早孕期人蜕膜基质细胞趋化因子CCL2表达调控及其在母—胎界面Th2型偏移中的调节作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
趋化因子是一类小分子的肝素结合蛋白,分子量通常为8-14kDa,趋化因子和其含有七次跨膜结构的G蛋白偶联受体结合,在病理生理反应中发挥重要的作用。四年前我们率先开展了母胎界面趋化因子调控机制的研究,发现趋化因子和趋化因子受体在母胎免疫调节中发挥重要的作用。我们发现,早孕滋养细胞能分泌CXCR4的配体SDF-1和CXCR6配体的CXCL16。CXCR4/SDF-1相互作用,能募集CD56~(bright)CD16~-NK到达蜕膜局部。CXCR6/CXCL16结合,能够趋化外周血T细胞、γδT和单核细胞到达母胎界面,并且促进这些蜕膜局部免疫活性细胞的黏附。因此,在母—胎界面,趋化因子是蜕膜免疫活性细胞和滋养细胞相互作用和对话的媒介,而且不同的趋化因子受体/配体对作用于不同的免疫活性细胞,各自发挥着不同的作用,共同参与母胎免疫调节。CCL2是CC类趋化因子中最早被鉴定的趋化因子之一,CCL2和受体CCR2结合后,在炎症、动脉粥样硬化、肿瘤等过程中发挥重要的作用。CCL2还能诱导Th2型免疫应答。本研究中筛选了人早孕蜕膜组织和蜕膜基质细胞18种趋化因子受体和相关配体的表达,发现蜕膜组织和蜕膜基质细胞高水平转录CCL2和CCR2。我们以此为切入点,展开了CCR2/CCL2在母—胎界面生物学功能的研究,以阐明母胎界面蜕膜基质细胞和蜕膜免疫活性细胞间相互对话的分子和机制,进而揭示趋化因子在母—胎界面免疫调节网络中的作用。
     1.人早孕蜕膜和蜕膜基质细胞趋化因子受体及配体的转录特征
     探讨人早孕蜕膜及蜕膜基质细胞趋化因子受体及相应配体的表达,及其在母—胎界面的调节作用。采用半定量RT-PCR分析正常早孕人蜕膜组织和原代培养的蜕膜基质细胞18种趋化因子受体及其相应配体mRNA的表达。结果显示,人早孕蜕膜组织高表达CCR2、CCR5、CCR10;中等强度表达CCR3、CCR6、CCR9、CXCR1、CXCR4,CCR1、CCR4、CCR7、CCR9、CXCR3、CXCR5-6仅在部分蜕膜组织中表达;不表达CXCR2、XCR1、CX3CR1。蜕膜基质细胞也高表达CCR2、CCR5、CCR10;中等强度表达CCR7、CCR9;低表达CCR1、CCR3、CCR4、CCR6、CXCR6,XCR1、CX3CR1;不表达CXCR1-CXCR5。同时蜕膜组织和蜕膜基质细胞均高水平转录CCR2配体CCL2(MCP-1),CCL13(MCP-4)和CCL28(CCR10配体),中等强度转录CCL7(MCP-3,CCR2配体),不转录CCL27(CCR10配体)。
     2.趋化因子CCL2及其受体CCR2在早—孕期母胎界面的表达
     分析人早孕蜕膜及蜕膜基质细胞趋化因子受体CCR2及其配体CCL2在人早孕蜕膜组织及蜕膜基质细胞的表达和分泌,以探讨CCR2/CCL2在母—胎界面的生物学作用。收集早孕期蜕膜组织,分离蜕膜基质细胞,免疫化学方法分析正常人早孕蜕膜组织和培养的人蜕膜基质细胞CCR2/CCL2表达;ELISA检测培养的蜕膜基质细胞上清中CCL2的分泌;用流式细胞术分析蜕膜基质细胞表面CCR2和细胞内CCL2的表达;流式细胞术检测蜕膜免疫活性细胞表面CCR2的表达。结果显示,原代培养DSC的纯度为98.25%±1.74%;人早孕蜕膜组织和蜕膜基质细胞均高水平转录和翻译CCR2和CCL2,10例样本中CCR2的阳性率为84.65%±4.57%,CCL2的表达率为53.11±6.03%;蜕膜基质细胞分泌高水平的CCL2,达21.72±2.34ng/ml,其分泌呈时间依赖性;约34%的蜕膜CD56~+CD16~-CD3~-NK、50%CD4~+T和66%左右的CD14~+单核细胞表达CCR2。
     3.CCL2对人早孕蜕膜基质细胞自分泌调控作用
     应用MTT法分析外源CCL2对蜕膜基质细胞促增殖效应;给予ERK/MAPK抑制剂U0126和CCR2受体抑制剂RS102895不仅拮抗外源性CCL2的促增殖效应,还能抑制蜕膜基质细胞CCL2的分泌;Th2型细胞因子IL-4和Th1型细胞因子IFN-γ能诱导蜕膜基质细胞分泌CCL2,IL-4和IFN-γ对蜕膜基质细胞分泌没有协同作用,IL-4和TNF-α却显示出很强的协同作用;不同浓度的雌激素、孕激素和人绒毛膜促性腺激素能增加蜕膜基质细胞CCL2的转录,从而诱导CCL2的分泌。本研究表明,人早孕蜕膜基质细胞能通过ERK/MAPK途径自分泌CCL2,Th2和Th1型细胞因子能相互作用促进蜕膜基质细胞分泌CCL2,雌激素、孕激素和人绒毛膜促性腺激素可上调蜕膜基质细胞CCL2的分泌。
     4.蜕膜基质细胞通过分泌CCL2参与维持母胎界面Th2型免疫偏移
     经不同方法处理DIC后,用FCM法检测DIC的凋亡;FCM分析DIC细胞内Th1型和Th2型细胞因子的表达;CBA法检测DIC Th1型和Th2型细胞因子的分泌;应用Real time PCR分析DIC转录因子GATA-3和T-bet的表达。研究结果表明,rhCCL2和蜕膜基质细胞培养上清能促进DIC细胞Th2型细胞因子-IL-4和IL-10的表达和分泌,降调节Th1型细胞因子-IFN-γ和TNF-α的表达和分泌,从而诱导母胎界面向Th2型偏移。CCL2还能促进DIC细胞内GATA3转录,抑制T-bet的转录,从而介导DIC Th2细胞因子优势表达和分泌。
Research Background Chemokines, chemotactic cytokines, are an array of small molecules of heparin-binding proteins that direct the trafficking of circulating leukocytes into the sites of inflammation or injury. The chemokines and their receptors are now involved in pathogenesis of a variety of diseases. To date, the materno-fetal interface has been found to produce a lot of chemokines, and express the corresponding receptors. Our previous studies have demonstrated that human first-trimester trophoblast cells can produce SDF-1 and CXCL16, and express their receptors CXCR4 and CXCR6. Moreover, decidual CD56~(bright) CD16~- NK cells expressed CXCR4, andγδT cells expressed CXCR6 highly. The first-trimester human trophoblast cells has been able to induce proliferation and invasion of themselves in an autocrine manner, and recruit the CD56~(bright) CD16~- NK cells andγδT cells homing into decidua by expressing SDF-1/CXCR4 and CXCR6/CXCL16, respectively.
     During pregnancy, the decidual tissue, the maternal component at the interface, is composed predominantly of decidual stromal cells (DSC). Not only is the DSC classically considered to be nutritious to embryo because of their high glycogen content, but also involved in a series of immune regulations such as production of cytokines, and antigen phagocytosis and presentation. A large and specific population of immune cells infiltrate constitutively into the decidua. Therefore, the decidua is in closest contact with the fetal-derived trophoblasts and decidual lymphocytes, and thought to be a place where immune regulations between mother and fetus take place. So we proposed that the decidua may be involved in the materno-fetal tolerance by secreting chemokines and expressing their corresponding receptors. MCP-1, monocyte chemotaxis protein-1, CCL2, is a CC chemokine that attracts monocytes, memory T lymphocytes and natural killer cells in vitro by way of binding its receptor CCR2. Lately, CCL2 has been demonstrated to be involved in Th2 polarization, and a successful pregnancy is a Th2 phenomenon. Here we found that human first trimester decidua and decidual stromal cells expressed high levels of CCR2 and CCL2. Therefore, CCL2 may play a role in Th2 phenomenon at materno-fetal interface.
     Objectives Based on the research above, biological functions of human decidual stromal cells were explored in secretion of CCL2 and expression of CCR2, which might be involved in autocrine regulation on the DSC functions, and paracrine regulation on the Th2 bias at human materno-fetal interface.
     1. Transcriptional characteristics of chemokine receptors and the correspondent ligands in decidua and decidual stromal cell of human first trimester gestation
     Methods The deciduas were from women who had undergone an artificial abortion at 5-11 weeks of normal gestation for non medical cause. The total RNA was extracted by using the TRIzol reagent, from decidua or the Percoll-gradient-isolated DSC. The expression of chemokine receptors in the decidua and DSC were investigated by way of semi-quantitative RT-PCR.
     Results The chemokine receptors, CCR2, CCR5, CCR10, were highly expressed in human decidua and DSC, while CCR3, CCR6, CCR8-9, CXCR1, and CXCR4 were moderately expressed in human decidua. The chemokine receptors CCR1, CCR4, CCR7, CCR9, CXCR3, and CXCR5-6 were expressed only in the partly decidua, while no CXCR2, XCR1, and CX_3CR1mRNA were found in any decidua tissue. The freshly isolated DSC expressed moderately CCR7, CCR9, CCR1, CCR3, CCR4, CCR6, CXCR6, XCR, and CX3CR1. The CCL2 and CCL13, ligands of CCR2, and CCL28, that of CCR10, were expressed highly in the decidua and DSC.
     Conclusion The chemokine receptors CCR2 and CCR10 that were expressed by decidua and DSC may play an important role in the cell constitution at materno-fetal interface in human first trimester pregnancy.
     2. Expression of chemokine CCL2 and its receptor CCR2 in human decidua and decidual stromal cells in the first trimester pregnancy
     Methods The expressions of CCR2 and its ligand CCL2 in decidua and DSC were determined by way of semi-quantitative RT-PCR, immunostaining, flow cytometry, respectively. The secretion of CCL2 was detected by ELISA.
     Results The results showed that CCR2 and its ligand CCL2 were highly expressed in decidua and DSC. The DSC could secret CCL2 in a time-dependent manner, and the highest concentration was 21.72±2.34ng/ml. About 34% CD56~+CD16~-CD3~- decidua NK, 50%CD4~+ T cells and 66% CD14~+ monocytes expressed CCR2.
     Conclusion The CCR2 and CCL2 were expressed in decidua and DSC of human first trimester gestation, which might play an important role in the decidual immune cell constitution, and the cross-talking between decidua stromal cells and decidua immunocompetent cells in human early pregnancy.
     3. The regulation of CCL2/MCP-1 secretion and autocrine regulation on human decidual stromal cell of the first-trimester gestation
     Methods The viability of DSC was analyzed with MTT. The primary DSCs were treated in vitro by the pregnancy-associated hormones, E2, progesterone and hCG, or Th1 and Th2 cytokines. The CCL2 expression and secretion was determined respectively by real time PCR and ELISA.
     Results All the pregnancy-associated hormones, E2, progesterone and hCG, did promote CCL2 transcription and secretion by DSC. U0126, an inhibitor of MAPK, and RS 102895, antagonist of CCR2, inhibited CCL2 secretion by DSC. Th2 cytokine, IL-4, and Th1 cytokine, IFN-γ, also increased CCL2 secretion. IL-4 and TNF-αhad synergistic effect on CCL2 production by DSC, but IL-4 and IFN-γdid not. The rhCCL2 could enhance the proliferation and viability of human DSC of the first-trimester gestation.
     Conclusion CCL2 may stimulate human DSC viability in autocrine manners. And Th1/Th2 cytokines, pregnancy-associated hormones could regulate CCL2 secretion of DSC
     4. Decidual stromal cells maintained Th2 predominance at materno-fetal interface through producing and secreting CCL2
     Methods DIC were treated by different stimuli, including rhCCL2, rhCCL2+CCL2 antibodies, the DSC-derived CM, CM+CCL2 antibodies, CCL2+U0126 and CpG used as positive control. Then the apoptosis and proliferation of DIC was detected respectively by Annexin V/FITC and PCNA with FCM, and the secretion and intracellular expression of Th1 cytokines, TNF-αand IFN-γ, and Th2 cytokines, IL-4 and IL-10, were determined by CBA and FCM, respectively. Transcription of GATA-3 and T-bet in DIC was evaluated by Real time PCR.
     Results The results showed that rhCCL2 and the DSC-derived CM could stimulate DIC proliferation and inhibit DIC apoptosis. The rhCCL2 and the DSC-derived CM promote Th2 cytokine, IL-4 and IL-10 production, and inhibit secretion of Th1 cytokine, TNF-αand IFN-γ. The CCL2 and CM could also increase GATA-3 transcription and suppress T-bet transcription in DIC.
     Conclusion Decidual stromal cells can secret CCL2 that in turn increases GATA-3 transcriptions of DIC, which leads to Th2 polarization at materno-fetal interface.
引文
[1] Rossi D, Zlotnik A. The biology of chemokines and their receptors[J]. Annu Rev Immunol, 2000; 18: 217-42.
    [2] Israel F. Charo, Richard M. Ransohoff.The Many Roles of Chemokines and Chemokine Receptors in Inflammation[J].. N Engl J Med, 2006,354(6): 610-621
    [3] Baggiolini M, Dewald B, Moser B. Human chemokines: an update[J]. Annu Rev Immunol, 1997;15: 675-705.
    [4] Balkwill F. Cancer and the chemokine network[J]. Nat Rev Cancer. 2004,4(7): 540-50
    [5] Tran PB,Miller RJ. HIV-1, chemokines and neurogenesis[J]. Neurotox Res, 2005, 8(1-2):149-58
    [6] Lusso P. HIV and the chemokine system: 10 years later[J]. EMBO J. 2006, 25(3):447-56
    [7] Benelli R, Lorusso G, Albini A, Noonan DM. Cytokines and chemokines as regulators of angiogenesis in health and disease[J]. Curr Pharm Des. 2006,12(24):3101-15.
    [8] Jiang, Y., Valente, A. J., Williamson, M. J., Zhang, L., and Graves, D. T. Post-translational modification of a monocyte-specific chemoattractant synthesized by glioma, osteosarcoma, and vascular smooth muscle cells[J].J. Biol. Chem. 1990; 265:18318-18321
    [9] Colotta, F., Borre, A., Wang, J. M., Tattanelli, M., Maddalena, F., Polentarutti, N., Peri, G., and Mantovani, A Expression of a monocyte chemotactic cytokine by human mononuclear phagocytes[J]. J. Immunol. 1992; 148, 760-765
    [10] Yoshimura, T., Yuhki, N., Moore, S. K., Appella, E., Lerman, M. I., and Leonard, E. J. Human monocyte chemoattractant protein-1(MCP-1). Full-length cDNA cloning, expression in mitogen-stimulated blood mononuclear leukocytes, and vequence similarity to mouse competence gene JE[J]. FEBS Lett. 1989; 244:v87-493
    [11] Hall DJ, Brownlee C, Stiles CD. Interleukin-1 is a potent regulator of JE and KC gene expression in quiescent BALB/c fibroblasts[J]. J Cell Physiol, 1989; 141(1): 154-9
    [12] Rollins, B. J., Yoshimura, T., Leonard, E. J., and Pober, J. S. Cytokine-activated human endothelial cells synthesize and secrete a monocyte chemoattractant, MCP-1/JE[J]. Am. J. Pathol, 1990; 136, 1229-1233
    [13] Shyy, Y. J., Li, Y. S., and Kolattukudy, P. E. Activation of MCP-1 gene expression is mediated through multiple signaling pathways[J]. Biochem. Biophys. Res.Commun, 1993; 192, 693-699
    [14] Rollins, B. J., Morrison, E. D., and Stiles, C. D. Cloning and expression of JE, a gene inducible by platelet-derived growth factor and whose product has cytokine-like properties[J]. Proc. Natl. Acad. Sci, 1988, 85:738-3742
    [15] Sica, A., Wang, J. M., Colotta, F., Dejana, E., Mantovani, A., Oppenheim, J. J.,Larsen, C. G., Zachariae, C. O., and Matsushima, K. Monocyte chemotactic and activating factor gene expression induced in endothelial cells by IL-1 and tumor necrosis factor[J]. J. Immunol. 1990.144, 3034-3038
    [16] Strieter, R. M., Wiggins, R., Phan, S. H., Wharram, B. L., Showell, H. J., Remick, D. G., Chensue, S. W., and Kunkel, S. L. Monocyte chemotactic protein gene expression by cytokine-treated human fibroblasts and endothelial cells. 1989 Biochem[J]. Biophys.Res. Commun. 1989,162: 694-700
    [17] Daly C., ROLLINS B.J. Monocyte Chemoattractant Protein-1(CCL2) in Inflammatory Disease and Adaptive Immunity: Therapeutic Opportunities and Controversies[J]. Microcirculation, 2003,10:247-257
    [18] Luther, S.A. & Cyster, J.G. Chemokines as regulators of T cell differentiation[J]. Nat. Immunol, 2, 102-107
    [19] Ringe J, Strassburg S, Neumann K, Endres M, Notter M, Burmester GR, Kaps C, Sittinger M. Towards in situ tissue repair: Human mesenchymal stem cells express chemokine receptors CXCR1, CXCR2 and CCR2, and migrate upon stimulation with CXCL8 but not CCL2. J Cell Biochem[J]. 2007 Feb 12;[Epub ahead of print]
    [20] Sun JH, Yang B, Donnelly DF, Ma C,LaMotte RH. MCP-1 enhances excitability of nociceptive neurons in chronically compressed dorsal root ganglia[J]. J Neurophysiol. 2006 Nov; 96(5):2189-99. Epub 2006 Jun 14.
    [21] Michael W. Smith, Mary Carrington, Cheryl Winkler, Deborah Lomb, Michael Dean, Gavin Huttley, Stephen O'brien. CCR2 chemokine receptor and AIDS progression[J].Nature Medicine, 1997, 3:1052-1053
    [22] G. Paolo Rizzardi, Renate A. Morawetz, Elisa Vicenzi, Silvia Ghezzi, Guido Poli, Adriano Lazzarin, Giuseppe Pantaleo. CCR2 Polymorphism and HIV Disease[J]. Nature Medicine 1998; 4:252-253
    [23] Fleury S, Li J, Simeoni E, Fiorini E, von Segesser LK, Kappenberger L, Vassalli G. Gene transfer of RANTES and MCP-1 chemokine antagonists prolongs cardiac allograft survival[J]. Gene Ther. 2006; 13(14): 1104-9
    [24] Landin Boring, Jennifa Gosling, Michael Cleary, Israel F. Charo Decreased lesion formation in CCR2-/-mice reveals a role for chemokines in the initiation of atherosclerosis[J]. Nature, 1998,394:894-897
    [25] Negus RPM, Stamps GWH, Relf MG, et al. The detection and localization of monocyte chemoattractant protein(MCP-1) in human ovarian cancer[J]. J Clin Invest. 1995; 95:2391-2396.
    [26] Craig M J, Loberg RD. CCL2(Monocyte Chemoattractant Protein-1) in cancer bone metastases[J]. Cancer Metastasis Rev. 2006 Dec;25(4):611-9.
    [27] Conti I, Rollins BJ. CCL2(monocyte chemoattractant protein-1) and cancer[J]. Semin Cancer Biol. 2004 Jun; 14(3): 149-54.
    [28] Gu L, Tseng S, Homer RM, Tam C, Loda M, Rollins BJ.(2000). Control of TH2 polarization by the chemokine monocyte chemoattractant protein-1[J]. Nature. 404:407-411.
    [29] Boring L, Gosling J, Chensue SW, Kunkel SL, Farese RV Jr, Broxmeyer HE, Charo IF.(1997). Impaired monocyte migration and reduced type 1(Th1) cytokine responses in C-C chemokine receptor 2 knockout mice[J]. J Clin Invest 100:2552-2561.
    [30] Sato N, Ahuja SK, Quinones M, Kostecki V, Reddick RL, Melby PC, Kuziel WA, Ahuja SS. CC chemokine receptor(CCR)2 is required for langerhans cell migration and localization of T helper cell type 1(Th1)-inducing dendritic cells: absence of CCR2 shifts the Leishmania major-resistant phenotype to a susceptible state dominated by Th2 cytokines,B cell outgrowth, and sustained neutrophilic inflammation[J]. 2000, J Exp Med 192:205-218.
    [31] Huang DR, Wang J, Kivisakk P, Rollins B J, Ransohoff RM. Absence of monocyte chemoattractant protein 1 in mice leads to decreased local macrophage recruitment and antigen-specific T helper cell type 1 immune response in experimental autoimmune encephalomyelitis[J].J Exp Med, 2001.193:713-726.
    [32] Roby KF, Deb S, Gibori G, Szpirer C, Levan G, Kwok SC, Soares MJ. Decidual prolactin-related protein. Identification, molecular cloning, and characterization[J]. J Biol Chem. 1993,268(5):3136-42
    [33] Bulmer J, Morrison L, Longfellow M, et al. Granulated lymphocytes in human endometrium: histochemical and immunohistochemical studies[J]. Hum Reprod, 1991, 6(6): 791-798.
    [34] King A, Wellings V, Gardner L, et al. Immunocytochemical characterization of the unusual large granular lymphocytes in human endometrium throughout the menstrual cycle[J]. Hum Immunol, 1989, 24(2): 195-205.
    [35] Handwerger S, Richards R, Markoff E. Autocrine/paracrine regulation of prolactin release from human decidual cells[J]. Annals of the New York Academy of Sciences. 1991; 622:111-119.
    [36] Zhu H, Leung PC, MacCalman CD. Expression of ADAMTS-5/implantin in human decidual stromal cells: regulatory effects of cytokines[J]. Hum Reprod. 2007,22(1):63-74.
    [37] Ng YH, Zhu H, Pallen CJ, Leung PC, MacCalman CD. Differential effects of interleukin-1beta and transforming growth factor-betal on the expression of the inflammation-associated protein, ADAMTS-1, in human decidual stromal cells in vitro[J]. Hum Reprod. 2006,21(8): 1990-9.
    [38] Chou C.S., Tai C.J., MacCalman C. D. and Leung P. C. K..Dose-Dependent Effects of Gonadotropin Releasing Hormone on Matrix Metalloproteinase(MMP)-2, and MMP-9 and Tissue Specific Inhibitor of Metalloproteinases-1 Messenger Ribonucleic Acid Levels in Human Decidual Stromal Cells in Vitro[J]. J Clin Endo & Met. 88:2 680-688
    [39] Gellersen B., Briese J., Oberndorfer M., etc.Expression of the Metastasis Suppressor KAI1 in Decidual Cells at the Human Maternal-Fetal Interface Regulation and Functional Implications.American Journal of Pathology[J]. 2007,170: 126-139
    [40] Olivares EG, Montes MJ, Oliver C, Galindo JA, Ruiz C. Cultured human decidual stromal cells express B7-1(CD80) and B7-2(CD86) and stimulate allogeneic T cells[J]. Biol Reprod. 1997,57(3):609-15
    [41] Ruiz C, Reyes-Botella C, Garcia-Martinez O, Montes MJ. Modulation of antigenic phenotype by IL-1beta, IFNgamma and TGFbeta on cultured human decidual stromal cells[J]. Biosci Rep. 2004,24(1):55-62.
    [42] Wu X, Li DJ, Yuan MM, et al.The expression of CXCR4/CXCL12 in firsttrimester human trophoblast cells[J]. Biol Reprod. 2004, 70(6): 1877-1885
    [43] Wu X, Jin LP, Yuan MM, Li DJ et al. Human first-trimester trophoblast cells recruit CD56(bright)CD16(-)NK cells into decidua by way of expressing and secreting of CXCL12/stromal cell-derived factor 1[J]. J. Immunol, 2005,(1): 61-68
    [43] Huang Y, Zhu XY, Du MR,Li DJ et al.Chemokine CXCL16, a scavenger receptor, induces proliferation and invasion of first-trimester human trophoblast cells in an autocrine manner[J]. Human reproduction. 2006, 1(4): 1083-1091
    [44] 黄煜,李大金.人早孕蜕膜基质细胞和免疫活性细胞趋化因子受体CXCR6的表达[J].中华微生物和免疫学杂志.2006,26(4):303-307
    [45] Maki ishii, Satoshi Hayakawa, Miki-karasaki-suzuki, et al. Expression of functional chemokine receptors of human placental cells[J]. A.J.R.I 2000; 44: 365-373
    [46] Takashi Nakayama, Kunio Hieshima, Dai Izawa, etal. Cutting Edge: Profile of Chemokine Receptor Expression on Human Plasma Cells Accounts for Their Efficient Recruitment to Target Tissues[J]. J. Immunol. 2003; 170: 1136-1140.
    [47] Satoshi Kawaguchi, Toshihiko Yamashita, Gen-ichiro Katahira, etal. Chemokine Profile of Hemiated Intervertebral Discs Infiltrated With Monocytes and Macrophages[J]. SPINE, 2002, 27(14): 1511-1516
    [48] Garcia-Pacheco JM, Oliver C,Kimatrai M, etal. Human deciduals stromal cells express CD34 and STRO-1 and are related to bone marrow stromal precursors[J]. Molecular Human Reproduction. 2001, 7(12): 1151-1157
    [49] Nagle, R. B.: Intermediate filaments: a review of the basic biology[J]. Am. J. Surg. Path., 12(suppl. 1): 4, 1988.
    [50] Moll R, Franke WW, Schiller DL, et al. The catalog of human cytokeratins: patterns of expression in normal epithelia, tumors and cultured cells[J]. Cell, 1982, 31(11): 11-24
    [51] Yoshimura T, Matsushima K, Tanaka S, Robinson EA, Appella E, Oppenheim JJ, and Leonard EJ. Purification of a human monocyte-derived neutrophil chemotactic factor that has peptide sequence similarity to other host defense cytokines[J].Proc Natl Acad Sci USA 84: 9233-9237, 1987.
    [52] Harrison JK, Jiang Y, Chen S, Xia Y, Maciejewski D, McNamara RK, Streit WJ, Salafranca MN, Adhikari S, Thompson DA, Botti P, Bacon KB, and Feng L. Role for neuronally derived fractalkine in mediating interactions between neurons and CX3CR1-expressing microglia[J]. Proc Natl Acad Sci USA 95: 10896-10901, 1998.
    [53] Drake PM, Red-Horse K, Moser B.Fisher SJ, Chemokine expression and function at the human matemal-fetal interface[J].Rev Endocri Metabo Disorders, 2002; 3:159-65
    [54] Rollins BJ. MCP-1, -2, -3, -4, -5, in cytokine reference. In: Oppenheim JJ, Feldman S, Durum S, Hirano T, Vilcek J, Nicola N, editors. London: Academic Press; 2000. p. 1145-60.
    [55] Sozzani, S., Sallusto, F., Luini, W., Zhou, D., Piemonti, L., Allavena, P.,Van Damme, J., Valitutti, S., Lanzavecchia, A, Mantovani, A. Migration of dendritic cells in response to formyl peptides, CSa, and a distinct set of chemokines[J]. J. Immunol. 155, 3292-3295
    [56] Noso, N., Proost, P., Van Damme, J., Michael Schroder, J., Human monocyte chemotactic proteins-2 and 3 MCP-2 and MCP-3 attract human eosinophils and desensitize the chemotactic responses towards RANTES[J]. BBRC. 1994. 200, 1470-1476
    [57] Romagnani S. Cytokines and chemoattractants in allergic inflammation[J]. Molecular Immunology. 2001, 38:881-885
    [58] Peters W, Dupuis M, Charo IF. A mechanism for the impaired.IFN-gamma production in C-C chemokine receptor 2(CCR2) knockout mice: role of CCR2 in linking the innate and adaptive immune responses[J]. J Immunol 2000; 165: 7072-7077
    [59] Alkhatib, G., C. Combadiere, C. C. Broder, Y. Feng, P. E. Kennedy, P. M. Murphy, and E. A. Berger. CC CKR5:a RANTES, MIP-1a, MIP-1b receptor as a fusion cofactor for macrophage-tropic HIV-1[J]. Science. 1996.272:1955-1958.
    [60] Eric J K, Chang HK, Nicole HL, et al. CCR10 expression is a common feature of circulating and mucosal epithethlial tissue IgA Ab secreting cells[J]. J Clin Invest.2003,111: 1001-1010.
    [61] Yan H, Hancock RE. Synergistic interactions between mammalian antimicrobial defense[J]. Antimicrob Agents Chemother, 2001,45: 1558-1560.
    [62] Arici A, Senturk LM, Seli E, Bahtiyar MO, Kim G. Regulation of monocyte chemotactic protein-1 expression in human endometrial stromal cells by estrogen and progesterone[J]. Biol Reprod. 1999 Jul; 61(1): 85-90
    [63] Caballero-Campo P, Dominguez F, Coloma J, Meseguer M, Remohi J, Pellicer A, Simon C. Hormonal and embryonic regulation of chemokines IL-8, MCP-1 and RANTES in the human endometrium during the window of implantation[J]. Mol Hum Reprod. 2002 Apr;8(4):375-84.
    [64] Senturk LM, Seli E,Gutierrez LS, Mor G, Zeyneloglu HB, Arici A. Monocyte chemotactic protein-1 expression in human corpus luteum[J]. Mol Hum Reprod. 1999, 5(8):697-702.
    [65] Moffett-King A. Natural killer cells and pregnancy[J]. Nat. Rev. Immunol. 2002; 2: 656-663.
    [66] Piccinni MP. T cells in pregnancy[J]. Chem Immunol Allergy. 2005; 89: 3-9.
    [67] Loke YW, King A, Burrows TD: Decidua in human implantation[J]. Hum Reprod 1995; 10(Suppl. 2): 14-21.
    [68] Heikkinen J, Mottonen J, Komi J, et al. Phenotypic characterization of decidual macrophages[J]. Clin & Exp Immunol, 2003, 131(3):498-505.
    [69] John Trowsdale, Alexander G Betzo Mother's little helpers: mechanisms of maternal-fetal tolerance[J]. Nature Immunology 7, 241-246(2006)
    [69] C. Lidstrom, L. Matthiesen, G. Berg, S. Sharma, J. Ernerudh, C. Ekerfelt(2003) Cytokine Secretion Pattems of NK Cells and Macrophages in Early Human Pregnancy Decidua and Blood: Implications for Suppressor Macrophages in Decidua[J]. American Journal of Reproductive Immunology. 2003,50(6), 444-452.
    [70] Drake PM, Gunn MD, Tsou CL, et al. Human placental cytotrophoblasts attract monocytes and CD56bright natural killer cells via the actions of monocyte inflammatory protein 1 alpha[J]. J Exp Med, 2001, 193:1199-1212.
    [71] Chantakru S, Miller C, Roach LE, Kuziel WA, Maeda N, Wang WC, Evans SS, Croy BA. Contributions from self-renewal and trafficking to the uterine NK cell population of early pregnancy[J]. J Immunol. 2002 Jan 1; 168(1):22-8.
    [72] Saito S. Cytokine network at the feto-maternal interface[J]. J. Reprod Immunol. 2000, 47(2):87-103
    [73] Caballero-Campo P, Dominguez F, Coloma J, Meseguer M, Remohi J, Pellicer A, Simon C. Hormonal and embryonic regulation of chemokines IL-8, MCP-1 and RANTES in the human endometrium during the window of implantation[J]. Mol Hum Reprod. 2002,8(4):375-84.
    [74] Lockwood CJ, Matta P, Krikun G, Koopman LA, Masch R, Toti P, Arcuri F, Huang ST, Funai EF, Schatz F. Regulation of monocyte chemoattractant protein-1 expression by tumor necrosis factor-alpha and interleukin-1beta in first trimester human decidual cells: implications for preeclampsia[J]. Am J Pathol. 2006, 168(2):445-52.
    [75] Huang SJ, Schatz F, Masch R, Rahrnan M, Buchwalder L, Niven-Fairchild T, Tang C, Abrahams VM, Krikun G, Lockwood CJ. Regulation of chemokine production in response to pro-inflammatory cytokines in first trimester decidual cells[J]. J Reprod Immunol. 2006; 72(1-2):60-73. Epub 2006 Jun 27.
    [77] Sozzani S., Molino M., Locati M., Luini, W., Cerletti C., Vecchi A., and Mantovani, A. Receptor-activated calcium influx in human monocytes exposed to monocyte chemotactic protein-1 and related cytokines[J]. J. Immunol. 1993 150, 1544-1553
    [78] Rollins B. J., Walz A., and Baggiolini M. Recombinant human MCP-1/JE induces chemotaxis, calcium flux, and the respiratory burst in human monocytes[J]. Blood.1991,78, 1112-1116
    [79] Locati M., Zhou D., Luini W., Evangelista V., Mantovani A., and Sozzani S.Rapid induction of arachidonic acid release by monocyte chemotactic protein-1 and related chemokines. Role of Ca2+ influx, synergism with platelet-activating factor and significance for chemotaxis[J]. J. Biol. Chem. 1994, 269:4746-4753
    [80] Sozzani, S., Locati, M., Zhou, D., Rieppi, M., Luini, W., Lamorte, G., Bianchi,G., Polentarutti, N., Allavena, P., and Mantovani, A. Receptors, signal transduction, and spectrum of action of monocyte chemotactic protein-1 and related chemokines[J].(1995) J. Leukocyte Biol. 57, 788-794
    [81] Yen, H., Zhang, Y., Penfold, S., and Rollins, B. J. MCP-1-mediated chemotaxis requires activation of non-overlapping signal transduction pathways[J]. J. Leukocyte Biol. 1997, 61,529-532
    [82] Mellado M, Rodriguez-Frade JM, Azagay A, et al.The chemokine monocyte chemotactic protein 1 triggers Janus kinase 2 activation and tyrosine phosphorylation of the CCR2B receptor[J]. J Immunol. 1998, 161:805-813
    [83] Munn DH, Zhou M, Attwood JT, et al. Prevention of allogeneic fetal rejection by tryptophan catabolism[J]. Science, 1998, 281:1191-1193.
    [84] Lidstrom C, Matthiesen L, Berg G, Sharma S, Ernerudh J, Ekerfelt C. Cytokine secretion patterns of NK cells and macrophages in early human pregnancy decidua and blood: implications for suppressor macrophages in decidua[J]._Am J Reprod Immunol. 2003,50(6):444-52
    [85] Piccinni MP, Scaletti C, Maggi E, Romagnani S. Role of hormone-controlled Th1-and Th2-type cytokines in successful pregnancy[J]. J Neuroimmunol. 2000,109(1):30-3
    [86] Sacks GP,Clover LM, Bainbridge DR, Redman CW, Sargent IL. Flow cytometric measurement of intracellular Th1 and Th2 cytokine production by human villous and extravillous cytotrophoblast[J]. Placenta. 2001,22(6):550-9
    [87] STARKEY P. M. Expression on cells of early human pregnancy decidua, of the p75, IL-2 and p 145, IL-4 receptor proteins[J]. Immunology. 1991, 73:64-70
    [88] Starkey PMExpression on cells of early human pregnancy decidua, of the p75, IL-2 and p145, IL-4 receptor proteins[J]. Immunology. 1991,73(1):64-70
    [89] Nasu K, Sugano T, Fujisawa K, Arima K, Narahara H, Miyakawa I. Effects of interleukin-4 on the in-vitro production of cytokines by human endometrial stromal cells[J]. Mol Hum Reprod. 2001,7(3):265-70
    [90] Athanassakis I, Papadimitriou L,Koumantakis E, Vassiliadis S. Th1- and Th2-type lymphokine-assisted induction and release of chemokine receptors from primary human trophoblast cells[J]. Hum Immunol. 2000,61(7):651-7
    [91] Yui J, Wegmann TG, Guilbert LJ, et al. Cytotoxicityof tumor necrosis factor-alpha and gamma-interferon against primary human placental trophoblasts[J]. Placenta, 1994, 15(8):819-835.
    [92] Ashkar AA, Di Santo JP, Croy BA. Interferon gamma contributes to initiation of uterine vascular modification, decidual integrity, and uterine natural killer cell maturation during normal murine pregnancy[J]. J Exp Med. 2000 Jul 17;192(2):259-70
    [93] Ashkar AA, Croy BA.Functions of uterine natural killer cells are mediated by interferon gamma production during murine pregnancy[J]. Semin Immunol. 2001, 13(4):235-41
    [94] Nasu K, Matsui N,Narahara H, Tanaka Y, Miyakawa I. Effects of interferongamma on cytokine production by endometrial stromal cells[J]. Hum Reprod. 1998, 13(9):2598-601
    [95] Chen XL, Grey JY, Thomas S, Qiu FH, Medford RM, Wasserman MA,Kunsch C: Sphingosine kinase-1 mediates TNF-alpha-induced monocyte chemoattractant protein-1 gene expression in endothelial cells: up-regulation by oscillatory flow[J]. Am J Physiol 2004, 287:1452-1458
    [96] Johrer K, Janke K, Krugmann J, Fiegl M, Greil R: Transendothelial migration of myeloma cells is increased by tumor necrosis factor(TNF)-alpha via TNF receptor 2 and autocrine up-regulation of MCP-1[J]. Clin Cancer Res. 2004, 10:1901-1910
    [97] Boekhoudt GH, Guo Z, Beresford GW, Boss JM: Communication between NF-kappa B and Spl controls histone acetylation within the proximal promoter of the monocyte chemoattractant protein 1 gene[J]. J Immunol 2003, 170:4139-4147
    [98] MURIEL DAVID, JACQUES BERTOGL10, JOSIANE PIERRE.TNF-α Potentiates IL-4/IL-13-Induced IL-13Rα2 Expression[J]. Annals of the New York Academy of Sciences.2002, 973(1), 207-209.
    [99] Naoki K, Ken F, and Teruo N. Synergistic Effect of TNF-a and IL-4 on the Expression of Thymus- and Activation-Regulated Chemokine in Human Corneal Fibroblasts[J]. Biochemical and Biophysical Research Communications. 2000, 279:1-5
    [100] Kuiper, G. G. J. M., B. Carlsson, J. Grandien, E. Enmark, J. Haggblad, S. Nilsson, J. A. Gustafsson. Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors αandβ[J]. Endocrinology 1997,138:863.
    [101] Parker, M. G. Transcriptional activation by oestrogen receptors[J]. Biochem. Soc. Symp. 1998,63:45.
    [102] Salem ML. Estrogen, a double-edged sword: modulation of TH1-and TH2-mediated inflammations by differential regulation of TH1/TH2 cytokine production[J]. Curr Drug Targets Inflamm Allergy. 2004,3(1):97-104
    [103] Lang TJ. Estrogen as an immunomodulator. Clin Immunol[J]. 2004, 113(3):224-30.
    [104] Pervin S, Singh R, Rosenfeld ME, Navab M, Chaudhuri G, Nathan L(1998) Estradiol suppresses MCP-1 expression in vivo. Implications for addition of a different progestagen would affect MCP-1 atherosclerosis[J]. Arterioscler Thromb Vase Biol. 18, 1575-1582.
    [105] Stork S, Baumann K, von Schacky C, Angerer P(2002) The effect of 17β-estradiol on MCP-1 serum levels in postmenopausal women[J].Cardiovascular Research. 53,642-649
    [106] Bengtsson AK, Ryan EJ, Giordano D, Magaletti DM, Clark EA.(2004) 17β-Estradiol(E2) modulates eytokine and chemokine expression in human monocyte-derived dendritic cells[J]. Blood. 104, 1404-1410.
    [107] Murphy HS, Sun Q, Murphy BA, Mo R, Huo J, Chen J, Chensue SW, Adams M, Richardson BC, Yung R(2004) Tissue-specific effect of estradiol on endothelial cell-dependent lymphocyte recruitment[J]. Microvasc Res. 68, 273-285
    [108] Szekeres-Bartho J., Polgar B., Kozma N. etc. Progesterone-Dependent Immunomodulation[J]. Chem Immunol Allergy. 2005, 89:118-125
    [109] Moriyama 1, Sugawa T: Progesterone facilitates implantation of xenogenic cultured cells in hamster uterus[J]. Nat New Biol, 1972; 236: 150-152.
    [110] Hansen PJ, Bazer FW, Segerson EC: Skin graft survival in the uterine lumen of ewes treated with progesterone[J]. Am J Reprod Immunol Microbiol 1986; 12:48-54.
    [111] Ali Akoum, Christine N. Metz and Mathieu Morin. Marked Increase in Macrophage Migration Inhibitory Factor Synthesis and Secretion in Human Endometrial Cells in Response to Human Chorionic Gonadotropin Hormone[J].The Journal of Clinical Endocrinology & Metabolism. 90, 5:2904-2910
    [112] Reshef E, Lei ZM, Rao CV, Pridham DD, Chegini N, Luborsky JL.The presence of gonadotropin receptors in nonpregnant human uterus, human placenta, fetal membranes, and decidua[J]. J Clin Endocrinol Metab 1990, 70:421-430
    [113] Tang B, Gurpide E. Direct effect of gonadotropins on decidualization of human endometrial stroma cells. J Steroid Biochem Mol Biol.1993, 47:115-121
    [114] V. Boonyaratanakornkit, M.P. Scott, V. Ribon, L. Sherman, S.M. Anderson, J.L. Mailer, W.T. Miller and D.P. Edwards, Progesterone receptor contains a proline-rich motif that directly interacts with SH3 domains and activates c-Src family tyrosine kinases[J]. Mol. Cel.2001,8: 269-280.
    [115] Kosaka K, Fujiwara H, Tatsumi K, Yoshioka S, Sato Y, Egawa H, Higuchi T, Nakayama T, Ueda M, Maeda M, Fujii S Human chorionic gonadotropin(HCG) activates monocytes to produce interleukin-8 via a different pathway from luteinizing hormone/HCG receptor system[J]. J Clin Endocrinol Metab. 2002, 87:5199-5208
    [116] F. Belardelli, Role of interferons and other cytokines in the regulation of the immune response[J]. APMIS. 1995,103: 161-179.
    [117] R. Raghupathy, Th1-type immunity is incompatible with successful pregnancy[J]. Immunol Today 1997, 18: 478-482.
    [118] T. G. Wegmann, H. Lin, L. Guilbert and T. R. Mosmann, Bidirectional cytokine interactions in the maternal-fetal relationship: is successful pregnancy a Th2 phenomenon[J]? Immunol Today. 1993, 14: 353-356.
    [119] Saito S, Nishikawa K, Morii T, Enomoto M, Narita N, Motoyoshi K, Ichijo M. Cytokine production by CD16-CD56bright natural killer cells in the human early pregnancy decidua[J]. Int Immunol. 1993,5(5):559-63
    [120] Lidstrom C, Matthiesen L, Berg G, Sharma S, Ernerudh J, Ekerfelt C. Cytokine secretion patterns of NK cells and macrophages in early human pregnancy decidua and blood: implications for suppressor macrophages in decidua. Am J Reprod Immunol[J]. 2003,50(6):444-52.
    [121] Wilczynski J. R. Th1/Th2 cytokines balance—yin and yang of reproductive immunology[J]. European Journal of Obstetrics & Gynecology and Reproductive Biology. 2005;122(2 ): 136-143
    [122] Saito S, Sakai M. Th1/Th2 balance in preeclampsia[J]. J Reprod Immunol. 2003, 59(2): 161-73.
    [123] Paulesu L, Romagnoli R, Cintorino M, Ricci MG,Garotta G: First trimester human trophoblasts expresses both interferon-c and interferon-c-recepto[J]. Am J Reprod Immunol 1994; 27:374-48.
    [124] Karpus WJ, Lukacs NW, Kennedy KJ, Smith WS, Hurst SD, Barrett TA. Differential CC chemokine-induced enhancement of T helper cell cytokine production. J Immunol.1997, 158: 4129-4136.
    [125] Bonecehi, R., G. Bianchi, P. Panina-Bordignon, D. D'Ambrosio, R. Lang, A. Borsatti, S. Sozzani, P. Allavena, P. A. Gray, A. Mantovani, F. Sinigaglia. 1998. Differential expression of chemokine receptors and chemotactic responsiveness of Th1 and Th2 cells[J]. J. Exp. Med. 1998,187:129.
    [126] Sallusto, F., D. Lenig, C. R. Mackay, A. Lanzavecchia. Flexible programs of chemokine receptor expression on human polarized T helper 1 and 2 lymphocytes[J]. J. Exp. Med. 1998,187:875.
    [127] Loetscher, P., M. Uguccioni, L. Bordoli, M. Baggiolini, B. Moser. 1998. CCR5 is characteristic of Thl lymphocytes[J]. Nature 391:344.
    [128] Power CA, Meyer A, Nemeth K, Bacon KB, Hoogewerf AT, Proudfoot AE, Wells TN. 1995. Molecular cloning and functional expression of a novel CC chemokine receptor cDNA from a human basophilic cell line[J]. J Biol Chem, 270: 19495-19500.
    [129] Murphy KM,Reiner SL. The lineage decisions of helper T cells[J]. Nature Rev Immunol, 2002,2:933
    [130] Robin D. Hatton and Casey T. Weaver T-bet or Not T-bet[J]. SCIENCE, 2003,302:995-99.
    [131] Lugo-Villarino G, Maldonado-Lopez R, Possemato R, Penaranda C, Glimcher LH. T-bet is required for optimal production of IFN-gamma and antigen-specific T cell activation by dendritic cells[J]. Proc Natt Acad Sci U S A. 2003, 100(13):7749-54
    [132] Yin Z, Chen C, Szabo SJ, Glimcher LH, Ray A, Craft J. T-Bet expression and failure of GATA-3 cross-regulation lead to default production of IFN-gamma by gammadelta T cells[J].J Immunol. 2002,168(4): 1566-71.
    [133] Townsend MJ, Weinmann AS, Matsuda JL, Salomon R, Famham PJ, Biron CA, Gapin L, Glimcher LH. T-bet regulates the terminal maturation and homeostasis of NK and Valphal4i NKT cells.Immunity[J]. 2004,20(4):477-94.
    [134] Vosshenrich C. A J, Garcia-Ojeda M. E, Samson-Ville ger S. e I, et al. A thymic pathway of mouse natural killer cell development characterized by expression of GATA-3 and CD127[J]. Nature Immunol.2006, 7: 1217-1224.
    [135] Alexander, DR. The CD45 tyrosine phosphatase: a positive and negative regulator of immune cell function[J]. Seminars in Immunology. 2000, 12:349-359.
    [136] PELEMAN R., Wu J., FARGEAS C. & DELESPESSE G. Recombinant interleukin 4 suppresses the production of interferon gamma by human mononuclear cells[J]. J Exp Med, 1989,170:1751.
    [137] Karpus WJ, Lujacs NW, Kennedy KJ, Smith WS, Hurst SD, Barrett TA. Differential CC chemokine-induced enhancement of T helper cell cytokine production[J]. J Immunol 1997; 158:4129-36.
    [138] Chen CH, Zhang DH, LaPorte JM, Ray A. Cyclic AMP activates p38 mitogen- activated protein kinase in Th2 cells: phosphorylation of GATA-3 and stimulation of Th2 cytokine gene expression[J]. J Immunol. 2000,165(10):5597-605
    [139] Gomes RN, Figueiredo RT, Bozza FA, Pacheco P, Amancio RT, Laranjeira AP, Castro-Faria-Neto HC, Bozza PT, Bozza MT. Increased susceptibility to septic and endotoxic shock in monocyte chemoattractant protein 1/cc chemokine ligand 2-deficient mice correlates with reduced interleukin 10 and enhanced macrophage migration inhibitory factor production[J]. Shock. 2006,26(5):457-63.
    [140] Jarnagin, K., Grunberger, D., Mulkins, M., Wong, B., Hemmerich, S., Paavola, C., Bloom, A., Bhakta, S., Diehl, F., Freedman, R., McCarley, D., Polsky, I., Ping-Tsou, A., Kosaka, A. and Handel, T. M. Identification of surface residues of the monocyte chemotactic protein 1 that affect signaling through the receptor CCR2[J].Biochemistry.1999.38, 16167-16177
    [141] Zheng W., and R. A. Flavell. The transcription factor GATA-3 is necessary and sufficient for Th2 cytokine gene expression in CD4 T cells[J]. Cell. 1997.89:587.
    [142] Agarwal, S., and A. Rao. 1998. Modulation of chromatin structure regulates cytokine gene expression during T cell differentiation[J]. Immunity 9:765.
    [143] Yamashita M., Shinnakasu R., Nakayama T. Ras-ERK MAPK Cascade Regulates GATA3 Stability and Th2 Differentiation through Ubiquitin-Proteasome Pathway[J]. J bio chem. 2005, 280(33): 29409-29419
    [144] Stamatovic SM, Keep RF, Mostarica-Stojkovic M. CCL2 regulates angiogenesis via activation of Ets-1 transcription factor. J Immunol. 2006,15; 177(4):2651-61
    [1]. Singh B, Read S, Asseman C, et al. Control of intestinal in-flammation by regulatory T cells[J]. Immunol Rev, 2001,182: 190-200.
    [2]. Pontoux C, Banz A, Papiernik M. Natural CD4+ CD25 +regulatory T cells control the burst of superantigen- induced cytokine production: the role of IL-10[J]. Int Immunol 2002,14(2): 233-239.
    [3]. Roncarolo MG, Levings MK. The role of different subsets of T regulatory cells in controlling autoimmunity. Curr Opin Immunol[J].2000, 12(6): 676-683.
    [4]. Kingsley CI, Karim M, Bushell AR, et al. CD25~+ CD4~+ regulatory T cells prevent graft rejection: CTLA—4 and IL-12 dependent immunoregulation of alloresponses.[J].J Immunol, 2002,168(3): 1 080-1 086.
    [5]. Jordan MS, Boesteanu A, Reed A J., et al. Thymic selection of CD4 +25 +regulatory T cells induced by an agaonist self- peptide[J]. Nat Immunol, 2001, 2(4): 301 - 6.
    [6]. Norihiko Watanabe., Yi-Hong Wang., Heung Kyu Lee. Hassall's corpuscles instruct dendritic cells to induce CD4~+CD25~+regulatory T cells in human thymus[J]. Nature.2005,435(8): 1181-1185.
    [7]. Shevach EM, McHugh PS, Piccirillo CA., et al. Control of T cell activation by CD4+CD25+suppressor T cells[J]. Immunol Rev, 2001,182: 59-67.
    [8]. Bansal-Pakala P, Jember AG, Croft M. Signaling through OX40(CD134)breaks peripheral T celltolerance[J]. Nat Med. 2001; 7:907-12
    [9]. Shimizu J,Yamazaki S, Takahashi T, et al. Stimulation of CD25~+CD4~+regulatory T cells through GITR breaks immunological self-tolerance[J]. Nat Immunol. 2002; 3:135-142.
    [10]. Fontenot J D., Gavin M A., Rudensky A Y.. Foxp3 programs the development and function of CD4(+)CD25(+) regulatory T cells[J]. Nat Immunol. 2003; 4: 330-336.
    [11]. Somerset DA, Zheng Y, Kilby MD, et al. Normal human pregnancy is associated with an elevation in the immune suppressive CD25+ CD4+ regulatory T-cell subset[J]. Immunolgy.2004; 112:38-43
    [12]. Takahata Y, Nomura A, Takada H, et al. CD25+CD4+ T cells in human cord blood: an immunoregulatory subset with naive phenotype and specific expression of forkhead box p3(Foxp3) gene[J]. Exp Hematol. 2004 Jul;32(7):622-9.
    [13]. J. Cortes-Hernandez, J. Ordi-Ros, F. Paredes, et al.Clinical predictors of fetal and maternal outcome in systemic lupus erythematosus: a prospective study of 103 pregnancies. Rheumatology[J]. Oxford: 2002.1.41(6); 643
    [14]. Heikkinen J, Mottonen M, Alanen A, etal.Phenotypic characterization of regulatory T cells in the human decidua[J].Clin Exp Immunol. 2004 May; 136(2): 373-8.
    [15]. Aliana P. Sindram-Trujillo, Sicco A. et al. Comparison of decidual leukocytes following spontaneous vaginal delivery and elective cesarean section in uncomplicated human term pregnancy[J]. Journal of Reproductive Immunology. 2004; 62: 125-137
    [16]. Y. Sasaki; M. Sakai; S. Miyazaki; et al. Decidual and peripheral blood CD4~+CD25~+ regulatory T cells in early pregnancy subjects and spontaneous abortion cases[J]. Molecular Human Reproduction. May 2004; 10, 5: 347
    [17]. Han P, Hodge G; Story C, et al. Phenotypic analysis of functional T ymphocyte subtypes and natural killer cells in human cord blood: relevance to umbilical cord blood transplantation[J]. Br J Haematol. 1995; 89: 733-740.
    [18]. Byrne JA, Stankovic AK, Cooper MD. A novel subpopulation of primed T cells in the human fetus[J]. J Immunol. 1994; 152: 3098-3106.
    [19]. W. R. Godfrey, D. J. Spoden, Y. G. Ge, et al. Cord blood CD4~+CD25~+-derived T regulatory cell lines express FoxP3 protein and manifest potent suppressor function[J]. Blood, January 15, 2005; 105(2): 750-758.
    [20]. Polanczyk M J, Carson B D, Subramanian S, et al. Cutting edge: estrogen drives expansion of the CD4+CD25+ regulatory T cell compartment. J Immuno[J]1. 2004 Aug 15; 173(4): 2227-30.
    [21].朱晓勇,李大金.吲哚胺2,3双加氧酶(IDO)的免疫调节作用[J].现代免疫学.2004,24(4):349-351
    [22]. Mellor D H, Sivakumar J, Chandler P, Smith K, et al. Prevention of T cell-driven complement activation and inflammation by tryptophan catabolism during pregnancy[J]. Nat Immunol 2001; 2: 64-8
    [23]. Munn D H, Sharma M D, Lee J R, et al. Potential regulatory function of human dentric cells expression indoleamine2,3-dioxygenase[J].Science 2002; 297: 1867-70
    [24]. Heikkinen J.,Mottonen M., Komi J., et al. Phenotypic characterization of human decidual macraphages[J]. Clin Exp Immunol 2003; 131: 498-505
    [25]. Gardner L, Moffet A. Dendritic Cells in the Human Decidua[J]. Biol Reprod 2003; 69: 1438-46
    [26]. Grohmann U, Orabona C, Fallarino F. et al. CTLA-4Ig regulates tryptophan catabolism in vivo[J]. Nat Immunol 2002: 3: 1097-101
    [27]. Cederbom L, Hall H, Ivars F. CD4~+ CD25~+ Treg cells down-regulate co-stimulatory molecules on antigen-presenting cells[J]. Eur J Immunol 2000;30-: 1538-43
    [28]. Finger EB, Bluestone JA. When ligand becomes receptor-tolerance via B7 signaling on DCs[J]. Nat Immunol 2002; 3: 1056-7
    [29]. Fallarino F, Grohmann U, Hwang KW, et al. Modulation of tryptophan catabolism by regulatory T cells[J]. Nat I mmunol, 2003; 4: 1206-12
    [30]. Tsuda H, Michimata T, Hayakawa S, et al. A Th2 chemokine, TARC, produced by trophoblasts and endometrial gland cells, regulates the infiltration of CCR4~+ T lymphocytes into human decidual at early pregnancy[J]. Am J Reprod Immunol. 2002; 48: 1-8
    [1] Jiang, Y., Valente, A. J., Williamson, M. J., Zhang, L., and Graves, D. T.[J](1990) J. Biol. Chem. 265, 18318-18321
    [2] Valente, A. J., Graves, D. T., Vialle-Valentin, C. E., Delgado, R., and Schwartz, C. J.[J](1988) Biochemistry 27, 4162-4168
    [3] Rollins, B. J., Stier, P., Ernst, T., and Wong, G. G.[J](1989) Mol. Cell. Biol. 9,
    [4] Colotta, F., Borre, A., Wang, J. M., Tattanelli, M., Maddalena, F., Polentarutti, N., Peri, G., and Mantovani, A.[J](1992) J. Immunol. 148, 760-765
    [5] Yoshimura, T., Yuhki, N., Moore, S. K., Appella, E., Lerman, M. I., and Leonard, E. J.[J](1989)FEBS Lett. 244, 487-493
    [6] Hall, D. J., Brownlee, C., and Stiles, C. D.[J](1989) J. Cell. Physiol. 141, 154-159
    [7] Graves, D. T., Jiang, Y. L., Williamson, M. J., and Valente, A. J.[J](1989) Science.245, 1490-1493
    [8] Shyy, Y. J., Li, Y. S., and Kolattukudy, P. E.[J](1993) Biochem. Biophys. Res. Commun. 192, 693-699
    [9] Rollins, B. J., Yoshimura, T., Leonard, E. J., and Pober, J. S.[J](1990) Am.J.Pathol. 136, 1229-1233
    [10] Strieter, R. M., Wiggins, R., Phan, S. H., Wharram, B. L., Showell, H. J., Remick, D. G., Chensue, S. W., and Kunkel, S. L.[J](1989) Biochem. Biophys. Res. Commun. 162, 694-700
    [11] Sica, A., Wang, J. M., Colotta, F., Dejana, E., Mantovani, A., Oppenheim, J. J., Larsen, C. G., Zachariae, C. O., and Matsushima, K.[J](1990) J. Immunol.144, 3034-3038
    [12] Rollins, B. J., Morrison, E. D., and Stiles, C. D.[J](1988) Proc. Natl. Acad. Sci. U. S. A. 85, 3738-3742
    [13] Marumo, T., Sehini-Kerth, V. B., and Busse, R.(1999) Diabetes 48, 1131-1137
    [14] Schweickart, V. L., Epp, A., Raport, C. J., and Gray, P. W.[J](2000) J. Biol.Chem. 275, 9550-9556
    [15] Sozzani, S., Molino, M., Locati, M., Luini, W., Cerletti, C., Vecchi, A., and Mantovani, A.[J](1993) J. Immunol. 150, 1544-1553
    [16] Rollins, B. J., Walz, A., and Baggiolini, M.[J](1991) Blood 78, 1112-1116
    [17] Locati, M., Zhou, D., Luini, W., Evangelista, V., Mantovani, A., and Sozzani, S. [J](1994) J. Biol. Chem. 269, 4746-4753
    [18] Carnevale K. A. Carnevale, Cathcart M. K. Protein Kinase C_Is Required for Human Monocyte Chemotaxis to MCP-1[J]. THE JOURNAL OF BIOLOGICAL CHEMISTRY. 2003,278:25317-25322
    [19] Sozzani, S., Locati, M., Zhou, D., Rieppi, M., Luini, W., Lamorte, G., Bianchi,G., Polentarutti, N., Allavena, P., and Mantovani, A.[J]. Leukocyte Biol. 1995, 57: 788-794
    [20] Yen, H., Zhang, Y., Penfold, S., and Rollins, B. J.[J](1997) J. Leukocyte Biol. 61,529-532
    [21] Lu Y, Cai Z,Xiao G, et alo CCR2 expression correlates with prostate cancer progression[J]. J Cell Biochem. 2007 Jan 10;[Epub ahead of print]
    [22] Stamatovic SM, Keep RF, Mostarica-Stojkovic M. CCL2 regulates angiogenesis via activation of Ets-1 transcription factor[J]. J Immunol. 2006,15; 177(4):2651-61
    [23] Lu, Y., Yu, Q., Liu, J.H.,et al. Siminovitch, K.A., Mills, G.B., 2003. Src family proteintyrosine kinases alter the function of PTEN to regulate hosphatidylinositol 3-kinase/AKT cascades[J]. J. Biol. Chem. 278, 40057-40066.
    [24] Mantovani A. Biology of disease, tumor-associated macrophages in neoplastic progression: a paradigm for the in vivo function of chemokines.Lab Invest[J]. 1994; 71: 5-16.
    [25] Negus RPM, Stamps GWH, Relf MG, et al. The detection and localization of monocyte chemoattractant protein(MCP-1) in human ovarian cancer[J].J Clin Invest. 1995; 95:2391-2396.
    [26] Mellado M, Rodriguez-Frade JM, Azagay A, et al.The chemokine monocyte chemotactic protein 1 triggers Janus kinase 2 activation and tyrosine phosphorylation of the CCR2B receptor[J]. J Immunol. 1998; 161: 805-813.
    [27] Daly C., ROLLINS B. J. Monocyte Chemoattractant Protein-1(CCL2) in Inflammatory Disease and Adaptive Immunity: Therapeutic Opportunities and Controversies[J]. Microcirculation(2003) 10, 247-257
    [28] Bonini, J. A., S. K. Martin, F. Dralyuk, M. W. Roe, L. H. Philipson, and D. F. Steiner. 1997. Cloning, expression, and chromosomal mapping of a novel human CC-chemokine receptor(CCR10) that displays high-affinity binding for MCP-1 and MCP-3[J].DNA Cell Biol. 16:1249.
    [29] Vicki L. Schweickart, Angela Epp。, et al。CCR11 is a functional receptor for the monocyte chemoaattractant protein family of chemokines[J]. J. Biol. Chem. 2000, 276, 9550-9556
    [30] Doranz B J, Rucker J, Yi Y, Smyth R.I, Samson M, Peiper S, Parmentier M, Collman RG, Doms RW: A dual-tropic, primary HIV-1 isolate that uses fusin and the 13-chemokine receptors CKR-5, CKR-3, and CKR-2b as fusion cofactors[J]. Cell. 1996, 86:1149-1159.
    [31] Fuentes ME, Durham SK, Swerdel MR, Lewin AC,Barton DS, Megill JR, Bravo R, Lira SA.(1995). Controlled recruitment of monocytes/macrophages to specific organs through transgenic expression of MCP-I[J]. J Immunol 155:5769-5776.
    [32] Gunn MD, Nelken NA, Liao X, Willimas LT.(1997).Monocyte chemoattractant protein-1 is sufficient for the chemotaxis of monocytes and lymphocytes in transgenic mice but requires an additional stimulus for inflammatory activation[J]. J Immunol 158:376-383.
    [33] Karpus WJ, Lukacs NW, Kennedy KJ, Smith WS,Hurst SD, Barrett TA.(1997). Differential CC chemokine-induced enhancement of T helper cell cytokine production[J]. J Immunol 158:4129-4136.
    [34] Gu L, Tseng S, Horner RM, Tam C, Loda M, Rollins BJ.(2000). Control of TH2 polarization by the chemokine monocyte chemoattractant protein-1[J]. Nature. 404: 407-411.
    [35] Gonzalo JA, Lloyd CM, Wen D, Albar JP, Wells TN, Proudfoot A, Martinez AC, Dorf M, Bjerke T, Coyle AJ, Gutierrez-Ramos JC.(1998). The coordinated action of CC chemokines in the lung orchestrates allergic inflammation and airway hyperresponsiveness[J]. J.Exp Med 188: 157-167.
    [36] Boring L, Gosling J, Chensue SW, Kunkel SL, Farese RV Jr, Broxmeyer HE, Charo IF.(1997). Impaired monocyte migration and reduced type 1(Th1) cytokine responses in C-C chemokine receptor 2 knockout mice[J]. J Clin Invest 100: 2552-2561.
    [37] Peters W, Scott HM, Chambers HF, Flynn JL, Charo IF, Ernst JD.(2001). Chemokine receptor 2 serves an early and essential role in resistance to Mycobacterium tuberculosis[J]. Proc Natl Acad Sci USA 98:7958-7963.
    [38] Sato N, Ahuja SK, Quinones M, Kostecki V, Reddick RL, Melby PC, Kuziel WA, Ahuja SS.(2000). CC chemokine receptor(CCR)2 is required for langerhans cell migration and localization of T helper cell type 1(Th1)-inducing dendritic cells: absence of CCR2 shifts the Leishmania major-resistant phenotype to a susceptible state dominated by Th2 cytokines,B cell outgrowth, and sustained neutrophilic inflammation[J]. J Exp Med 192: 205-218.
    [39] Peters W, Dupuis M, Charo IF.(2000). A mechanism for the impaired IFN-γ production in C-C chemokine receptor 2(CCR2) knockout mice: role of CCR2 in linking the innate and adaptive immune responses[J]. J Immunol 165:7072-7077.
    [40] Huang DR, Wang J, Kivisakk P, Rollins BJ, Ransohoff RM.(2001). Absence of monocyte chemoattractant protein 1 in mice leads to decreased local macrophage recruitment and antigen-specific T helper cell type 1 immune response in experimental autoimmune encephalomyelitis[J].J Exp Med 193: 713-726.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700