takatsuji H, Tsumuraya Y, Kawasaki S. (2009) Rice BRITTLE CULM 5 (BRITTLE NODE) is involved in secondary cell wall formation in the sclerenchyma tissue of nodes. Plant Cell Physiol.50:1886-1897.
    13. Appenzeller L, Doblin M, Barreiro R, Wang HY, Niu XM, Kollipara K, Carrigan L, Tomes D, Chapman M, S. Dhugga K. (2004) Cellulose synthesis in maize:isolation and expression analysis of the cellulose synthase (CesA) gene family. Cellulose 11:287-299. Arabidopsis. EMBO J.17:5563-5576.
    14. Argiriou A, Kalivas A, Michailidis G, Tsaftaris A. (2012) Characterization of PROFILIN genes from allotetraploid (Gossypium hirsutum) cotton and its diploid progenitors and expression analysis in cotton genotypes differing in fiber characteristics. Mol Biol Rep.39:3523-3532.
    15. Arioli T, Peng LC, Betzner AS, Burn J,Wittke W, Herth W, Camilleri C, Hofte H, Plazinski J, Birch R, Cork A, Glover J, Redmond J, Williamson RE. (1998) Molecular analysis of cellulose biosynthesis in Arabidopsis. Science 279:717-720.
    16. Aso K, Kato M, Banks JA, Hasebe M. (1999) Characterization of homeodomain-leucine zipper genes in the fernCeratopteris richardii and the evolution of the homeodomain-leucine zipper gene family in vascular plants. Mol Biol Evol.16:544-552.
    17. Baldwin TC, Domingo C, Schindler T, Seetharaman G, Stacey N, Roberts K. (2001) DcAGP1, a secreted arabinogalactan protein, is related to a family of basic proline-rich proteins. Plant Molecular Biology 45:421-435.
    18. Basra AS, Malik CP. (1984) Development of the cotton fiber. Int Rev Cytol.87:65-113.
    19. Bate NJ, Orr J, Ni W, Meromi A, Nadler- Hassar T, Doerner PW, Dixon RA, Lamb CJ, Elkind Y. (1994) Quantitative relationship between phenylalanine ammonia-lyase levels and phenylpropanoid accumulation in transgenic tobacco identifies a rate-determining step in natural product synthesis. Proc. Natl. Acad. Sci.USA 91:7608-7612.
    20. Baucher M, Monties B, Van Montagu M, Boerjan W. (1998) Biosynthesis and genetic engineering of lignin. Crit. Rev.Plant Sci.17:125-197.
    21. Beasley CA, Birnbaum EH, Dugger WM, Ting IP. (1974) A quantitative procedure for estimating cotton fiber growth. Stain Technol.49:85-92.
    22. Beasley CA, Ting IP. (1973) The effects of plant growth substances on in vitro fiber development from fertilized cotton ovules. Am J Bot 60:130-139.
    23. Beeckman T, Przemeck GK, Stamatiou G, Lau R, Terryn N, De Rycke R, Inz6 D, Berleth T. (2002) Genetic complexity of cellulose synthase A gene function in Arabidopsis embryogenesis. Plant Physiol.130:1883-1893.
    24. Betancur L, Singh B, Rapp RA, Wendel JF, Marks MD, Roberts AW, Haigler CH. (2010) Phylogenetically distinct cellulose synthase genes support secondary wall thickening in Arabidopsis shoot trichomes and cotton fiber. J Integr Plant Biol 52:205-220.
    25. Bharathan G, Janssen BJ, Kellogg E A, Sinha N. (1997) Did homeodomain proteins duplicate before the origin ofangiosperms, fungi, and metazoan. Proc Natl Acad Sci USA 94: 13749-13753.
    26. Bhargava A, Ahad A, Wang S, Mansfield SD, Haughn GW, Douglas CJ, Ellis BE. (2013) The interacting MYB75 and KNAT7 transcription factors modulate secondary cell wall deposition both in stems and seed coat in Arabidopsis. Planta 237:1199-1211.
    27. Bhargava A, Mansfield SD, Hall HC, Douglas CJ, Ellis BE. (2010) MYB75 functions in regulation of secondary cell wall formation in the Arabidopsis inflorescence stem. Plant Physiol. 154:1428-1438.
    28. Blount JW, Korth KL, Masoud SA, Rasmussen S, Lamb C, Dixon RA. (2000) Altering expression of cinnamic acid 4-hydroxylase in transgenic plants provides evidence for a feedback loop at the entry point into the phenylpropanoid pathway. Plant Physiol.122:107-116.
    29. Boerjan W, Ralph J, Baucher M. (2003) LIGNIN BIOSYNTHESIS. Annu. Rev. Plant Biol. (2003)54:519-546.
    30. Brill E, Thournout M, White RG, Llewellyn D, Campbell PM, Engelen S, Ruan YL, Arioli T, Furbank RT. (2011) A novel isoform of sucrose synthase is targeted to the cell wall during secondary cell wall synthesis in cotton fiber. Plant Physiol.157:40-54.
    31. Brown D, Wightman R, Zhang Z, Gomez LD, Atanassov I, Bukowski JP, Tryfona T, McQueen-Mason SJ, Dupree P, Turner SR. (2011) Arabidopsis genes IRREGULAR XYLEM (IRX15) and IRX15L encode DUF579-containing proteins that are essential for normal xylan deposition in the secondary cell wall. Plant J.66:401-413.
    32. Brown DM, Zeef LA, Ellis J, Goodacre R, Turner SR. (2005) Identification of novel genes in Arabidopsis involved in secondary cell wall formation using expression profiling and reverse genetics. Plant Cell 17:2281-2295.
    33. Burglin TR. (1997) Analysis of TALE superclass homeobox genes (MEIS, PBC, KNOX, Iroquois, TGIF) reveals a novel domain conserved between plants and animals. Nucleic Acids Res.25:4173-4180.
    34. Burton RA, Shirley NJ, King BJ, Harvey AJ, Fincher GB. (2004) The CesA gene family of barley. Quantitative analysis of transcripts reveals two groups of co-expressed genes. Plant Physiol.134:224-236.
    35. Chabannes M, Ruel K, Yoshinaga A, Chabbert B, Jauneau A, Joseleau JP, Boudet AM. (2001) In situ analysis of lignins in transgenic tobacco reveals a differential impact of individual transformations on the spatial patterns of lignin deposition at the cellular and subcellular levels. Plant J.28:271-282.
    36. Chen L, Zhong H, Ren F, Guo QQ, Hu XP, Li XB. (2011) A novel cold-regulated gene, COR25, of Brassica napus is involved in plant response and tolerance to cold stress. Plant Cell Report 30:463-471.
    37. Coleman HD, Ellis DD, Gilbert M, Mansfield SD. (2006) Up-regulation of sucrose synthase and UDP-glucose pyrophosphorylase impacts plant growth and metabolism. Plant Biotech J.4:87-101.
    38. Cooper B, Clarke JD, Budworth P, Kreps J, Hutchison D, Park S, Guimil S, Dunn M, Luginbiihl P, Ellero C, Goff SA, Glazebrook J. (2003) A network of rice genes associated with stress response and seed development. Proc Natl Acad Sci USA 100:4945-4950.
    39. Cosgrove DJ. (1997) Assembly and enlargement of the primary cell wall in plants. Annu. Rev. Cell Dev. Biol.13:171-201.
    40. Cui X, Shin H, Song C, Laosinchai W, Amano Y, Brown RM Jr. (2001) A putative plant homolog of the yeast beta-1,3-glucan synthase subunit FKS1 from cotton (Gossypium hirsutum L.) fibers. Planta 213:223-230.
    41. Delmer DP, Pear JR, Andrawis A, Stalker DM. (1995) Genes encoding small GTP-binding proteins analogous to mammalian rac are preferentially expressed in developing cotton fibers. Mol Gen Genet.248:43-51.
    42. Deng F, Tu L, Tan J, Li Y, Nie Y, Zhang X. (2012) GbPDFl is involved in cotton fiber initiation via the core cis-element HDZIP2ATATHB2. Plant Physiol.158:890-904.
    43. Derelle R, Lopez P, Le Guyader H, Manuel M. (2007) Homeodomain proteins belong to the ancestral molecular toolkit of eukaryotes. Evol Dev.9:212-219.
    44. Desnos T, Orbovic V, Bellini C, Kronenberger J, Caboche M, Traas J, Hofte H. (1996) Procustel mutants identify two distinct genet ic pathways control ling hypocotyl cell elongation, respectively in dark and light-grown Arabidopsis seedlings. Development 122:683-693.
    45. Desprez T, Juraniec M, Crowell EF, Jouy H, Pochylova Z, Parcy F, Hofte H, Gonneau M, Vernhettes S. (2007) Organization of cellulose synthase complexes involved in primary cell wall synthesis in Arabidopsis thaliana. Proc Natl Acad Sci USA 104:15572-15577.
    46. Douglas SJ, Chuck G, Dengler RE, Pelecanda L, Riggs CD. (2002) KNAT1 and ERECTA regulate and ERECTA regulate inflorescence architecture in Arabidopsis. Plant Cell 14: 547-558.
    47. Eklof JM, Brumer H. (2010) The XTH Gene Family:anupdate on enzyme structure, function, and phylogeny in xyloglucanre modeling. Plant Physiol.153:456-466.
    48. Ellis M, Egelund J, Schultz CJ, Bacic A. (2010) Arabinogalactan-proteins:key regulators at the cell surface? Plant Physiol.153:403-419.
    49. Favery B, Ryan E, Foreman J, Linstead P, Boudonck K, Steer M, Shaw P, Dolan L. (2001) KOJAK encodes a cellulose synthase-like protein required for root hair cell morphogenesis in Arabidopsis. GENES & DEVELOPMENT 15:79-89.
    50. Fukuda H. (1991) Tracheary element formation as a model system of cell differentiation Int Rev Cytol.136:289-332.
    51. Gaspar YM, Nam J, Schultz CJ, Lee LY, Gilson PR, Gelvin SB, Bacic A. (2004) Characterization of the Arabidopsis lysine-rich arabinogalactan-protein AtAGP17 mutant (ratl) that results in a decreased efficiency of agrobacterium transformation. Plant Physiol.135: 2162-2171.
    52. Gehring WJ, Affolter M, Burglin TR. (1994) Homeodomain proteins. Annu Rev Biochem.63: 487-526.
    53. Gilmour SJ, Sebolt AM, Salazar MP, Everard JD, Thomashow MF. (2000) Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. Plant Physiol.124:1855-1865.
    54. Goicoechea M, Lacombe E, Legay S, Mihaljevic S, Rech P, Jauneau A, Lapierre C, Pollet B, Verhaegen D, Chaubet-Gigot N, Grima-Pettenati J. (2005) EgMYB2, a new transcriptional activator from Eucalyptus xylem, regulates secondary cell wall formation and lignin biosynthesis. Plant J.43:553-567.
    55. Gong SY, Huang GQ, Sun X, Li P, Zhao LL, Zhang DJ, Li XB. (2012) GhAGP31, a cotton non-classical arabinogalactan protein, is involved in response to cold stress during early seedling development Plant Biology 14:447-457.
    56. Gothandam KM, Nalini E, Karthikeyan S, Shin JS. (2010) OsPRP3, a flower specific proline-rich protein of rice, determines extracellular matrix structure of floral organs and its overexpression confers cold-tolerance. Plant Mol. Biol.72:125-135.
    57. Hackbusch J, Richter K, Muller J, Salamini F, Uhrig JF. (2005) A central role of Arabidopsis thaliana ovate family proteins in networking and subcellular localization of 3-aa loop extension homeodomain proteins. Proc. Natl. Acad. Sci. USA.102:4908-4912.
    58. Haigler CH, Betancur L, Stiff MR, Tuttle JR. (2012) Cotton fiber:a powerful single-cell model for cell wall and cellulose research. Frontiers in plant science 3:104.
    59. Haigler CH, Ivanova-Datcheva M, Hogan PS, Salnikov W, Hwang S, Martin K, Delmer DP. (2001) Carbon partitioning to cellulose synthesis. Plant Mol. Biol.47:29-51.
    60. Hamant O, Pautot V. (2010) Plant development:a TALE story. C R Bio 333:371-381.
    61. Hara M, Fujinaga M, Kuboi T. (2005) Metal binding by citrus dehydrin with histidine-rich domains. Journal of Experimental Botany 56:2695-2703.
    62. Harholt J, Suttangkakul A, Scheller HV. (2010) Biosynthesis of pectins. Plant Physiol.153: 384-395.
    63. Hasegawa O, Aotsuka S, Takokoro F, Takenishi S, et al (1994). Random sequencing of a cDNA library obtained from cotton fiber cells. In:kyoto conference on cellulose (Shiraishi N, ed.). The Cellulose Society of Japan, Kyoto,87.
    64. Hauffe KD, Paszkowski U, Schulze-Lefert P, Hahlbrock K, Dangl JL, Douglas CJ. (1991) A parsley 4CL-1 promoter fragment specifies complex expression patterns in transgenic tobacco. Plant Cell 3:435-443.
    65. Haughn GW, Western TL. (2012) Arabidopsis seed coat mucilage is a specialized cell wall that can be used as a model for genetic analysis of plant cell wall structure and function. Front Plant Sci.3:64.
    66. Hay A, Kaur H, Phillips A, Hedden P, Hake S, Tsiantis M. (2002) The gibberellin pathway mediates KNOTTED 1-type homeobox function in plants with different body plans. Curr. Biol. 12:1557-1565.
    67. Hengel AJ, Roberts K. (2003) AtAGP30, an arabinogalactan-protein in the cell walls of primary root, modulates seed germination and early abscisic acid perception. Plant J.36:256-270.
    68. Hiratsu K, Mitsuda N, Matsui K, Ohme-Takagi M. (2004) Identification of the minimal repression domain of SUPERMAN shows that the DLELRL hexapeptide is both necessary and sufficient for repression of transcription in Arabidopsis. Biochem Biophys Res Commun 321: 172-178.
    69. His I, Driouich A, Nicol F, Jauneau A, Hofte H. (2001) Altered pectin composition in primary cell walls of korrigan, a dwarf mutant of Arabidopsis deficient in a membrane-bound endo-1,4-β-glucanase. Planta 212:348-358.
    70. Holland N, Holland D, Helentjaris T, Dhugga KS, Xoconostle-Cazares B, Delmer DP. (2000) A comparative analysis of the plant cellulose synthase (CesA) gene family. Plant Physiol.123: 1313-23
    71. Howles PA, Sewalt VJH, Paiva NL, Elkind Y, Bate NJ, Lamb C, Dixon RA. (1996) Overexpression of L-phenylalanine ammonialyase in transgenic tobacco plants reveals control points for flux into phenylpropanoid biosynthesis. Plant Physiol.112:1617-1624.
    72. Hu WJ, Harding SA, Lung J, Popko JL, Ralph J, Stokke DD, Tsai CJ, Chiang VL. (1999) Repression of lignin biosynthesis promotes cellulose accumulation and growth in transgenic trees. Nat. Biotechnol.17:808-812.
    73. Huang GQ, Gong SY, Xu WL, Li W, Li P, Zhang CJ, Li DD, Zheng Y, Li FG, Li XB. (2013) A fasciclin-like arabinogalactan protein, GhFLA1, is involved in fiber initiation and elongation of cotton(Gossypium hirsutum). Plant Physiol.161:1278-1290.
    74. Huang GQ, Xu WL, Gong SY, Li B, Wang XL, Xu D, Li XB. (2008) Characterization of 19 novel cotton FLA genes and their expression profiling in fiber development and in response to phytohormones and salt stress. Physiologia Plantarum 134:348-359.
    75. Hussey SG, Mizrachi E, Spokevicius AV, Bossinger G, Berger DK, Myburg AA. (2011) SND2, a NAC transcription factor gene, regulates genes involved in secondary cell wall development in Arabidopsis fibres and increases fibre cell area in Eucalyptus. BMC Plant Biology 11:173.
    76. Jaglo KR, Gilmour SJ, Zarka DG, Schabenberger O, Thomashow MF. (1998) Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science 280: 103-106.
    77. Jaglo KR, Kleff S, Amundsen KL, Zhang X, Haake V, Zhang JZ, Deits T, Thomashow MF. (2001) Components of the Arabidopsis C-repeat/dehydration-responsive element binding factor cold-response pathway are conserved in Brassica napus and other plant species. Plant Physiol.127:910-917.
    78. Jensen JK, Kim H, Cocuron JC, Orler R, Ralph J, Wilkerson CG. (2011) The DUF579 domain containing proteins IRX15 and IRX15-L affect xylan synthesis in Arabidopsis. Plant J. 66:387-400.
    79. Jiang YJ, Guo WZ, Zhu HY, Ruan YL, Zhang TZ. (2012) Overexpression of GhSusAl increases plant biomass and improves cotton fiber yield and quality. Plant Biotechnology Journal 10:301-312.
    80. John ME, Crow LJ. (1992) Gene expression in cotton (Gossypium hirsutum L.) fiber:Cloning of the mRNAs. Proc. Natl. Acad. Sci. USA 89:5769-5773.
    81. Jones L, Ennos AR, Turner SR. (2001) Cloning and characterization of irregular xylem4 (irx4): a severely lignindeficient mutant of Arabidopsis. Plant J.26:205-216.
    82. Joshi CP, Bhandari S, Ranjan P, Kalluri UC, Liang X, Fujino T, Samuga A. (2004) Genomics of cellulose biosynthesis in poplars. New Phytol.164:53-61.
    83. Kajita S, Hishiyama S, Tomimura Y, Katayama Y, Omori S. (1997) Structural characterization of modified lignin in transgenic tobacco plants in which the activity of 4-coumarate:coenzyme A ligase is depressed. Plant Physiol.114:871-879.
    84. Keegstra K. (2010) Plant cell walls. Plant Physiol.154:483-486.
    85. Kerstetter R, Vollbrecht E, Lowe B, Veit B, Yamaguchi J, Hake S. (1994) Sequence analysis and expression patterns divide the maize knottedl-like homeobox genes into two classes. Plant Cell 6:1877-1887.
    86. Kim HJ, Triplett BA, Zhang HB, Lee MK, Hinchliffe DJ, Li P, Fang DD. (2012) Cloning and characterization of homeologous cellulose synthase catalytic subunit 2 genes from allotetraploid cotton (Gossypium hirsutum L.). Gene 494:181-189.
    87. Kim HJ, Triplett BA. (2001) Cotton fiber growth in planta and in vitro. Models for plant cell elongation and cell wall biogenesis. Plant Physiol.127:1361-1366.
    88. Kimura S, Koenig D, Kang J, Yoong FY, Sinha N. (2008) Natural variation in leaf morphology results from mutation of a novelKNOX gene. Curr Biol.18:672-677.
    89. Kimura S, Laosinchai W, Itoh T, Cui X, Linder CR, Brown RM Jr. (1999) Immunogold labeling of rosette terminal cellulose-synthesizing complex in the vascular plant Vigna angularis. Plant Cell 11:2075-2085.
    90. Ko JH, Kim WC, Han KH. (2009) Ectopic expression of MYB46 identifies transcriptional regulatory genes involved in secondary wall biosynthesis in Arabidopsis. Plant J.60:649-665.
    91. Lamport DTA, Northcote DH. (1960) Hydroxyproline in primary cell walls of higher plants. Nature 188:665-666.
    92. Lee D, Meyer K, Chapple C, Douglas CJ. (1997) Antisense suppression of 4-coumarate: coenzyme A ligase activity in Arabidopsis leads to altered lignin subunit composition. Plant Cell 9:1985-1998.
    93. Lee J, Burns TH, Light G, Sun Y, Fokar M, Kasukabe Y, Fujisawa K, Maekawa Y, Allen RD. (2010) Xyloglucan endotransglycosylase/hydrolase genes in cotton and their role in fiber elongation. Planta.232:1191-205.
    94. Li DD, Tai FJ, Zhang ZT, Li Y, Zheng Y, Wu YF, Li XB. (2009) A cotton gene encodes a tonoplast aquaporin that is involved in cell tolerance to cold stress. Gene 438:26-32.
    95. Li E, Bhargava A, Qiang WY, Friedmann MC, Forneris N, Savidge RA, Johnson LA, Mansfield SD, Ellis BE, Douglas CJ. (2012) The Class II KNOX gene KNAT7 negatively regulates secondary wall formation in Arabidopsis and is functionally conserved in Populus. New Phytologist 194:102-115.
    96. Li E, Wang SC, Liu YY, Chen JG, Douglas CJ. (2011) OVATE FAMILY PROTEIN4 (OFP4) interaction with KNAT7 regulates secondary cell wall formation in Arabidopsis thaliana. Plant J. 67:328-341.
    97. Li L, Cheng XF, Leshkevich J, Umezawa T, Harding SA, Chiang VL. (2001) The last step of syringyl monolignol biosynthesis in angiosperms is regulated by a novel gene encoding sinapyl alcohol dehydrogenase. Plant Cell 13:1567-1585.
    98. Li Y, Qian O, Zhou Y, Yan M, Sun L, Zhang M, Fu Z, Wang Y, Han B, Pang X, Chen M, Li J. (2003) BRITTLE CULM1, which encodes a COBRA-like protein, affects the mechanical properties of rice plants. Plant Cell 15:2020-2031.
    99. Li YJ, Liu DQ, Tu LL, Zhang XL, Wang L, Zhu LF, Tan JF, Deng FL. (2010) Suppression of GhAGP4 gene expression repressed the initiation and elongation of cotton fiber. Plant Cell Rep. 29:193-202.
    100. Li YL, Sun J. Xia GX. (2005) Cloning and characterization of a gene for an LRR receptor-like protein kinase associated with cotton fiber development. Mol Gen Genomics 273:217-224.
    101. Liu CQ, Mehdy MC. (2007) A nonclassical arabinogalactan protein gene highly expressed in vascular tissues, AGP31, is transcriptionally repressed by methyl jasmonic acid in Arabidopsis. Plant Physiol.145:863-874.
    102. Liu JY, Zhao GR, Li J. (2000) Molecular engineering on quality improvement of cotton fiber. Acta Bot. Sin.42:991-995.
    103. Liu K, Wang L, Xu YY, Chen N, Ma QB, Li F, Chong K. (2007) Overexpression of OsCOIN, a putative cold inducible zinc finger protein, increased tolerance to chilling, salt and drought, and enhanced proline level in rice. Planta 226:1007-1016.
    104. Lu H, Chen M, Showalter AM. (2001) Developmental expression and perturbation of arabinogalactan-proteins during seed germination and seedling growth in tomato. Physiologia plantarum 112:442-448.
    105. Machado A, Wu YR, Yang YM, Llewellyn DJ, Dennis ES. (2009) The MYB transcription factor GhMYB25 regulates early fibre and trichome development. Plant J.59:52-62.
    106. Magnani E, Hake S. (2008) KNOX Lost the OX:The Arabidopsis KNATM gene defines a novel class of KNOX transcriptional regulators missing the homeodomain. Plant Cell 20: 875-887.
    107. Martin L K. (1999) Cool-temperature-induced changes in metabolish related to cellulose in cotton fibers. (dissertation), Lubbock, TX:Texas Tech University.
    108. Master ER, Rudsander UJ, Zhou WL, Henriksson H, Divne C, Denman S, Wilson DB, Teeri TT. (2004) Recombinant expression and enzymatic characterization of PttCe19A, a KOR homologue from Populus tremula x tremuloides. Biochemistry 43:10080-10089.
    109. McNeil M, Darvill AG, Fry SC, Albersheim P. (1984) Structure and function of the primary cell walls of plants. Annual review of biochemistry 53:625-663.
    110. Mei WQ, Qin YM, Song WQ, Li J, Zhu YX. (2009) Cotton GhPOXl encoding plant class III peroxidase may be responsible for the high level of reactive oxygen species production that is related to cotton fiber elongation. J. Genet. Genomics 36:141-150.
    111. Meijer AH, Scarpella E, van Dijk EL, Qin L, Taal AJ, Rueb S, Harrington SE, McCouch SR, Schilperoort RA, Hoge JH. (1997) Transcriptional repression by Oshoxl, a novel homeodomain-leucine zipper protein from rice. Plant J.11:263-276.
    112. Meinert MC, Delmer DP. (1977) Changes in biochemical composition of the cell wall of the cotton fiber during development. Plant Physiol.59:1088-1097.
    113. Mele G, Ori N, Sato Y, Hake S. (2003) The knotted1-like homeobox gene BREVIPEDICELLUS regulates cell differentiation by modulating metabolic pathways. Genes Dev.17:2088-2093.
    114. Mitsuda N, Iwase A, Yamamoto H, Yoshida M, Seki M, Shinozaki K, Ohme-Takagi M. (2007) NAC transcription factors, NST1 and NST3, are key regulators of the formation of secondary walls in woody tissues of Arabidopsis. Plant Cell 19:270-280.
    115. Mitsuda N, Seki M, Shinozaki K, Ohme-Takagi M. (2005) The NAC transcription factors NST1 and NST2 of Arabidopsis regulates secondary wall thickening and are required for anther dehiscence. Plant Cell 17:2993-3006.
    116. Molhoj M, Pagant S, Hofte H. (2002) Towards understanding the role of membrane-bound endo-beta-1,4-glucanases in cellulose biosynthesis. Plant Cell Physiol.43:1399-1406.
    117. Mukherjee K, Brocchieri L, BurglinA TR. (2009) Comprehensive classification and evolutionary analysis of plant homeobox genes. Mol Biol Evol.26:2775-2794.
    118. Muller J, Wang Y, Franzen R, Santi L, Salamini F, Rohde W. (2001) In vitro interactions between barley TALE homeodomain proteins suggest a role for protein-protein associations in the regulation of knox gene function. Plant J.27:13-23.
    119. Murashige T, Skoog F. (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473-497.
    120. Nagasaki H, Sakamoto T, Sato Y, Matsuoka M. (2001) Functional analysis of the conserved domains of a rice KNOX homeodomain protein, OSH15. Plant Cell 13:2085-2098.
    121. Nicol F, His I, Jauneau A, Vernhettes S, Canut H, Hofte H. (1998) A plasma membrane-bound putative endo-1,4-beta-D-glucanase is required for normal wall assembly and cell elongation in Arabidopsis. EMBO J.17:5563-5576.
    122. Pagant S, Bichet A, Sugimoto K, Lerouxel O, Desprez T, McCann M, Lerouge P, Vernhettes S, Hofte H. (2002) KOBITO1 encodes a novel plasma membrane protein necessary for normal synthesis of cellulose during cell expansion in Arabidopsis. Plant Cell 14:2001-2013.
    123.Pagnussat GC, Yu HJ, Sundaresan V. (2007) Cell-fate switch of synergid to egg cell in Arabidopsis eostre mutant embryo sacs arises from misexpression of the BEL 1-Like homeodomain gene BLH1. Plant Cell 19:3578-3592.
    124. Park MH, Suzuki Y, Chono M, Knox JP, Yamaguchi I. (2003) CsAGP1, a gibberellin-responsive gene from cucumber hypocotyls, encodes a classical arabinogalactan protein and is involved in stem elongation. Plant Physiol.131:1450-1459.
    125. Patzlaff A, McInnis S, Courtenay A, Surman C, Newman LJ, Smith C, Bevan MW, Mansfield S, Whetten RW, Sederoff RR, Campbell MM. (2003) Characterization of a pine MYB that regulates lignification. Plant J.36:743-754.
    126. Peng J, Yu J, Wang H, Guo Y, Li G, Bai G, Chen R. (2011) Regulation of compound leaf development in Medicago truncatula by fused compound leafl, a class M KNOX gene. Plant Cell 23:3929-3943.
    127. Rajashekar CB, Lafta A. (1996) Cell-wall changes and cell tension in response to cold acclimation and exogenous abscisic acid in leaves and cell cultures. Plant Physiol. 111:605-612.
    128. Reiser L, Sanchez-Baracaldo P, Hake S. (2000) Knots in the family tree:evolutionary relationships and functions of knox homeobox genes. Plant Mol. Biol.42:151-166.
    129. Richmond T. (2000) Higher plant cellulose synthases. Genome Biol.4:30011-30016.
    130. Rose JKC, Lee SJ. (2010) Straying off the highway:trafficking of secreted plant proteins and complexity in the plant cell wall proteome. Plant Physiol.153:433-436.
    131. Roudier F, Fernandez AG, Fujita M, Himmelspach R, Borner GH, Schindelman G, Song S, Baskin TI, Dupree P, Wasteneys GO, Benfey PN. (2005) COBRA, an Arabidopsis extracellular glycosyl-phosphatidylinositol-anchored protein, specifically controls highly anisotropic expansion through its involvement in cellulose microfibril orientation. Plant Cell 17: 1749-1763.
    132. Roudier F, Schindelman G, DeSalle R, Benfey PN. (2002) The COBRA family of putative GPI anchored proteins in Arabidopsis. A new fellowship in expansion. Plant Physiol.130: 538-548.
    133. Ruan YL, Llewellyn DJ, Furbank RT. (2000) Pathway and control of sucrose import into initiating cotton fibers. Aust. J. Plant Physiol.27:795-800.
    134. Ruan YL, Llewellyn DJ, Furbank RT. (2001) The control of single-celled cotton fiber elongation by developmentally reversible gating of plasmodesmata and coordinated expression of sucrose and K+ transporters and expansin. Plant Cell 13:47-60.
    135. Ruan YL, Llewellyn DJ, Furbank RT. (2003) Suppression of sucrose synthase gene expression represses cotton fiber cell initiation, elongation, and seed development. Plant Cell 15:952-964.
    136. Sakakibara K, Nishiyama T, Kato M, Hasebe M. (2001) Isolation of homeodomain-leucine zipper genes from the mossPhyscomitrella patens and the evolution of homeodomain leucine zipper genes in land plants. Mol Biol Evol.18:491-502.
    137. Sakamoto T, Kamiya N, Ueguehi-Tanaka M, Iwahori S, Matsuoka M. (2001) KNOX homeodomain protein directly suppresses the expression of a gibberellin biosynthetic gene in the tobacco shoot apical meristem. Genes Dev.15:581-590.
    138. Samaj J, Braun M, Baluska F, Ensikat HJ, Tsumuraya Y, Volkmann D. (1999) Specific localization of arabinogalactan-protein epitopes at the surface of maize root hairs. Plant Cell Physiol.40:874-883.
    139. Samuga A, Joshi CP. (2004) Differential expression patterns of two new primary cell wall-related cellulose synthase cDNAs, PtrCesA6 and PtrCesA7 from aspen trees. Gene 334:73-82.
    140. Sato S, Kato T, Kakegawa K, Ishii T, Liu YG, Awano T, Takabe K, Nishiyama Y, Kuga S, Sato S, Nakamura Y, Tabata S, Shibata D. (2001) Role of the putative membranebound endo-1,4-β-glucanase KORRIGAN in cell elongation and cellulose synthesis in Arabidopsis thaliana. Plant Cell Physiol.42:251-263.
    141.Sawka AM, Nothnagel EA. (2000) The multiple roles of arabinogalactan proteins plant development. Plant Physiol.122:3-9.
    142. Scheible WR, Eshed R, Richmond T, Delmer D, Somerville CR. (2001) Modifications of cellulose synthase confer resistance to isoxaben and thiazolidinone herbicides in Arabidopsis Ixr1 mutants. Proc Natl Acad Sci USA 98:10079-10084.
    143. Scheller HV, Ulvskov P(2010) Hemicelluloses. Annu Rev Plant Biol.61:263-289.
    144. Schindelman G, Morikami A, Jung J, Baskin TI, Carpita NC, Derbyshire P, McCann MC, Benfey PN. (2001) COBRA encodes a putative GPI-anchored protein, which is polarly localized and necessary for oriented cell expansion in Arabidopsis. Genes Dev.15:1115-1127.
    145. Schultz CJ, Johnson KL, Currie G, Bacic A. (2000) The classical arabinogalactan protein gene family of Arabidopsis. Plant Cell 12:1751-1767.
    146. Seagull RW, Giavalis S. (2004) Pre- and post-anthesis application of exogenous hormones alters fiber production in Gossypium hirsutum L. cultivar Maxxa GTO. J Cotton Sci 8:105-111.
    147. Serikawa KA, Martinez-Laborda A, Kim HS, Zambryski PC (1997) Localization of expression of KNAT3, a class 2 knotted1-like gene. Plant J.11:853-861.
    148. Sewalt VJH, NiW, Blount JW, Jung HG, Masoud SA, Howles PA, Lamb C, Dixon RA. (1997) Reduced lignin content and altered lignin composition in transgenic tobacco down-regulated in expression of L-phenylalanine ammonialyase or cinnamate 4-hydroxylase. Plant Physiol.115:41-50.
    149. Shi YH, Zhu SW, Mao XZ, Feng JX, Qin YM, Zhang L, Cheng J, Wei LP, Wang ZY, Zhu YX. (2006) Transcriptome profiling, molecular biological, and physiological studies reveal a major role for ethylene in cotton fiber cell elongation. Plant Cell 18:651-664.
    150. Shimizu Y, Aotsuka S, Hasegawa O, Kawada T, Sakuno T, Sakai F, Hayashi T. (1997) Changes in levels of mRNAs for cell wall-related enzymes in growing cotton fiber cells. Plant Cell Physiol.38:375-378.
    151.Showalter AM, Keppler B, Lichtenberg J, Gu DZ, Welch LR. (2010) A bioinformatics approach to the identification, classification, and analysis of hydroxypriline-rich glycoproteins. Plant Physiol.153:485-513.
    152. Showalter AM. (1993) Structure and function of plant cell wall proteins. Plant Cell 5:9-23.
    153. Showalter AM. (2001) Arabinogalactan-proteins:structure, expression and function. Cellular and molecular life sciences 58:1399-1417.
    154. Singh B, Cheek HD, Haigler CH. (2009) A synthetic auxin (NAA) suppresses secondary wall cellulose synthesis and enhances elongation in cultured cotton fiber. Plant Cell Rep.28: 1023-1032.
    155. Smith HMS, Boschke I, Hake S. (2002) Selective interaction of plant homeodomain proteins mediates high DNA-binding affinity. Proc. Natl. Acad. Sci. USA 99:9579-9584.
    156. Somerville C. (2006) Cellulose synthesis in higher plants. Annu Rev Cell Dev Biol.22: 53-78.
    157. Sommer-Knudsen J, Bacic A, Clarke AE. (1998) Hydroxyproline-rich plant glycoproteins. Phytochemistry 47:483-497.
    158. Steponkus PL, Uemura M, Joseph RA, Gilmour SJ, Thomashow MF. (1998) Mode of action of the COR15a gene on the freezing tolerance of Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America 95:14570-14575.
    159. Stork J, Harris D, Griffiths J, Williams B, Beisson F, Li-Beisson Y, Mendu V, Haughn G, Debolt S. (2010) CELLULOSE SYNTHASE9 serves a nonredundant role in secondary cell wall synthesis in Arabidopsis epidermal testa cells. Plant Physiol.153:580-589.
    160. Sun W, Kieliszewski MJ, Showalter AM. (2004) Overexpression of tomato LeAGP-1 arabinogalactan-protein promotes lateral branching and hampers reproductive development. Plant J.40:870-881.
    161. Taylor NG, Howells RM, Huttly AK, Vickers K, Turner SR. (2003) Interactions among three distinct CesA proteins essential for cellulose synthesis. Proc Natl Acad Sci USA 100: 1450-1455.
    162. Taylor NG, Laurie S, Turner SR. (2000) Multiple cellulose synthase catalytic subunits are required for cellulose synthesis in Arabidopsis. Plant Cell 12:2529-2539.
    163. Taylor NG, Scheible WR, Cutler S, Somerville CR, Turner SR. (1999) The irregular xylem3 locus of Arabidopsis encodes a cellulose synthase required for secondary cell wall synthesis. Plant Cell 11:769-779.
    164. Thomas C, Hoffmann C, Dieterle M, Van Troys M, Ampe C, Steinmetz. (2006) A Tobacco WLIM1 is a novel F-actin binding protein involved in actin cytoskeleton remodeling. Plant Cell 18:2194-2206.
    165. Thomashow MF. (1999) Plant cold acclimation:freezing tolerance genes and regulatory mechanisms. Annual review of plant physiology and plant molecular biology 50:571-599.
    166. Timpa JD, Triplett BA. (1993) Analysis of cell-wall polymers during cotton fiber development. Planta 189:101-108.
    167. Truernit E, Siemering KR, Hodge S, Grbic V, Haseloff J. (2006) A map of KNAT gene expression in the Arabidopsis root. Plant Molecular Biology 60:1-20.
    168. Vershon AK. (1996) Protein interactions of homeodomain proteins. Current Opinion in Biotechnology 7:392-396.
    169. Vollbrecht E, Veit B, Sinha N, Hake S. (1991) The developmental gene Knotted-1 is a member of a maize homeobox gene family. Nature 350:241-243.
    170. Walford SA, Wu Y, Llewellyn DJ, Dennis ES. (2012) Epidermal cell differentiation in cotton mediated by the homeodomain leucine zipper gene, GhHD-1. Plant J.71:464-478.
    171. Wang HZ, Avci U, Nakashima J, Hahn MG, Chen F, Dixon RA. (2010) Mutation of WRKY transcription factors initiates pith secondary wall formation and increases stem biomass in dicotyledonous plants. Proc Natl Acad Sci. USA 107:22338-22343.
    172. Wang S, Chang Y, Guo J, Chen JG (2007) Arabidopsis ovate family protein 1 is a transcriptional repressor that suppresses cell elongation. Plant J.50:858-872.
    173. Wang S, Chang Y, Guo J, Zeng Q, Ellis BE, Chen JG (2011a) Arabidopsis ovate family proteins, a novel transcriptional repressor family, control multiple aspects of plant growth and development. PLoS One 6:e23896.
    174. Wang W, Wang L, Chen C, Xiong GY, Tan XY, Yang KZ, Wang Yariv J, Lis H, Katchals E. (1967) Precipitation of arabic acid and some seed polysaccharides by glycosylphenylazo dyes. Biochemistry Journal 105:lc-2c.
    175. Wang W, Wang L, Chen C, Xiong GY, Tan XY, Yang KZ, W ZC, Zhou YH, Ye D, Chen LQ. (2011b) Arabidopsis CSLD1 and CSLD4 are required for cellulose deposition and normal growth of pollen tubes. Journal of Experimental Botany 62:5161-5177.
    176. Wang WX, Vinocur B, Altman A. (2003) Plant responses to drought, salinity and extreme temperatures:towards genetic engineering for stress tolerance. Planta 218:1-14.
    177. Weiser RL, Wallner SJ, Waddell JW. (1990) Cell wall and extensin mRNA changes during cold acclimation of pea seedlings. Plant Physiol.93:1021-1026.
    178. Weyman PD, Pan ZQ, Feng Q, Gilchrist DG, Bostock RM. (2006) DEA1, a circadian- and cold-regulated tomato gene, protects yeast cells from freezing death. Plant Mol. Biol.62: 547-559.
    179. Wilkins TA, Arpat AB. (2005) The cotton fiber transcriptome. Physiologia Plantarum 124: 295-300.
    180. Wolberger C. (1996) Homeodomain interactions. Curr Opin Struct Biol.6:62-68.
    181. Yang C, Xu Z, Song J, Conner K, Barrena GV, Wilson ZA. (2007) Arabidopsis MYB26/MALE STERILE35 regulates secondary thickening in the endothecium and is essential for anther dehiscence. Plant Cell 19:534-548.
    182. Yang XY, Tu LL, Zhu LF, Fu LL, Min L, Zhang XL. (2008) Expression profile analysis of genes involved in cell wall regeneration during protoplast culture in cotton by suppression subtractive hybridization and macroarray. Journal of Experimental Botany 59:3661-3674.
    183. Ye ZH, Kneusel RE, Matern U, Varner JE. (1994) An alternative methylation pathway in lignin biosynthesis in Zinnia. Plant Cell 6:1427-1439.
    184. Yoshii A, Shimizu T, Yoshida A, Hamada K, Sakurai K, Yamaji Y, Suzuki M, Namba S, Hibi T. (2008) NTH201, a novel class Ⅱ KNOTTED1-like protein, facilitates the cell-to-cell movement of Tobacco mosaic virus in Tobacco. Mol Plant Microbe Interact.21:586-596.
    185. Youl JJ, Bacic A, Oxley D. (1998) Arabinogalactan-proteins from Nicotiana alata and Pyrus communis contain glycosylphosphatidylinositol membrane anchors. Proceedings of the National Academy of Sciences of the United States of America 95:7921-7926.
    186. Zhang D, Hrmova M, Wan CH, Wu C, Balzen J, Cai W, Wang J, Densmore LD, Fincher GB, Zhang H, Haigler CH. (2004) Members of a new group of chitinase-like genes are expressed preferentially in cotton cells with secondary walls. Plant Mol. Biol.54:353-372.
    187. Zhang J, Elo A, Helariutta Y. (2011) Arabidopsis as a model for wood formation. Current Opinion in Biotechnology 22:293-299.
    188. Zhang Y, Diaz-Flores E, Li GQ, Wang ZQ, Kang ZZ, Haviernikova E, Rowe S, Qu CK, Tse W, Shannon KM, Bunting KD. (2007) Abnormal hematopoiesis in Gab2 mutant mice. BLOOD 110:116-124.
    189. Zhao GR, Liu JY. (2001) Isolation of a cotton RGP gene:a homolog of reversibly glycosylated polypeptide highly expressed during (?)ber development. Biochimica et Biophysica Acta 1574: 370-374.
    190. Zhong R, Richardson EA, Ye ZH. (2007) Two NAC domain transcription factors, SND1 and NST1, function redundantly in regulation of secondary wall synthesis in fibers of Arabidopsis. Planta,225:1603-1611.
    191. Zhong RQ, Lee CH, Ye ZH. (2010) Evolutionary conservation of the transcriptional network regulating secondary cell wall biosynthesis. Trends in Plant Science 15:625-632.
    192. Zhong RQ, Lee CH, Zhou JL, McCarthy RL, Ye ZH. (2008) A battery of transcription factors involved in the regulation of secondary cell wall biosynthesis in Arabidopsis. Plant Cell 20: 2763-2782.
    193. Zhong RQ, Morrison WH, Freshour GD, Hahn MG, Ye ZH. (2003) Expression of a mutant form of cellulose synthase AtCesA7 causes dominant negative effect on cellulose biosynthesis. Plant Physiol.32:786-795.
    194. Zhong RQ, Morrison WH, Negre J, Ye ZH. (1998) Dual methylation pathways in lignin biosynthesis. Plant Cell 10:2033-2045.
    195. Zhong RQ, Pena MJ, Zhou GK, Richardson EA, O'Neill MA, Darvill AG, York WS, Ye ZH. (2005) Arabidopsis fragile fiber8, which encodes a putative glucuronyltransferase, is essential for normal secondary wall synthesis. Plant Cell 17:3390-3408.
    196. Zhong RQ, Richardson EA, Ye ZH. (2007) The MYB46 transcription factor is a direct target of SND1 and regulates secondary wall biosynthesis in Arabidopsis. Plant Cell 19:2776-2792.
    197. Zhong RQ, Ye ZH. (2007) Regulation of cell wall biosynthesis. Current Opinion in Plant Biology 10:564-572.
    198. Zhong RQ, Ye ZH. (2010) The poplar PtrWNDs are transcriptional activators of secondary cell wall biosynthesis. Plant Signaling & Behavior 5:469-472.
    199. Zhou JL, Lee CH, Zhong RQ, Ye ZH. (2009) MYB58 and MYB63 are transcriptional activators of the lignin biosynthetic pathway during secondary cell wall formation in Arabidopsis. Plant Cell 21:248-266.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700