拟南芥AtbHLH112基因调控植物抗逆机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
bHLH (basic/helix-loop-helix)家族是植物转录因子中最大的家族之一,它们的结构特性是都含有一个由60-100个氨基酸构成的高度保守的DNA结合结构域,包含2个功能不同的区域,即basic区域和HLH区域。绝大多数植物bHLH转录因子能够通过识别G-box元件参与诸如生长发育、营养吸收、信号转导、抗逆境胁迫等方面的应答。本研究通过对AtbHLH112基因过表达、抑制表达、野生型以及AtbHLH112基因缺失突变体植株在ABA、NaCl和Manntiol三种胁迫下的比较分析,证明AtbHLH112过表达植株的抗逆能力明显提高,说明AtbHLH112基因在拟南芥植株内发挥着非常重要的抗逆功能。利用基因枪瞬时转化技术将AtbHLH112与GFP的融合表达载体pROK2-AtbHLH112-GFP转化入洋葱表皮进行亚细胞定位,结果表明AtbHLH112转录因子定位在细胞核中。将AtbHLH112基因上游1320bp的启动子与GUS融合构建植物报告表达载体p1301-AtbHLH112并转化拟南芥,GUS化学染色表明,AtbHLH112基因的启动子具有强的表达活性,且具有组织特异性。通过PLACE和PlantCARE数据库预测分析发现,AtbHLH112基因启动子序列上含有ARR1TA、GTGANTG10、 MYCCONSENSUSAT、MYBCORE、MYBST1和WRKY71OS等与信号传递途径相关以及植物抗逆相关的顺式作用元件。通过酵母单杂交分析筛选到能够特异识别AtbHLH112基因启动子上E-box元件和W-box元件,从而调控AtbHLH112表达的上游基因各1条,即AtPP2C24和AtWRKY66.进一步的荧光实时定量RT-PCR结果表明,AtPP2C24和AtWRKY66基因在胁迫下的表达模式与AtbHLH112基因相似,该结果也提示三个基因可能属于响应逆境胁迫的同一表达调控网络。利用酵母单杂交等技术对AtbHLH112与顺式作用元件G-box的互作研究结果表明,AtbHLH112转录因了能够特异性地识别G-box顺式作用元件,且AtbHLH112转录因子的DNA结合域靠近基因C端。利用Agilent拟南芥全基因组表达谱芯片技术对AtbHLH112基因过表达植株与突变体植株在正常和盐胁迫条件的差异基因进行比较分析。非胁迫条件下共得到差异表达基因4159条(P<0.05;FC>2);盐胁迫下共得到差异表达基因2862条(P<0.05;FC>2)。结果显示:AtbHLH112基因能够调控一系列相关基因的表达,特别是核糖体蛋白、热激蛋白、转导素蛋白、细胞周期蛋、抗病性蛋白的相关基因以及多种转录因了,如NAC、 WRKY、DOF、MYB、ZFP、ERF、TCP等等。酵母双杂交分析结果显示,AtbHLH112转录因子单体具有转录自激活活性,且自激活结构域靠近基因N端。将不含转录自激活结构域的AtbHLH112片段与拟南芥cDNA文库菌株进酵母双杂交,共得到7个能够与AtbHLH112转录因子互作的蛋白,包括2个叶绿素结合蛋白、2个泛素结合酶、1个谷氨酰胺合成酶、1个脂氧合酶和一个未知蛋白。
The basic helix-loop-helix (bHLH) genes are a big group of transcription factors in plants. which is made up by60-100amino acids, containing a highly conserved DNA binding domain is followed by basic region and HLH.11domain. In plants, the vast majority of bHLH genes involved in regulating response by identifying the cis-acting element of G-box, such as growing development, nutrient absorption, signal transduction and adversity stress. In the present study, the T3transgenic Arabidopsis overexpressing AtbHLH112showed considerable stress tolerance under abiotic stress of ABA, NaCl and Manntiol, by comparing with T3transgenic Arabidopsis of AtbHLH112suppress expression, T3deletion mutant Arabidopsis of AtbHLH112, and wild type of Col-0. The recombinant AtbHLH112-GFP fused gene was transformed into onion epidermal cells by particle gun for subcellular location analysis. The results showed that AtbHLH112is located in nuclear of cell. The AtbHLH112promoter was fused with GUS. and introduced into wild-type Col-0by floral infiltration for promoter activity analysis. And GUS staining analysis indicated that the promoter of AtbHLH112has high activity in different plant tissues. PLACE and PlantCARE database prediction analysis suggested that there are many cis-elements which associated with signaling pathway and strss resistance of plants in the promoter of AtbHLH112, such as ARR1TA. GTGANTG10, MYCCONSENSUSAT. MYBCORE. MYBST1and WRKY71OS. We obtained that a AtPP2C gene (AtPP2C24) and a AtWRKY gene (AtWRKY66), using yeast one-hybrid analysis, can regulate the expression of AtbHLH112through recognizing E-box and W-box in the promoter of AtbHLH112, respectively. Furthermore, real-time quantification RT-PCR showed that AtPP2C24and AtWRKY66shared a similar expression patterns with AtbHLH112in response to adversity stresses, indicating that they may belong to the same expression regulation network. Yeast one-hybrid study showed that AtbHLH112can interact with G-box, and the DNA binding domain located in C-terminal of AtbHLH112. Agilent Arabidopsis oligo microarray analysis was employed to identify differences in gene expression between transgenic Arabidopsis and deletion mutant of AtbHLH112under normal and salt stress conditions. The results revealed that there are4159genes and2862genes significantly (P<0.05; FC>2) differentially expressed, respectively, under normal and salt stress conditions. The Agilent Arabidopsis oligo microarray results showed that AtbHLH112can regulate series related target genes, especially the related genes of ribosomal protein, heat shock protein, transduction grain protein, cell cycle protein, disease-resistance protein as well as a variety of transcription factors, such as NAC. WRKY. DOF, MYB, ZFP, ERF, TCP. and so on. Yest two-hybrid analysis revealed that the single form of AtbHLH112has transactivation activity, and the domain located in N-terminal of AtbHLH112; the fragment of AtbHLH112which do not contain transcriptional activation domain hybridized with the cDNA library of Arabidopsis thaliana to identified7interacting proteins, including2chlorophyll binding proteins,2ubiquitin-conjugating enzymes, a glutamine synthetase. a lipoxygenase and an unknown protein.
引文
[1]刘欣,李云.转录因子与植物抗逆性研究进展[J].中国农学通报,2006,22(4):61-65.
    [2]Riechmann, J.L., Heard, J., Martin, G, Reuber, L., Jiang, C, et al. Arabidopsis transcription factors:genome-wide comparative analysis among eukaryotes[J]. Science, 2000.290(5499):2105-2110.
    [3]Buck, M.J. and Atchley, W.R. Phylogenetic analysis of plant basic helix-loop-helix proteins[J]. J Mol Evol,2003.56(6):742-750.
    [4]Pires, N. and Dolan, L. Early evolution of bHLH proteins in plants[J]. Plant Signal Behav, 2010.5(7):911-912.
    [5]Toledo-Ortiz, G, Huq, E. and Quail, P. H. The Arabidopsis basic/helix-loop-helix transcription factor family[J]. Plant Cell,2003.15(8):1749-1770.
    [6]Carretero-Paulet, L., Galstyan, A., Roig-Villanova, I., Martinez-Garcia, J. F. Bilbao-Castro, J. R., et al. Genome-wide classification and evolutionary analysis of the bHLH family of transcription factors in Arabidopsis, poplar, rice, moss, and algae[J]. Plant Physiol,2010.153(3):1398-1412.
    [7]汪晓峰,张宪政.ASA提高小麦抗旱性生理效应的研究[J].植物学通报,1998(3):48-50.
    [8]瞿礼嘉. 《现代生物技术导论》的那些事儿[J].生命世界,2009(5):30-31.
    [9]苏永全,吕迎春.盐分胁迫对植物的影响研究简述[J].甘肃农业科技,2007(3):23-27.
    [10]莫文萍,郑元元,岳海涛,李春,李晖.棉花解盐促生菌的筛选及其作用机理的初步研究[J].石河子大学学报(自然科学版),2006,24(1):79-82.
    [11]刘金萍,高奔,李欣,宋杰,范海,王宝山,赵可夫.盐旱互作对不同生境盐地碱蓬种子萌发和幼苗生长的影响[J].生态学报,2010(20):5485-5490.
    [12]Jiang, C., Zheng, Q., Liu, Z., Xu, W., Liu, L., et al. Overexpression of Arabidopsis thaliana Na+/H+ antiporter gene enhanced salt resistance in transgenic poplar (Populus × euramericana 'Neva'). Trees-Structure and Function,2012.26(3):685-.
    [13]Mahajan, S. and Tuteja, N. Cold, salinity and drought stresses:an overview[J]. Arch Biochem Biophys,2005.444(2):p.139-58.
    [14]石贵玉,廖文雪,秦丽凤,陆连连.PEG模拟水分胁迫对香椿种子萌发的生理生化指标影响[J].福建林业科技,2009(4):142-145.
    [15]Glenn, E.P., Brown, J.J. and Blumwald, E. Salt tolerance and crop potential of halophytes[J]. Crit Rev Plant Sci,1999.18(2):227-255.
    [16]Maricle, B.R., Cobos, D.R. and Campbell, C.S. Biophysical and morphological leaf adoptions to drought and salinity in salt marsh grasses[J]. Environ Exp Bot,2007.60(3): 458-467.
    [17]Munns, R. Physiological processes limiting plant growth in saline soils:some dogmas and hypotheses[J]. Plant, Cell & Environment,1993.16(1):15-24.
    [18]Paridaa, A.K. and Das, A.B. Salt tolerance and salinity effects on plants:a review[J]. Ecotox Environ Safe.2005.60(3):324-349.
    [19]邢少辰,蔡玉红.环境胁迫与植物体内脯氨酸的关系[J].生态农业研究,1998(2):32-35.
    [20]郭房庆,黄昊.汤章城.NaCl胁迫对小麦抗盐突变体根液泡膜H-+ ATP酶和H-+PP酶活性的影响[J].植物生理学报,1999(4):395-400.
    [21]孙梅霞,祖朝龙,徐经年.干旱对植物影响的研究进展[J]I安徽农业科学,2004(2):365-367.
    [22]Covarrubias, A. A., Ayala, J. W., Reyes, J. L., Hernandez, M. and Garciarrubio, A. Cell-wall Proteins induced by water deficit in bean (phasolus valgaoris L.) seedings[J]. Plant Physiol,1995.107(4):1119-1128.
    [23]Martinez, J.P., Silva, H., Ledent, J. F., Pinto, M. and Adam, L. Effeet of drought stress on the osmotic adjustment, cell volume of six cultivars of common beans (phasolus valgaoris L.)[J]. Eur J Agron,2007.26(1):30-38.
    [24]李连朝,王学臣.水分亏缺对植物细胞壁的影响及其与细胞延伸生长的关系[J].植物生理学通讯,1996(5):321-327.
    [25]Ramachandra. R.A.. Chaitanya, K.V. and Vivekanandan, M. Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants[J]. J Plant Physiol,2004. 161(11):1189-1202.
    [26]Krause, G. and Weis, F. ChloroPhyll fluoreseenee and Photosynthesis:The basics.[J] Plant Mol Biol,1991.42:313-349.
    [27]Cattivelli. L., Rizza, F., Badeck, F. W., Mazzucotelli, E., Mastrangelo, A. M., et al. Drought tolerance improvement in crop plants:An integrated view[J]. Field Crops Research,2008.105(1):1-14.
    [28]Pilet, P.E. and Saugy, M. Effect of applied and endogenous indol-3-yl-acetic acid on maize root growth[J]. Planta,1985.164(2):254-258.
    [29]Lilius, G., Holmberg, N. and Bulow, L. Enhanced NaCl stress tolerance in transgenic tobacco expressing bacterial choline dehydrogenase[J]. Nat Biotechnol,1996.14:177-180.
    [30]Nakamura, T.M., Morin, G. B., Chapman, K. B., Weinrich, S. L., Andrews, W. H., et al., Telomerase catalytic subunit homologs from fission yeast and human[J]. Science,1997. 277(5328):955-959.
    [31]McKersie, B.D., Chen, Y., de Beus, M., Bowley, S. R., Bowler, C., Inze, D., et al. Superoxide dismutase enhances tolerance of freezing stress in transgenic alfalfa (Medicago sativa L.)[J]. Plant Physiol,1993.103(4):1155-1163.
    [32]Wang, Y., Ma, H., Liu, G., Xu, C., Zhang, D., et al. Analysis of gene expression profile of Limonium bicolor under NaHCO3 stress using cDNA microarray[J]. Plant Mol Biol Rep, 2008.26(3):241-254.
    [33]Wang, Y., Yang, C., Liu, G. and Jiang, J. Development of a cDNA microarray to identify gene expression of Puccinellia tenuiflora under saline-alkali stress. Plant Physiol Biochem,2007.45(8):567-576.
    [34]Wang, Y., Ma, H., Liu, G., Zhang, D., Ban, Q., Zhang, G., et al. Generation and analysis of expressed sequence tags from a NaHCO3-treated Limonium bicolor cDNA library[J]. Plant Physiol Biochem,2008.46(11):977-986.
    [35]Wang, Y., Chu, Y., Liu, G., Wang, M. H., Jiang, J., et al. Identification of expressed sequence tags in an alkali grass (Puccinellia tenuiflora) cDNA library[J]. J Plant Physiol, 2007.164(1):78-89.
    [36]Wang, Y., Yang, C., Liu, G., Zhang, G. and Ban, Q. Microarray and suppression subtractive hybridization analyses of gene expression in Puccinellia tenuiflora after exposure to NaHCO3[J]. Plant Sci,2007.173(3):309-320.
    [37]Vincentz-Carbajosa, J., Moose, S.P. and Parsons, R.L. A maize zinc-finger protein binds the prolamin box in zein gene promoters and interacts with the basic leucine zipper transcriptional activator Opaque2[J]. Proc Natl Acad Sci,1997.94:7685-7690.
    [38]Yin, Y., Zhu, Q., Dai, S., Lamb, C. and Beachy, R. RF2a, a bZIP transcriptional activator of the phloem-specific rice tungro baciliform virus promoter, functions in vascular development[J]. EMBO J.,1997.17:5247-5259.
    [39]Vettore, A.L., Yunes, J. A., Cord, N. G., Da Silva, M. J., Arruda, P., et al. The molecular and functional characterization of an Opaque2 homologue gene from Coix and a new classification of plant bZIP proteins[J]. Plant Mol Biol,1998.36(2):249-263.
    [40]Yunes, J.A., Cord, N. G., Leite, A., Ottoboni, L. M. and Arruda, P. The role of the Opaque2 transcriptional factor in the regulation of protein accumulation and amino acid metabolism in maize seeds[J]. An Acad Bras Cienc,1994.66 Su 1 (Pt 2):227-238.
    [41]Singh, K., Foley, R.C. and Onate-Sanchez, L. Transcription factors in plant defense and stress responses[J]. Curr Opin Plant Biol,2002.5(5):430-436.
    [42]王颖,麦维军,梁承邺,张明永.高等植物启动子的研究进展[J].西北植物学报,2003(11):2039-2047.
    [43]Benfey, P.N., Ren, L. and Chua, N.H. Combinatorial and synergistic properties of CaMV 35S enhancer subdomains[J]. EMBO J,1990.9(6):1685-1696.
    [44]Holtorf, S., Apel, K. and Bohlmann, H. Comparison of different constitutive and inducible promoters for the overexpression of transgenes in Arabidopsis thaliana[J]. Plant Mol Biol,1995.29(4):637-646.
    [45]Benfey. P.N. and Chua. N.H. The Cauliflower Mosaic Virus 35S Promoter:Combinatorial Regulation of Transcription in Plants[J]. Science,1990.250(4983):959-966.
    [46]Kasuga, M., Liu, Q., Miura, S., Yamaguchi-Shinozaki, K., and Shinozaki, K. Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor[J]. Nat Biotechnol,1999.17(3):287-291.
    [47]朱丽萍,于壮,邹翠霞,李秋莉.植物逆境相关启动子及功能[J].遗传,2010(3):229-234.
    [48]张俊莲,王蒂,张金文,陈正华.用绿色荧光蛋白和洋葱表皮细胞检测拟南芥rd29A基因启动子活性的方法[J].植物生理学通讯,2005(6):815-819.
    [49]石东乔,周奕华,万里红,刘桂珍,胡赞民,陈正华.甘蓝型油菜BcNA1基因启动子在转基因烟草中对GUS基因表达的调控[J].植物生理学报,2001(4):313-320.
    [50]Sanita Di Toppi, L. and Gabbrielli, R. Response to cadmium in higher plants[J]. Environ Exp Bot,1999.41(2):105-130.
    [51]Liu, Q., Zhang, J. Y. and Chen, S. Y. Structure and regulatory function of plant transcription factors[J]. Chinese Sci Bull,2001(4):271-278.
    [52]沈义国,闫冬青,张万科,杜保兴,张劲松,刘强,陈受宜.山菠菜EREBP/AP2类DNA结合蛋白基因的克隆及其耐逆性研究[J].植物学报,2003(1):82-87.
    [53]Washburn, K. B., Davis, E. A. and Ackerman, S. Coactivators and TAFs of transcription activation in wheat[J]. Plant Mol Biol,1997.35(6):1037-1043.
    [54]Huang, H., Tudor, M., Su, T., Zhang, Y, Hu, Y., et al. DNA binding properties of two Arabidopsis MADS domain proteins:binding consensus and dimer formation[J]. Plant Cell,1996.8(1):81-94.
    [55]Aukerman, M. J., Schmidt, R. J., Burr, B. and Burr, F. A. An arginine to lysine substitution in the bZIP domain of an opaque-2 mutant in maize abolishes specific DNA binding[J]. Genes Dev,1991.5(2):310-320.
    [56]Nantel, A. and Quatrano, R. S. Characterization of three rice basic/leucine zipper factors, including two inhibitors of EmBP-1 DNA binding activity [J]. J Biol Chem,1996. 271(49):31296-31305.
    [57]Kim, H. S. and Delaney, T. P. Over-expression of TGA5, which encodes a bZIP transcription factor that interacts with NIM1/NPR1, confers SAR-independent resistance in Arabidopsis thaliana to Peronospora parasitica[J]. Plant J,2002.32(2):151-163.
    [58]Kuhlmann, M., Horvay, K., Strathmann, A., Heinekamp, T., Fischer, U., et al. The alpha-helical D1 domain of the tobacco bZIP transcription factor BZI-1 interacts with the ankyrin-repeat protein ANK1 and is important for BZI-1 function, both in auxin signaling and pathogen response[J]. J Biol Chem,2003.278(10):8786-8794.
    [59]Takatsuji, H. Zinc-finger transcription factors in plants[J]. Cell Mol Life Sci,1998.54(6): 582-596.
    [60]Lin, Q., Barbas, C. R. and Schultz, P. G. Small-molecule switches for zinc finger transcription factors[J]. J Am Chem Soc,2003.125(3):612-613.
    [61]Rounsley, S. D., Ditta, G. S. and Yanofsky, M. F. Diverse roles for MADS box genes in Arabidopsis development[J]. Plant Cell,1995.7(8):1259-1269.
    [62]Immink, R. G., Ferrario, S., Busscher-Lange, J., Kooiker, M., Busscher, M., et al. Analysis of the petunia MADS-box transcription factor family [J]. Mol Genet Genomics, 2003.268(5):598-606.
    [63]Abe, H., Yamaguchi-Shinozaki, K., Urao, T., Iwasaki, T., Hosokawa, D., et al. Role of arabidopsis MYC and MYB homologs in drought-and abscisic acid-regulated gene expression[J]. Plant Cell,1997.9(10):1859-1868.
    [64]Martin, C. and Paz-Ares, J. MYB transcription factors in plants[J]. Trends Genet,1997. 13(2):67-73.
    [65]Klinge, B., Uberlacker, B., Korfhage, C. and Werr, W. ZmHox:a novel class of maize homeobox genes[J]. Plant Mol Biol,1996.30(3):4394-53.
    [66]Riechmann, J. L. and Meyerowitz, E. M. The AP2/EREBP family of plant transcription factors[J]. Biol Chem,1998.379(6):633-646.
    [67]刘强,张贵友,陈受宜.植物转录因子的结构与调控作用[J].科学通报,2000(14):1465-1474.
    [68]Yanagisawa, S. and Sheen, J. Involvement of maize Dof zinc finger proteins in tissue-specific and light-regulated gene expression[J]. Plant Cell,1998.10(1):75-89.
    [69]Katagiri, F., Seipel, K. and Chua, N.H. Identification of a novel dimer stabilization region in a plant bZIP transcription activator[J]. Mol Cell Biol,1992.12(11):4809-4816.
    [70]Guiltinan, M. J. and Miller, L. Molecular characterization of the DNA-binding and dimerization domains of the bZIP transcription factor, EmBP-1[J]. Plant Mol Biol,1994. 26(4):1041-1053.
    [71]Sainz, M. B., Grotewold, E. and Chandler, V. L. Evidence for direct activation of an anthocyanin promoter by the maize C1 protein and comparison of DNA binding by related Myb domain proteins[J]. Plant Cell,1997.9(4):6116-25.
    [72]汤丽华.基于结构数据的转录因子结合位点分析[D].东南大学,2005.
    [73]Boulikas, T. Putative nuclear localization signals (NLS) in protein transcription factors[J]. J Cell Biochem,1994.55(1):32-58.
    [74]Imagawa, M., Sakaue, R., Tanabe, A., Osada, S. and Nishihara, T. Two nuclear localization signals are required for nuclear translocation of nuclear factor 1-A[J]. FEBS Lett,2000.484(2):118-124.
    [75]Lyck, R., Harmening, U., Hohfeld, I., Treuter, E., Scharf, K. D., et al. Intracellular distribution and identification of the nuclear localization signals of two plant heat-stress transcription factors[J]. Planta,1997.202(1):117-125.
    [76]Dehesh, K., Smith, L. G., Tepperman, J. M. and Quail, P. H. Twin autonomous bipartite nuclear localization signals direct nuclear import of GT-2[J]. Plant J,1995.8(1):25-36.
    [77]Varagona, M. J., Schmidt, R. J. and Raikhel, N. V. Nuclear localization signal(s) required for nuclear targeting of the maize regulatory protein Opaque-2[J]. Plant Cell,1992.4(10): 1213-1227.
    [78]Xue, G. P. An AP2 domain transcription factor HvCBFl activates expression of cold-responsive genes in barley through interaction with a (G/a)(C/t)CGAC motif[J]. Biochim Biophys Acta,2002.1577(1):63-72.
    [79]Stockinger, E. J., Gilmour, S. J. and Thomashow, M. F. Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit[J]. Proc Natl Acad Sci USA,1997.94(3): 1035-1040.
    [80]张子佳.水稻转录因子bHLH家族基因抗逆表达谱分析[D].中国农业科学院.2008
    [81]Hake, S. Unraveling the knots in plant development[J]. Trends Genet,1992.8(3):109-114.
    [82]Foster, R., Izawa, T. and Chua, N. H. Plant bZIP proteins gather at ACGT elements[J]. FASEB J,1994.8(2):192-200.
    [83]Wu, C. Y., Suzuki, A., Washida, H. and Takaiwa, F. The GCN4 motif in a rice glutelin gene is essential for endosperm-specific gene expression and is activated by Opaque-2 in transgenic rice plants[J]. Plant J,1998.14(6):673-683.
    [84]Ciceri, P., Gianazza, E., Lazzari, B., Lippoli, G., Genga, A., et al. Phosphorylation of Opaque2 changes diurnally and impacts its DNA binding activity[J]. Plant Cell,1997. 9(1):97-108.
    [85]Yamaguchi-Shinozaki, K. and Shinozaki, K. A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress [J]. Plant Cell,1994.6(2):251-264.
    [86]Tuteja, N. Abscisic Acid and abiotic stress signaling[J]. Plant Signal Behav,2007.2(3): 135-138.
    [87]Ji, X., Wang, Y. and Liu, G. Expression Analysis of MYC Genes from Tamarix hispida in Response to Different Abiotic Stresses[J]. Int J Mol Sci,2012.13(2):1300-1313.
    [88]Abe, H., Urao, T., Ito, T., Seki, M., Shinozaki, K., et al. Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling[J]. Plant Cell,2003.15(1):63-78.
    [89]Shinozaki, K. and Yamaguchi-Shinozaki, K. Gene Expression and Signal Transduction in Water-Stress Response[J]. Plant Physiol,1997.115(2):327-334.
    [90]Park, J. M., Park, C. J. Lee, S. B. Ham, B. K. Shin, R., et al. Overexpression of the tobacco Tsi1 gene encoding an EREBP/AP2-type transcription factor enhances resistance against pathogen attack and osmotic stress in tobacco[J]. Plant Cell,2001.13(5):1035-1046.
    [91]Liu, Q., Kasuga, M., Sakuma, Y., Abe, H., Miura, S., et al. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis[J]. Plant Cell,1998.10(8):1391-1406.
    [92]Haake, V., Cook, D., Riechmann, J. L., Pineda, O., Thomashow, M. F., et al. Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis [J]. Plant Physiol,2002. 130(2):639-648.
    [93]Murre, C., McCaw, P. S. and Baltimore, D. A new DNA binding and dimerization motif in immunoglobulin enhancer binding, daughterless, MyoD, and myc proteins[J]. Cell,1989. 56(5):777-783.
    [94]Feller, A., Machemer, K., Braun, E. L. and Grotewold, E. Evolutionary and comparative analysis of MYB and bHLH plant transcription factors[J]. Plant J,2011.66(1):94-116.
    [95]Carretero-Paulet, L., Galstyan, A., Roig-Villanova, I., Martinez-Garcia, J. F. Bilbao-Castro, J. R., et al. Genome-wide classification and evolutionary analysis of the bHLH family of transcription factors in Arabidopsis, poplar, rice, moss, and algae[J]. Plant Physiol,2010.153(3):1398-1412.
    [96]Pires, N. and Dolan, L. Origin and diversification of basic-helix-loop-helix proteins in plants[J]. Mol Biol Evol,2010.27(4):862-874.
    [97]Toledo-Ortiz, G., Huq, E. and Quail, P. H. The Arabidopsis basic/helix-loop-helix transcription factor family[J]. Plant Cell,2003.15(8):1749-1770.
    [98]Wang, Y., Chen, K. P. and Yao, Q. Progress of studies on bHLH transcription factor families[J]. Yi Chuan,2008.30(7):821-830.
    [99]Buck, M.J. and Atchley, W.R. Phylogenetic analysis of plant basic helix-loop-helix proteins[J]. J Mol Evol,2003.56(6):742-750.
    [100]Aggarwal, P., Das, Gupta M., Joseph, A. P., Chatterjee, N., Srinivasan, N., et al. Identification of specific DNA binding residues in the TCP family of transcription factors in Arabidopsis[J]. Plant Cell.2010.22(4):1174-1189.
    [101]Ma, P. C., Rould, M. A., Weintraub, H. and Pabo, C. O. Crystal structure of MyoD bHLH domain-DNA complex:perspectives on DNA recognition and implications for transcriptional activation[J]. Cell,1994.77(3):451-459.
    [102]Narasimhulu, S. B. and Reddy, G. M. Plantlet regeneration from different callus cultures of Arachis hypogaea L[J]. Plant Science Letters,1983.31(2-3):157-163.
    [103]Ludwig, S. R., Bowen, B., Beach, L. and Wessler, S. R. A regulatory gene as a novel visible marker for maize transformation[J]. Science,1990.247(4941):449-450.
    [104]Weigel, D., Alvarez, J., Smyth, D. R. Yanofsky, M. F. and Meyerowitz, E. M. LEAFY controls floral meristem identity in Arabidopsis[J]. Cell,1992.69(5):843-859.
    [105]Ellenberger, T., Fass, D., Arnaud, M. and Harrison, S. C. Crystal structure of transcription factor E47:E-box recognition by a basic region helix-loop-helix dimer[J]. Genes Dev, 1994.8(8):970-980.
    [106]Ferre-D'Amare, A.R., Prendergast, G. C., Ziff, E. B. and Burley, S. K. Recognition by Max of its cognate DNA through a dimeric b/HLH/Z domain[J]. Nature,1993.363(6424): 38-45.
    [107]Ludwig, S.R. and Wessler, S. R. Maize R gene family:tissue-specific helix-loop-helix proteins[J]. Cell,1990.62(5):849-851.
    [108]Ni, M., Tepperman, J. M. and Quail, P. H. Binding of phytochrome B to its nuclear signalling partner PIF3 is reversibly induced by light[J]. Nature,1999.400(6746):781-784.
    [109]Fairchild, C.D., Schumaker, M. A. and Quail, P. H. HFR1 encodes an atypical bHLH protein that acts in phytochrome A signal transduction[J]. Genes Dev,2000.14(18): 2377-2391.
    [110]Ni, M., Tepperman, J. M. and Quail, P. H. PIF3, a phytochrome-interacting factor necessary for normal photoinduced signal transduction, is a novel basic helix-loop-helix protein[J]. Cell,1998.95(5):657-667.
    [111]Huq, E. and Quail, P. H. PIF4, a phytochrome-interacting bHLH factor, functions as a negative regulator of phytochrome B signaling in Arabidopsis[J]. EMBO J,2002.21(10): 2441-2450.
    [112]Heisler, M. G, Atkinson, A., Bylstra, Y. H., Walsh, R. and Smyth, D. R. SPATULA, a gene that controls development of carpel margin tissues in Arabidopsis, encodes a bHLH protein[J]. Development,2001.128(7):1089-1098.
    [113]Rajani, S. and Sundaresan, V. The Arabidopsis myc/bHLH gene ALCATRAZ enables cell separation in fruit dehiscence[J]. Curr Biol,2001.11(24):1914-1922.
    [114]Nemhauser, J. L., Feldman, L. J. and Zambryski, P. C. Auxin and ETTIN in Arabidopsis gynoecium morphogenesis[J]. Development,2000.127(18):3877-3888.
    [115]Baudry, A., Heim, M. A., Dubreucq, B., Caboche, M., Weisshaar, B., et al. TT2, TT8, and TTG1 synergistically specify the expression of BANYULS and proanthocyanidin biosynthesis in Arabidopsis thaliana[J]. Plant J,2004.39(3):366-380.
    [116]Nesi, N., Debeaujon, I., Jond, C., Pelletier, G., Caboche, M., et al. The TT8 gene encodes a basic helix-loop-helix domain protein required for expression of DFR and BAN genes in Arabidopsis siliques[J]. Plant Cell,2000.12(10):1863-1878.
    [117]Payne, C. T., Zhang, F. and Lloyd, A. M. GL3 encodes a bHLH protein that regulates trichome development in arabidopsis through interaction with GL1 and TTG1[J]. Genetics,2000.156(3):1349-1362.
    [118]Sorensen, A. M., Krober, S., Unte, U. S., Huijser, P., Dekker, K., et al. The Arabidopsis ABORTED MICROSPORES (AMS) gene encodes a MYC class transcription factor[J]. Plant J,2003.33(2):413-423.
    [119]Xu, J., Yang, C., Yuan, Z., Zhang, D., Gondwe, M. Y, et al. The ABORTED MICROSPORES regulatory network is required for postmeiotic male reproductive development in Arabidopsis thaliana[J]. Plant Cell,2010.22(1):91-107.
    [120]Smolen, G A., Pawlowski, L., Wilensky, S. E. and Bender, J. Dominant alleles of the basic helix-loop-helix transcription factor ATR2 activate stress-responsive genes in Arabidopsis[J]. Genetics,2002.161(3):1235-1246.
    [121]Friedrichsen, D. M., Nemhauser, J., Muramitsu, T., Maloof, J. N., Alonso, J., et al. Three redundant brassinosteroid early response genes encode putative bHLH transcription factors required for normal growth[J]. Genetics,2002.162(3):1445-1456.
    [122]Chinnusamy, V, Ohta, M, Kanrar, S., Lee, B. H., Hong, X., et al. ICE1:a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis [J]. Genes Dev,2003. 17(8):1043-1054.
    [123]Arnaud, N., Girin, T., Sorefan, K., Fuentes, S., Wood, T. A., et al. Gibberellins control fruit patterning in Arabidopsis thaliana[J]. Genes Dev,2010.24(19):2127-2132.
    [124]de Pater, S., Pham, K., Memelink, J. and Kijne, J. RAP-1 is an Arabidopsis MYC-like R protein homologue, that binds to G-box sequence motifs[J]. Plant Mol Biol,1997.34(1): 169-174.
    [125]Loulergue, C., Lebrun. M. and Briat, J. F. Expression cloning in Fe2+ transport defective yeast of a novel maize MYC transcription factor[J]. Gene,1998.225(1-2):47-57.
    [126J Zhu, Y., Cai, X. L., Wang, Z. Y. and Hong, M. M. An interaction between a MYC protein and an EREBP protein is involved in transcriptional regulation of the rice Wx gene[J]. J Biol Chem.2003.278(48):47803-47811.
    [127]Ledent, V. and Vervoort, M. The basic helix-loop-helix protein family:comparative genomics and phylogenetic analysis[J]. Genome Res,2001.11(5):754-770.
    [128]Massari, M. E. and Murre, C. Helix-loop-helix proteins:regulators of transcription in eucaryotic organisms[J]. Mol Cell Biol,2000.20(2):429-440.
    [129]Spelt, C, Quattrocchio, F., Mol, J. N. and Koes, R. anthocyaninl of petunia encodes a basic helix-loop-helix protein that directly activates transcription of structural anthocyanin genes[J]. Plant Cell,2000.12(9):1619-1632.
    [130]Quattrocchio, F.. Verweij, W., Kroon, A., Spelt, C., Mol, J., et al. PH4 of Petunia is an R2R3 MYB protein that activates vacuolar acidification through interactions with basic-helix-loop-helix transcription factors of the anthocyanin pathway[J]. Plant Cell,2006. 18(5):1274-1291.
    [131]Groszmann, M., Paicu, T. and Smyth. D. R. Functional domains of SPATULA, a bHLH transcription factor involved in carpel and fruit development in Arabidopsis[J]. Plant J, 2008.55(1):40-52.
    [132]Gremski, K., Ditta, G. and Yanofsky, M. F. The HECATE genes regulate female reproductive tract development in Arabidopsis thaliana[J]. Development,2007.134(20): 3593-3601.
    [133]Sanders, P. M., Bui, A. Q., Weterings, K., McIntire, K. N., Hsu, Y. C., et al. Anther developmental defects in Arabidopsis thaliana male-sterile mutants[J]. Sex Plant Reprod, 1999.11(6):297-322.
    [134]Zhang, W., Sun, Y., Timofejeva, L., Chen, C., Grossniklaus, U., et al. Regulation of Arabidopsis tapetum development and function by DYSFUNCTIONAL TAPETUM1 (DYT1) encoding a putative bHLH transcription factor[J]. Development,2006.133(16): 3085-3095.
    [135]Larkin, J. C., Oppenheimer, D. G., Pollock, S. and Marks, M. D. Arabidopsis GLABROUS1 Gene Requires Downstream Sequences for Function[J]. Plant Cell,1993. 5(12):1739-1748.
    [136]Walker, A.R., Davison, P. A., Bolognesi-Winfield, A. C., James, C. M., Srinivasan, N., et al. The TRANSPARENT TESTA GLABRA1 locus, which regulates trichome differentiation and anthocyanin biosynthesis in Arabidopsis, encodes a WD40 repeat protein[J]. Plant Cell,1999.11(7):1337-1350.
    [137]Koornneef, M., Dellaert, L. W. and van der Veen, J. H. EMS-and radiation-induced mutation frequencies at individual loci in Arabidopsis thaliana (L.) Heynh[J]. Mutat Res, 1982.93(1):109-123.
    [138]Hulskamp, M., Misra, S. and Jurgens, G. Genetic dissection of trichome cell development in Arabidopsis[J]. Cell,1994.76(3):555-566.
    [139]Larkin, J. C., Walker, J. D., Bolognesi-Winfield, A. C., Gray, J. C. and Walker, A. R. Allele-specific interactions between ttg and gll during trichome development in Arabidopsis thaliana[J]. Genetics,1999.151(4):1591-1604.
    [140]Larkin, J. C., Oppenheimer, D. G. Lloyd, A. M. Paparozzi, E. T. and Marks, M. D. Roles of the GLABROUS1 and TRANSPARENT TESTA GLABRA Genes in Arabidopsis Trichome Development[J]. Plant Cell,1994.6(8):1065-1076.
    [141]罗赛男,杨国顺,石雪晖,卢向阳,徐萍。转录因子在植物抗逆性上的应用研究[J].湖南农业大学学报(自然科学版),2005(2):219-223.
    [142]刘晓月,王文生,傅彬英.植物bHLH转录因子家族的功能研究进展[J].生物技术进展,2011(6):391-397.
    [143]Kim, J. C., Lee, S. H., Cheong, Y. H., Yoo, C. M., Lee, S. I., et al. A novel cold-inducible zinc finger protein from soybean, SCOF-1, enhances cold tolerance in transgenic plants[J]. Plant J,2001.25(3):247-259.
    [144]Gilmour, S. J., Zarka, D. G, Stockinger, E. J., Salazar, M. P., Houghton, J. M., et al. Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression[J]. Plant J,1998.16(4):433-442.
    [145]Abe, H., Yamaguchi-Shinozaki, K., Urao, T., Iwasaki, T., Hosokawa, D., et al. Role of arabidopsis MYC and MYB homologs in drought-and abscisic acid-regulated gene expression[J]. Plant Cell,1997.9(10):1859-1868.
    [146]Kiribuchi, K., Jikumaru, Y, Kaku, H., Minami, E., Hasegawa, M., et al. Involvement of the basic helix-loop-helix transcription factor RERJ1 in wounding and drought stress responses in rice plants[J]. Biosci Biotech Bioch,2005.69(5):1042-1044.
    [147]Wang, Y. J., Zhang, Z. G, He, X. J., Zhou, H. L., Wen, Y X., et al. A rice transcription factor OsbHLHl is involved in cold stress response[J]. Theor Appl Genet,2003.107(8): 1402-1409.
    [148]Jiang, Y. and Deyholos, M. K. Comprehensive transcriptional profiling of NaCl-stressed Arabidopsis roots reveals novel classes of responsive genes[J]. BMC Plant Biol,2006.6: 25-.
    [149]Jiang, Y., Yang, B. and Deyholos, M. K. Functional characterization of the Arabidopsis bHLH92 transcription factor in abiotic stress[J]. Mol Genet Genomics,2009.282(5): 503-516.
    [150]Seo, J. S., Joo, J., Kim, M. J., Kim, Y. K., Nahm, B. H., et al. OsbHLH148, a basic helix-loop-helix protein, interacts with OsJAZ proteins in a jasmonate signaling pathway leading to drought tolerance in rice[J]. Plant J.2011.65(6):907-921.
    [151]Kiribuchi, K., Sugimori, M., Takeda, M, Otani, T., Okada, K., et al. RERJ1, a jasmonic acid-responsive gene from rice, encodes a basic helix-loop-helix protein[J]. Biochem Biophys Res Commun,2004.325(3):857-863.
    [152]Li, H., Sun, J., Xu, Y, Jiang, H., Wu, X., et al. The bHLH-type transcription factor AtAIB positively regulates ABA response in Arabidopsis[J]. Plant Mol Biol,2007.65(5): 655-665.
    [153]孟超敏.陆地棉逆境胁迫相关同源基因的克隆及其在非生物胁迫下的表达特性分析[D].南京农业大学.2008
    [154]Zhou, J.. Li, F., Wang, J. L., Ma, Y., Chong, K., et al. Basic helix-loop-helix transcription factor from wild rice (OrbHLH2) improves tolerance to salt-and osmotic stress in Arabidopsis[J]. J Plant Physiol,2009.166(12):1296-1306.
    [155]Wang, Y., Jiang, C. J., Li, Y. Y., Wei, C. L. and Deng, W. W. CsICE1 and CsCBFl:two transcription factors involved in cold responses in Camellia sinensis[J]. Plant Cell Rep. 2012.31(1):27-34.
    [156]Ogo, Y., Itai, R. N., Nakanishi, H., Kobayashi, T., Takahashi, M., et al. The rice bHLH protein OsIRO2 is an essential regulator of the genes involved in Fe uptake under Fe-deficient conditions[J]. Plant J,2007.51(3):366-377.
    [157]Colangelo, E. P. and Guerinot, M. L. The essential basic helix-loop-helix protein FIT1 is required for the iron deficiency response[J]. Plant Cell,2004.16(12):3400-3412.
    [158]Chalfie, M., Tu, Y, Euskirchen, G., Ward, W. W. and Prasher, D. C. Green fluorescent protein as a marker for gene expression [J]. Science,1994.263(5148):802-805.
    [159]Ross, E. J., Stone, J. M., Elowsky, C. G., Arredondo-Peter, R., Klucas, R. V., et al. Activation of the Oryza sativa non-symbiotic haemoglobin-2 promoter by the cytokinin-regulated transcription factor, ARR1[J]. J Exp Bot,2004.55(403):1721-1731.
    [160]Sakai, H., Aoyama, T. and Oka, A. Arabidopsis ARR1 and ARR2 response regulators operate as transcriptional activators [J]. Plant J,2000.24(6):703-711.
    [161]Shirsat, A., Wilford, N., Croy, R. and Boulter, D. Sequences responsible for the tissue specific promoter activity of a pea legumin gene in tobacco[J]. Mol Gen Genet,1989. 215(2):326-331.
    [162]Yanagisawa, S. and Schmidt, R. J. Diversity and similarity among recognition sequences of Dof transcription factors[J]. Plant J,1999.17(2):209-214.
    [163]Yanagisawa, S. Dofl and Dof2 transcription factors are associated with expression of multiple genes involved in carbon metabolism in maize[J]. Plant J,2000.21(3):281-288.
    [164]Teakle, G. R., Manfield, I. W-, Graham, J. F. and Gilmartin, P. M. Arabidopsis thaliana GATA factors:organisation, expression and DNA-binding characteristics [J]. Plant Mol Biol,2002.50(1):43-57.
    [165]Lam, E. and Chua, N. H. ASF-2:a factor that binds to the cauliflower mosaic virus 35S promoter and a conserved GATA motif in Cab promoters[J]. Plant Cell,1989.1(12): 1147-1156.
    [166]Gilmartin, P. M., Sarokin, L., Memelink, J. and Chua, N. H. Molecular light switches for plant genes[J]. Plant Cell,1990.2(5):369-378.
    [167]Gidoni, D., Brosio, P., Bond-Nutter, D., Bedbrook, J. and Dunsmuir, P. Novel cis-acting elements in Petunia Cab gene promoters[J]. Mol Gen Genet,1989.215(2):337-344.
    [168]Rubio-Somoza, I., Martinez, M., Abraham, Z., Diaz, I. and Carbonero, P. Ternary complex formation between HvMYBS3 and other factors involved in transcriptional control in barley seeds[J]. Plant J,2006.47(2):269-281.
    [169]Benfey, P. N. and Chua, N. H. The Cauliflower Mosaic Virus 35S Promoter: Combinatorial Regulation of Transcription in Plants[J]. Science,1990.250(4983):959-966.
    [170]Reyes, J. C., Muro-Pastor, M. I. and Florencio, F. J. The GATA family of transcription factors in Arabidopsis and rice[J]. Plant Physiol,2004.134(4):1718-1732.
    [171]Rogers, H. J., Bate, N., Combe, J., Sullivan, J., Sweetman, J. et al. Functional analysis of cis-regulatory elements within the promoter of the tobacco late pollen gene g10[J]. Plant Mol Biol,2001.45(5):577-585.
    [172]Tjaden, G, Edwards, J. W. and Coruzzi, G. M. Cis elements and trans-acting factors affecting regulation of a nonphotosynthetic light-regulated gene for chloroplast glutamine synthetase[J]. Plant Physiol,1995.108(3):1109-1117.
    [173]Yu, D., Chen, C. and Chen, Z. Evidence for an important role of WRKY DNA binding proteins in the regulation of NPR1 gene expression[J]. Plant Cell,2001.13(7):1527-1540.
    [174]Chen, W., Provart, N. J., Glazebrook, J., Katagiri, F., Chang, H. S., et al. Expression profile matrix of Arabidopsis transcription factor genes suggests their putative functions in response to environmental stresses[J]. Plant Cell,2002.14(3):559-574.
    [175]Chen, C. and Chen, Z. Potentiation of developmentally regulated plant defense response by AtWRKY18, a pathogen-induced Arabidopsis transcription factor[J]. Plant Physiol, 2002.129(2):706-716.
    [176]Maleck, K... Levine. A., Eulgem, T., Morgan, A., Schmid, J., et al. The transcriptome of Arabidopsis thaliana during systemic acquired resistance[J]. Nat Genet,2000.26(4): 403-410.
    [177]Eulgem, T.. Rushton. P. J.. Robatzek. S. and Somssich. I. E. The WRKY superfamily of plant transcription factors[J]. Trends Plant Sci,2000.5(5):199-206.
    [178]Urao, T., Yamaguchi-Shinozaki, K., Urao, S. and Shinozaki, K. An Arabidopsis myb homolog is induced by dehydration stress and its gene product binds to the conserved MYB recognition sequence[J]. Plant Cell,1993.5(11):1529-1539.
    [179]Solano, R., Nieto, C., Avila, J., Canas, L., Diaz, I., et al. Dual DNA binding specificity of a petal epidermis-specific MYB transcription factor (MYB.Ph3) from Petunia hybrida[J]. EMBO J,1995.14(8):1773-1784.
    [180]Luscher, B. and Eisenman, R. N. New light on Myc and Myb. Part Ⅱ. Myb[J]. Genes Dev, 1990.4(12B):2235-2241.
    [181]Baranowskij, N., Frohberg, C., Prat, S. and Willmitzer, L. A novel DNA binding protein with homology to Myb oncoproteins containing only one repeat can function as a transcriptional activator[J]. EMBO J.1994.13(22):5383-5392.
    [182]Agarwal, M., Hao, Y., Kapoor, A.. Dong, C. H., Fujii, H., et al. AR2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance[J]. J Biol Chem,2006.281(49):37636-37645.
    [183]Oh, S. J., Song, S. I., Kim, Y. S., Jang, H. J., Kim, S. Y., et al. Arabidopsis CBF3/DREB1A and ABF3 in transgenic rice increased tolerance to abiotic stress without stunting growth[J]. Plant Physiol,2005.138(1):341-351.
    [184]Hartmann, U., Sagasser, M., Mehrtens, F., Stracke, R. and Weisshaar, B., et al. Differential combinatorial interactions of cis-acting elements recognized by R2R3-MYB, BZIP, and BHLH factors control light-responsive and tissue-specific activation of phenylpropanoid biosynthesis genes[J]. Plant Mol Biol,2005.57(2):155-171.
    [185]Chinnusamy, V., Schumaker, K. and Zhu, J. K. Molecular genetic perspectives on cross-talk and specificity in abiotic stress signalling in plants[J]. J Exp Bot,2004.55(395): 225-236.
    [186]Lee, B. H., Henderson, D. A. and Zhu, J. K. The Arabidopsis cold-responsive transcriptome and its regulation by ICE1 [J]. Plant Cell,2005.17(11):3155-3175.
    [187]Filichkin, S. A., Leonard, J. M., Monteros, A., Liu, P. P. and Nonogaki, H. A novel endo-beta-mannanase gene in tomato LeMAN5 is associated with anther and pollen development[J]. Plant Physiol,2004.134(3):1080-1087.
    [188]Bate, N. and Twell, D. Functional architecture of a late pollen promoter:pollen-specific transcription is developmentally regulated by multiple stage-specific and co-dependent activator elements[J]. Plant Mol Biol,1998.37(5):859-869.
    [189]Elmayan, T. and Tepfer, M. Evaluation in tobacco of the organ specificity and strength of the roID promoter, domain A of the 35S promoter and the 35S2 promoter[J]. Transgenic Res,1995.4(6):388-396.
    [190]Zhang, Z. L., Xie, Z., Zou, X., Casaretto, J., Ho, T. H., et al. A rice WRKY gene encodes a transcriptional repressor of the gibberellin signaling pathway in aleurone cells[J]. Plant Physiol,2004.134(4):1500-1513.
    [191]Xie, Z., Zhang, Z. L., Zou, X., Huang, J., Ruas, P., et al. Annotations and functional analyses of the rice WRKY gene superfamily reveal positive and negative regulators of abscisic acid signaling in aleurone cells[J]. Plant Physiol,2005.137(1):176-189.
    [192]Eulgem, T., Rushton, P. J., Schmelzer, E., Hahlbrock, K. and Somssich, I. E. Early nuclear events in plant defence signalling:rapid gene activation by WRKY transcription factors[J]. EMBO J,1999.18(17):4689-4699.
    [193]Stalberg, K., Ellerstom, M., Ezcurra, I., Ablov, S. and Rask, L. Disruption of an overlapping E-box/ABRE motif abolished high transcription of the napA storage-protein promoter in transgenic Brassica napus seeds[J]. Planta,1996.199(4):515-519.
    [194]Mohanty, B., Krishnan, S. P., Swarup, S. and Bajic, V. B. Detection and preliminary analysis of motifs in promoters of anaerobically induced genes of different plant species[J]. Ann Bot,2005.96(4):669-681.
    [195]Kapoor, S. and Sugiura, M. Identification of two essential sequence elements in the nonconsensus type Ⅱ PatpB-290 plastid promoter by using plastid transcription extracts from cultured tobacco BY-2 cells[J]. Plant Cell,1999.11(9):1799-1810.
    [196]Gowik, U., Burscheidt, J., Akyildiz, M., Schlue, U., Koczor, M., et al. cis-Regulatory elements for mesophyll-specific gene expression in the C4 plant Flaveria trinervia, the promoter of the C4 phosphoenolpyruvate carboxylase gene[J]. Plant Cell,2004.16(5): 1077-1090.
    [197]Haralampidis, K., Milioni, D., Rigas, S. and Hatzopoulos, P. Combinatorial interaction of cis elements specifies the expression of the Arabidopsis AtHsp90-1 gene[J]. Plant Physiol, 2002.129(3):1138-1149.
    [198]Wenkel, S., Turck, F., Singer, K., Gissot, L., Le Gourrierec, J., et al. CONSTANS and the CCAAT box binding complex share a functionally important domain and interact to regulate flowering of Arabidopsis[J]. Plant Cell,2006.18(11):2971-2984.
    [199]Rieping, M. and Schoffl, F. Synergistic effect of upstream sequences, CCAAT box elements, and HSE sequences for enhanced expression of chimaeric heat shock genes in transgenic tobacco[J]. Mol Gen Genet,1992.231(2):226-232.
    [200]Breeden, L. and Nasmyth, K. Cell cycle control of the yeast HO gene:cis-and trans-acting regulators[J]. Cell,1987.48(3):389-397.
    [201]Nasmyth. K.. Adolf. G. Lydall. D. and Seddon. A. The identification of a second cell cycle control on the HO promoter in yeast:cell cycle regulation of SW15 nuclear entry[J]. Cell,1990.62(4):631-647.
    [202]Kropat, J., Tottey, S., Birkenbihl. R. P.. Depege, N.. Huijser, P., et al., A regulator of nutritional copper signaling in Chlamydomonas is an SBP domain protein that recognizes the GTAC core of copper response element[J]. Proc Natl Acad Sci U S A,2005.102(51): 18730-18735.
    [203]Quinn, J. M., Barraco, P., Eriksson, M. and Merchant, S. Coordinate copper-and oxygen-responsive Cyc6 and Cpx1 expression in Chlamydomonas is mediated by the same element[J]. J Biol Chem,2000.275(9):6080-6089.
    [204]Quinn, J. M., Eriksson. M.. Moseley, J. L. and Merchant, S. Oxygen deficiency responsive gene expression in Chlamydomonas reinhardtii through a copper-sensing signal transduction pathway[J]. Plant Physiol,2002.128(2):463-471.
    [205]Quinn, J. M. and Merchant, S. Two copper-responsive elements associated with the Chlamydomonas Cyc6 gene function as targets for transcriptional activators [J]. Plant Cell,1995.7(5):623-628.
    [206]Buchel, A. S., Brederode, F. T.. Bol, J. F. and Linthorst. H. J. Mutation of GT-1 binding sites in the Pr-IA promoter influences the level of inducible gene expression in vivo[J]. Plant Mol Biol,1999.40(3):387-396.
    [207]Zhou, D. X., Regulatory mechanism of plant gene transcription by GT-elements and GT-factors[J]. Trends Plant Sci,1999.4(6):210-214.
    [208]Villain, P., Mache, R. and Zhou, D. X. The mechanism of GT element-mediated cell type-specific transcriptional control[J]. J Biol Chem,1996.271(51):32593-32598.
    [209]Park, H. C., Kim, M. L., Kang, Y. H., Jeon, J. M., Yoo, J. H., et al. Pathogen-and NaCl-induced expression of the SCaM-4 promoter is mediated in part by a GT-1 box that interacts with a GT-1-like transcription factor[J]. Plant Physiol,2004.135(4):2150-2161.
    [210]Matarasso, N., Schuster, S. and Avni, A. A novel plant cysteine protease has a dual function as a regulator of 1-aminocyclopropane-1-carboxylic Acid synthase gene expression[J]. Plant Cell,2005.17(4):1205-1216.
    [211]Kagaya, Y., Ohmiya, K. and Hattori, T. RAV1, a novel DNA-binding protein, binds to bipartite recognition sequence through two distinct DNA-binding domains uniquely found in higher plants[J]. Nucleic Acids Res,1999.27(2):470-478.
    [212]Lessard, P. A., Allen, R. D., Bernier, F., Crispino, J. D., Fujiwara, T., et al. Multiple nuclear factors interact with upstream sequences of differentially regulated beta-conglycinin genes[J]. Plant Mol Biol,1991.16(3):397-413.
    [213]Allen, R. D., Bernier, F., Lessard, P. A. and Beachy, R. N. Nuclear factors interact with a soybean beta-conglycinin enhancer[J]. Plant Cell,1989.1(6):623-631.
    [214]Ishiguro, S. and Nakamura, K. Characterization of a cDNA encoding a novel DNA-binding protein, SPF1, that recognizes SP8 sequences in the 5' upstream regions of genes coding for sporamin and beta-amylase from sweet potato[J]. Mol Gen Genet,1994. 244(6):563-571.
    [215]Ishiguro, S. and Nakamura, K. The nuclear factor SP8BF binds to the 5'-upstream regions of three different genes coding for major proteins of sweet potato tuberous roots[J]. Plant Mol Biol,1992.18(1):97-108.
    [216]Grierson, C., Du JS., de Torres Zabala, M., Beggs, K., Smith, C., et al. Separate cis sequences and trans factors direct metabolic and developmental regulation of a potato tuber storage protein gene[J]. Plant J,1994.5(6):815-826.
    [217]Zhu, Q., Ordiz, M. I., Dabi, T., Beachy, R. N. and Lamb, C. Rice TATA binding protein interacts functionally with transcription factor ⅡB and the RF2a bZIP transcriptional activator in an enhanced plant in vitro transcription system[J]. Plant Cell,2002.14(4): 795-803.
    [218]Geffers, R., Sell, S., Cerff, R. and Hehl, R. The TATA box and a Myb binding site are essential for anaerobic expression of a maize GapC4 minimal promoter in tobacco[J]. Biochim Biophys Acta,2001.1521(1-3):120-125.
    [219]Yukawa, Y., Sugita, M., Choisne, N., Small, I. and Sugiura, M. The TATA motif, the CAA motif and the poly(T) transcription termination motif are all important for transcription re-initiation on plant tRNA genes[J]. Plant J,2000.22(5):439-447.
    [220]Sun, F., Zhang, W., Xiong, G., Yan, M., Qian, Q., et al. Identification and functional analysis of the MOC1 interacting protein 1[J]. J Genet Genomics,2010.37(1):69-77.
    [221]Li, J. J. and Herskowitz, I. Isolation of ORC6, a component of the yeast origin recognition complex by a one-hybrid system[J]. Science,1993.262(5141):1870-1874.
    [222]Park, H. C., Kim, M. L., Kang, Y. H., Jeon, J. M., Yoo, J. H., et al. Pathogen- and NaCl-induced expression of the SCaM-4 promoter is mediated in part by a GT-1 box that interacts with a GT-1-like transcription factor[J]. Plant Physiol,2004.135(4):2150-2161.
    [223]Kiyosue, T., Yamaguchi-Shinozaki, K. and Shinozaki, K. Cloning of cDNAs for genes that are early-responsive to dehydration stress (ERDs) in Arabidopsis thaliana L. identification of three ERDs as HSP cognate genes[J]. Plant Mol Biol,1994.25(5):791-798.
    [224]Shanahan, H. P., Garcia, M. A., Jones, S. and Thornton, J. M. Identifying DNA-binding proteins using structural motifs and the electrostatic potential[J]. Nucleic Acids Res, 2004.32(16):4732-4741.
    [225]Ichimura, K., Mizoguchi, T., Irie, K., Morris, P., Giraudat, J., et al. Isolation of ATMEKK1 (a MAP kinase kinase kinase)-interacting proteins and analysis of a MAP kinase cascade in Arabidopsis[J]. Biochem Biophys Res Commun,1998.253(2):532-543.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700