EB病毒潜伏膜蛋白2A蛋白负载树突状细胞激发特异性CTL的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
EB病毒(Epstein-Barr Virus,EBV)属于疱疹病毒γ亚科嗜淋巴细胞病毒成员,在世界各地广泛分布,为95%以上的成人所携带,是较早认识的与人类肿瘤相关的病毒。自1966年Old在鼻咽癌(nasopharyngeall careinoma,NPC)组织中首先发现存在有EB病毒DNA以来,大量的血清流行病学研究已证明EB病毒与鼻咽癌有关。鼻咽癌是上皮来源的恶性肿瘤,高发于东南亚及我国华南地区。临床上鼻咽癌通常不宜手术治疗,放疗、化疗后也不能完全有效清除肿瘤细胞,部分患者易复发和转移,并且治疗产生的副作用又影响了自身的免疫系统。因此目前,在倡导鼻咽癌综合治疗的同时更加注重免疫治疗。
     对鼻咽癌的免疫机制研究显示,针对EB病毒特异性细胞毒性T细胞(CTL)细胞在清除肿瘤细胞中起着关键作用。CTL亚群能直接识别并杀伤肿瘤细胞,在杀伤肿瘤细胞中CD4~+和CD8~+T细胞相互协调共同发挥作用。
     以CTL为基础的免疫治疗需选择合适的靶抗原。鼻咽癌肿瘤细胞中EB病毒蛋白呈潜伏Ⅱ型表达,即仅表达低免疫原性抗原EBNA1、LMP1、LMP2。EBNA1在诱导特异性T细胞的同时,也能诱导CD4~+调节性Treg细胞,抑制机体的免疫应答,且EBNA1记忆性CTL反应主要受HLA B3501,B7等限制。LMP1已被确认为能够使正常细胞发生转化癌基因蛋白,CTL识别的靶位易突变,免疫原性也弱于LMP2。目前认为,LMP2A是免疫治疗理想的靶抗原,序列相对保守,具有潜在性的T细胞表位。在NPC病人血液中能检出针对EB病毒LMP2的CTL前体细胞,但其数目及反应性明显低于健康携带者,导致机体对肿瘤的免疫耐受。所以纠正这种CTL的低应答状态对于机体有效清除肿瘤细胞至关重要,诱导EBV特异性CTL是鼻咽癌免疫治疗的关键。
     T细胞只能识别由抗原递呈细胞(APC)递呈的抗原肽-MHC分子复合物。树突状细胞(DC)是目前发现功能最强的APC,能激发初始型和记忆型T细胞,产生有效的CTL应答。以DC为基础的免疫治疗已在许多肿瘤的治疗中取得了良好的效果,是当前抗肿瘤免疫治疗研究的热点之一。
     本课题用DC作为鼻咽癌免疫治疗的APC,选用EB病毒LMP2A作为免疫治疗的靶抗原,以分子生物学和细胞生物学方法构建LMP2A稳定表达细胞株,纯化LMP2A蛋白,并对EBV相关的NPC病人的血清进行了检测;蛋白负载经体外扩增的EB病毒阳性健康携带者的DC;负载的DC分别与自体外周血CD4~+和CD8~+T混合培养,激发出LMP2A特异性CD4~+和CD8~+T,并对其功能进行研究。主要研究内容和结果如下:
     一、EB病毒LMP2A基因重组逆转录病毒和稳定表达LMP2A细胞株的构建
     用PCR从质粒pPICZ-α/LMP2A扩增EBV的LMP2A基因片断,经EcoRⅠ、BamHⅠ酶切后定向插入含同样酶切位点的逆转录病毒表达载体pSIV-1的LTR启动子下游,构建重组逆转录病毒载体pSIV-1/LMP2A,重组质粒经PCR、EcoRⅠ和BamHⅠ双酶切及序列分析鉴定。获得的重组质粒与两个辅助病毒载体pHIT456和pHIT60用脂质体共转染包装细胞293T,转化后的细胞用G418筛选,经1周筛选培养后获得抗性细胞克隆,将抗性细胞扩大培养,收集含有重组逆转录病毒颗粒抗性细胞克隆培养上清。PCR结果显示在抗性细胞克隆基因组中存在LMP2A基因。用重组逆转录病毒感染NIH3T3细胞,计算病毒滴度,并于感染后48小时用PCR、间接免疫荧光、Westem blot检测目的基因的整合和表达。结果显示,扩增到的病毒效价为5×10~5CFU/ml,PCR阳性结果提示LMP2A能整合于MH3T3细胞中,间接免疫荧光显示NIH3T3细胞有LMP2A的表达,Western blot显示在54KDa处出现特异的蛋白条带。表明重组逆转录病毒能有效地介导LMP2A基因在真核细胞中表达。
     用重组逆转录病毒颗粒重复3次感染L929细胞,72小时后置于含G418选择性培养基中,筛选培养2周后,获得抗性细胞克隆。PCR阳性结果提示LMP2A能整合于L929细胞中,RT-PCR结果表明LMP2A基因能转录成相应的mRNA。流式细胞仪显示91.3%的细胞能表达LMP2A,Western blot出现特异的蛋白条带。提取细胞蛋白,经His Bind Ni-NTA亲和层析柱纯化,得到纯度达90%以上的LMP2A蛋白。
     采用纯化的LMP2A蛋白作为抗原,用ELISA法检测EB病毒相关鼻咽癌患者血清中的抗体,结果显示鼻咽癌患者血清中存在着高滴度的抗LMP2A的抗体,检出率为72.29%。比较NPC病人LMP2A血清学检测结果与临床上VCA、EA法结果,三者检出率相当,大部分病例呈正相关,但一些病例中VCA、EA检出率低的LMP2A检出率高,而一些病例VCA、EA检出率高的LMP2A检出率低。因此,如将三者结合有助于提高鼻咽癌患者的检出率,LMP2A对鼻咽癌的检测具有辅助诊断意义。
     二、人外周血树突状细胞的培养鉴定及EB病毒LMP2A蛋白的负载分离EBV阳性的健康人外周血单核细胞,在含重组hGM-CSF和hIL-4的培养液中培养,用hTNF-a诱导DC成熟。共聚焦显微镜观察其形态,流式细胞仪检测细胞的表面分子。结果显示,从健康人外周血分离得到的单核细胞,体外经重组hGM-CSF、hIL-4的培养可获得未成熟的DC,流式细胞仪检测DC相对特异性标记CD1a、CD83及共刺激分子CD80、HLA-DR等表达较低,而单核细胞特异性标志CD14相对较高;当加入hTNF-α继续培养2天后,得到大量成熟DC,DC特异性标记CD1a、CD83及共刺激分子CD80、HLA-DR表达显著升高,CD14表达下调。光学显微镜下观察诱导成熟的DC具有典型树突状特征。
     用不同浓度的LMP2A蛋白负载未成熟的DC,诱导成熟后激光共聚焦检测DC俘获抗原的能力,FACS选择最佳蛋白负载浓度;用最佳LMP2A蛋白浓度负载未成熟的DC,FACS检测负载前后诱导成熟DC表面分子CD1a、CD83、CD14、CD80、HLA-DR变化及LMP2A表达情况;并用~3H-TdR掺入法检测负载前后诱导成熟DC刺激同种淋巴细胞增殖能力。结果显示,40μg/ml为LMP2A蛋白转染DC的最佳浓度,共聚焦和FACS结果显示约80%的DC表达LMP2A蛋白;LMP2A负载后诱导的成熟DC对细胞表面共刺激分子及特征性表面标志无影响;负载后诱导成熟DC仍具有较强的刺激同种淋巴细胞增殖能力。研究结果为蛋白负载DC免疫治疗NPC提供可能。
     三、EB病毒LMP2A蛋白负载树突状细胞激发特异性CTL及体外杀伤活性的研究
     免疫微磁珠分离获得自体CD4~+和CD8~+T细胞,FACS鉴定分选细胞纯度均大于95%。3H_TdR掺入法细胞增殖实验检测CD4~和CD8~T细胞经LMP2A蛋白负载自体DC或未负载DC刺激后的增殖水平。ELISA法检测CD4~T细胞经抗原负载后的DC刺激分泌IFN-γ和IL-10的水平。~3H-TdR掺入法结果显示,CD4~+和CD8~+T细胞经LMP2A蛋白负载自体DC刺激后的增殖水平明显高于未负载组(P<0.001,P<0.001),表明DC能够俘获抗原并将抗原提呈给自体的T淋巴细胞,同时LMP2A蛋白含有MHC-Ⅰ和Ⅱ类分子限制性的靶位。ELISA法检测结果显示,CD4~+T细胞经负载后的DC刺激分泌IFN-γ明显高于未负载DC组(P=0.034),而IL-10在各组中的分泌水平均很低。
     构建含有绿色荧光蛋白报告基因(GFP)荧光标记的重组逆转录病毒载体pPGEz-Term/LMP2A,与辅助病毒载体PHT 456和PHI 60共转染包装细胞293T,收集含有Zeocine的抗性细胞培养上清。用此重组逆转录病毒感染第1天诱导的未成熟DC,感染后继续在含hGM-CSF、hIL-4的培养液中培养,重复感染3次,用hTNF-α诱导DC成熟。荧光显微镜观察重组逆转录病毒转染293T细胞情况及FACS检测LMP2A在DC上的表达,并以此作为靶细胞。结果显示,荧光显微镜下观察293细胞可见绿色荧光,FACS检测出56.4%的DC能表达LMP2A。
     采用重复刺激技术获得LMP2A特异性CD8~+T细胞,分别以转染重组逆转录病毒pPGEZ-Term/LMP2A或空载体的自体成熟DC、LCL、K562细胞作为靶细胞,用LDH释放法检测CTL的杀伤活性。FACS检测CTL杀伤靶细胞(重组逆转录病毒pPGEZ-Term/LMP2A转染的自体成熟DC)后CD4~+和CD8~+T细胞胞内分泌细胞因子IFN-γ水平。LDH检测结果显示,LMP2A蛋白负载DC可以诱导出针对EBV-LMP2A特异的CTL,能够特异性的杀伤重组逆转录病毒pPGEZ-Term/LMP2A转染自体的成熟DC(P=0.023)。FACS结果显示,经LMP2A负载的DC诱导的特异性CD4~+和CD8~+T与靶细胞孵育后,胞内分泌细胞因子IFN-γ水平明显高于对照组(P<0.01)。
     我们研究结果表明:EB病毒潜伏膜蛋白2A在L929细胞上稳定的表达,鼻咽癌患者血清中存在着高滴度的抗LMP2A的抗体;LMP2A蛋白负载的DC在体外能激发针对LMP2A特异性CTL,对重组逆转录病毒pPGEZ-Term/LMP2A转染自体的成熟DC具有杀伤效应。本研究为进一步开展EB病毒相关鼻咽癌的临床免疫治疗奠定基础,也为其它病毒相关性肿瘤的免疫治疗研究提供实验和理论依据。
Epstein-Barr virus (EBV), infecting over 95 percent of humans andpersisting for the lifetime of the person, belongs to the gama-herpesvirinaesubfamily and was known its relationship with human tumors early. SinceEBV DNA was detected in tissues from patients with nasopharyngealcarcinoma (NPC) in 1966, serological studies have confirmed EBVinfections are the crucial factors in the pathogenesis of NPC. NPC is amalignant tumor derived from the epithelial cells and endemic in theSoutheast Asia and South of China. NPC usually are not suitable forsurgery and tumor cells are not eliminated effectively and completely byradio therapeutic and chemotherapeutic methods. Relapse and metastasismay occur in a portion of NPC patients and side effect arising fromconventional therapeutic methods will affect self immune system greatly.Therefore, it is critically important to develop an immunotherapeuticmethod for NPC except for conventional therapy.
     Studies on immune system of NPC show that cytotoxicT lymphocytes(CTLs) specific for EBV antigens are crucial for eliminating tumor cells.CTL subtype can recognize and kill tumor cells directly and CD4+ andCDS+ T cells co-contribute it. However, suitable target antigen should beselect in immunotherapy based on CTL.
     Within NPC tumor cells, the viruses establishes a predominantly latentinfection, with laminated expression of three viral proteins, nuclearantigens 1 (EBNA 1) and three latent membrane proteins (LMPs 1, 2A and2B). EBNA1 can induce CTL specific for it and also produce CD4+regulatory Treg cells, which suppress immune response. CDS+ CTLresponses specific for EBNA1 epitopes are mainly restricted by HLA-B3501、B7. LMP1 has been confirmed to be consistence with itsability to transform rodent fibroblasts, and its target epitopes recognized byvirus-specific cytotoxic T cells (CTL) in NPC patients are easy to mutate.Responses detected in healthy virus carriers indicate that LMP1 is poorlyimmunogenic, thus, the most likely target antigen for a CD8 CTL-basetherapy is LMP2. LMP2 amino acid is more conserved and containsHLA-restrict CTL target epitopes which can elicit strong specific CTLresponse. Pre-CTL cells specific for EBV-LMP2 can be detected in the seraof NPC patients, but its number and response are obviously lower thanhealthy carders, which results in immune tolerance. Therefore, it's veryimportant to correct this low CTL-response status and elicit EBV-specificCTL in NPC patient is one of the key immunotherapeutic strategies.
     T cells can only recognize antigen peptide-MHC monocular complexpresented by antigen presenting cells (APCs). Dendritic cells (DC) areknown as the most powerful and the only APC which are capable ofactivating naive T cells and initiating primary immune response. Resultsfrom DC-based immunotherapy have revealed a promising approach forcancer treatment and become one of the hot points in immunotherapyresearch at present.
     In this study, DC was utilized as APC, and EBV-LMP2A was chosenas the target antigen of NPC immunotherapy. LMP2A stable expressioncell line was constructed by monocular and cellular biological methods,and was purified. We then loaded DC induced from monocytes of EBVhealthy carriers with the purified LMP2A protein. The loaded DC wereco-cultured with autologous CD4~+ and CD8~+ T cells separately to elicitEBV-specific CD4~+ and CD8~+ T cells which were further analyzed itsfunctions. The main methods and results are as following:
     PartⅠ. Establishment of EBV LMP2A gene recombinant retrovirusvector and L929 cell line stable expressing LMP2A
     The full-length EBV LMP2A gene was generated by PCRamplification from pPICZ-α/LMP2A which contain complementnucleotide sequence of EBV LMP2A gene with a pair of primers. Afterdigestion with EcoRⅠ、BamHⅠ, PCR products were inserted downstream of LTR of retroviral vector pSIV-1 to obtain recombinant retroviralexpression vector pSIV-1/LMP2A. Recombinant retroviral expressionvector pSIV-1/LMP2A was detected positive by PCR, enzyme digestionwith EcoRⅠand BarnHⅠas well as sequence analysis. To produceretroviral virus, packing cells, 293T cells were co-transfected withrecombinant retroviral expression vector pSIV-1/LMP2A and two auxiliaryviral vectors pHIT456 and pHIT60 by lipofectAMINE2000. Colonies wereisolated by neomycin (G418) selection and obtained after 1 week toexpand. Supematants of cloned packing cells were harvested, whichcontain recombinant retrovirus. The PCR results showed that EBV LMP2Agene had been integrated into the genome of resistant 293T cells. Viraltitration was performed on NIH3T3 according to the instructions of themanufacturer yielding a titer of 5×10~5 infectious particles/ml. The PCRpositive results indicated that NIH3T3 genome had contained LMP2A gene.Indirect immunofluorescence showed that LMP2A gene had beenexpressed in the murine flbroblast, NIH3T3. Transduction rate was 91.3%determined by fluorescence activated cell sorter (FACS). Western blotresults showed a specific protein lane at 54KDa position. These resultssuggested that transfer of LMP2A could be efficiently mediated byrecombinant retrovirus. Western blot results also confirmed it. LMP2Aprotein was extracted and purified by His Bind Ni-NTA affinitychromatography column, the purity of over 90% LMP2A protein wasobtained.
     The purified recombinant protein LMP2A was used as an antigen todetect specific antibodies in the sera from NPC patients. 72.29% patientswere positive for anti-LMP2A IgG. These studies demonstrate the potentialsignificance of LMP2A-specific Abs for the diagnosis and prognosis ofEBV-associated malignancies, especially of NPC.
     PartⅡ. Induction and identification of dendritic cells from humanperipheral blood monoeytes and load of DC with EBV-LMP2Apurified protein
     The monocytes were isolated from PBMC of a healthy EBV carrier and cultured with the cytokines (rhGM-CSF, rhIL-4), followed by additional 2days with TNF-α, yielding mature DCs. The morphological changes wereobserved by confocal analysis. The surface molecule of DCsIncluding CD80 and MHC classⅡwere measured by FACS. The resultsshowed that immature could be obtained from PBMC cultured in themedium containing GM-CSF and IL-4. DCs relative specific markerCDla, CD83 and co-stimulational monocular CDS0, HLA-DR wereexpressed low, while monocyte specific marker CD14 was relative high.When the immature DCs were cultured for additional two days in thepresence of TNF-α, mature DCs were harvested and express high level ofCD1a、CD83 and CD80、HLA-DR, while CD14 express low. DCs typicalcharacteristics were observed by morphological microscope. In addition,mature DC had potent ablility to stimulate the proliferation of allogeneic Tcells.
     Immature DCs were loaded with EBV-LMP2A purified protein atdifferent concentrations. The ability of DCs capture antigen was observedby confocal analysis and a suitable protein concentration was selected byFACS. The alteration of surface markers on mature DC including CDla,CD83, CD80 and HLA-DR was detected by means of FACS before andafter loaded with suitable LMP2A protein. The stimulatory effect of DCson proliferation of T lymphocytes was examined by ~3H-TdR incorporation.The results showed that above 80% of mature DC were expressed LMP2Aprotein after loaded with LMP2A protein at the concentration of 40μg/ml.No significant changes in the surface markers and the cytomorpholosis ofmature DC were examined during loading protein. It showed that DCsloaded antigen had no influence to the differentiation and maturation. DCsstill have strong potential to stimulate the proliferation of allogeneic T cells.The study could be the foundation of the immunotherapy with DC.
     PartⅢ. Generation and cytotoxieity assay of EBV LMP2A-specificCTL elicited by DC loaded with LMP2A protein in vitro
     Immuno-magnetic beads were used to prepare CD4~+ and CD8~+T cells.Median purity of the cell preparations was determined by flow cytometryanalysis and was routinely more than 95%. The proliferation of autologous CD4~+ cells, CD8~+T cells stimulated with Unloaded DCs (UL-DC) andloaded DCs (L-DC) was measured by methods of ~3H-TdR incorporation.The proliferative responses of CD8~+T and CD4~+ T cells to L-DC weresignificantly increased compared to those from UL-DC (P<0.001,P<0.001). The results demonstrate that DCs capture LMP2A protein andpresent their Ags to autologous T cells and LMP2A protein containsMHC-ⅠandⅡclass restricted epitopes. We tested the IFN-γand IL-10secretion from UL-DC and L-DC stimulated CD4~+T cells by ELISA andfound that L-DC stimulated CD4~+T secreted higher levels of IFN-γthanthose from UL-DC(P=0.034), but the level of IL-10 was rarely detected ineither group.
     EBV LMP2A gene recombinant retrovirus vector pGEZ-Term/LMP2A was established which contains GFP report gene. 293T cells wereco-transfected with recombinant retroviral expression vectorpGEZ-Term/LMP2A and two auxiliary viral vectors pHIT456 and pHIT60by lipofectAMINE2000. Colonies were isolated by zeocine. Supernatantsof cloned packing cells were harvested, which contain recombinantretrovirus. The monocytes were isolated from PBMC and incubated withGM-CSF and IL-4 medium. After a 24-h incubation, the cells weretransduced with retrovirus supernatants and polybrene at a finalconcentration of 8μg/ml. The supematant were replaced with GM-CSFand IL-4 medium 2-3h later. The transduction procedure was repeated threetimes. After 6 days later, TNF-αwas added and mature DCs wereharvested after additional 2 days culture. The surface molecule of DCs andthe efficiency of LMP2A expression were measured by FACS. The resultsshowed that 56.4% of DCs can express LMP2A determined by FACS.
     Immuno-magnetic beads were used to prepare EBV-LMP2A specificCD8~+ T cells, which were then restimulated with autologous DC loadedwith LMP2A protein. Cytotoxicity of LMP2A specific CTL wasdetermined with LDH release assay, the target cells are autologous DCtransduced with recombinant retrovirus pGEZ-Term/LMP2A、autologousLCL and K562 cells separately. We evaluated IFN-γ-producing cells bothin LMP2A-specific CD4~+ T cells and CD8~+ T cells induced by L-DCstimulated with recombinant retrovirus pGEZ-Term/LMP2A by FACS. CD4~+ T cells and CD8~+ T cells induced by L-DC had significantly higherfrequency of circulating LMP2A-specific IFN-γ-producing CD4~+ T cellsand CD8~+ T cells, compared to controls (P<0.01).
     In summary, the results above suggested that LMP2A can beexpressed stably in L929 cell line, LMP2A may be of prognostic valuein NPC patients; LMP2A-specific CTL could be induced by DC loadedwith LMP2A protein in healthy EBV carriers in vitro and elicitcytotoxicity to autologous DC tranceduced with recombinantretrovirus pGEZ-Term/LMP2A. Such results could be the foundationfor the further immunotherapy of NPC in clinical trails; moreover,this research provides experimental and theoretical basis for othervirus related tumor immunotherapy.
引文
[1] Burkitt DP. A sarcoma involving the jaws in African children. Br. J. Surg 1958, 46:218-223.
    [2] Epstein MA, Achong B and Barr, Y. Virus particles in cultured lymphoblasts from Burkitt's lymphoma. Lancet 1964,1: 702-703.
    [3] Henderson A, Ripley S, Heller M, et al. Human chromosome association of Epstein-Barr virus DNA in a Burkitt tumor cell line and in lymphocytes growth transformwd in vitro. Proc Natl Acad USA 1983, 80: 1987-1991.
    [4] Solomides CC, Miller AS, Christman RA, et al. Lymphomas of the oral cavity: histology, immunologic type, and incidence of Epstein-Barr virus infection. Hum. Pathol. 2002, 33:153-157.
    [5] Baumforth KRN, Young LS, Flavell KJ, et al. The Epstein-Barr virus and its association with human cancers. J Clin Pathol: Mol Pathol, 1999, 52 (6): 307-322.
    [6] Rickinson AB, KieV E. Epstein-Barr virus. Fields virology 1996:2397-2446.
    [7] Straus SE, Cohen JI, Tosato G, Meier J. Epstein-Barr virus infections: biology, pathogenesis, and management. Ann Intern Med 1993,118:45-58
    [8] Murray PG and Young LS. The role of the Epstein-Barr virus in human disease. Front Biosci 2002, 7d: 519-540.
    [9] Young LS, Rooney CM, Sculley TB, et al. New type B isolates of Epstein-Barr virus from Burkitt's lymphoma and from normal individuals in endemic areas. J. Gen. Virol. 1987, 68: 2853-2862.
    [10] Sixby JW, Shirley P, Chesney PJ, Buntin D M. Detection of a second widespread strain of Epstein-Barrvirus. Lancet 1989,2: 761-765.
    [11] Shu CH, Chang Y S, Liang CL, et al. Distribution of type A and type B EBV in normal individualsand patients with head and neck carcinomas in Taiwan. J. Virol.Methods 1992, 38:123-130.
    [12] Van Baarle D, Hovenkamp E, Dukers NH, et al. High prevalence of Epstein-Barr virus type 2 among homosexual men is caused by sexual transmission.J. Infect. Dis. 2000,181:2045-2049.
    [13] Nilsson, K. Human B-lymphoid cell lines. Human Cell 1992 ,5: 25-41.
    [14] Khanna R, Sherritt M, Burrows SR. EBV structural antigens, gp350 and gp85, as targets for ex vivo virus-specific CTL during acute infectious mononucleosis: potential use of gp350/gp85 CTL epitopes for vaccine design. J Immunol 1999, 162: 3063-3069.
    [15] Tanner J, Weis J, Fearon D, Whang Y. Epstein-Barr virus gp350/220 binding to the B lymphocyte C3d receptor mediatesabsorption, capping, and endocytosis. Cell 1987,50: 203-213.
    [16] Tanner J, Alfieri C, Chatila T. Induction of interleukin-6 after stimulation of human B-cell CD21 by Epstein-Barr virus glycoproteins gp350 and gp220. J Virol. 1996,70: 570-575.
    [17] Rowe D. Epstein-Barr virus immortalization and latency. Front Biosci. 1999, 4: 346-371.
    [18] Babcock GJ, Decker LL, Volk M, et al. EBV persistence in memory B cells in vivo. Immunity 1998,9:395-404.
    [19] Miyashita EM, Yang B, Lam KMC, et al. A novel form of Epstein-Barr virus latency in normal B cells in vivo. Cell 1995, 80:593-601.
    [20] Niedobitek G, Agathanggelou A, Herbst H, et al. Epstein-Barr virus (EBV) infection in infectious mononucleosis:virus latency, replication and phenotype of EBV-infectedcells. J Pathol 1997,182:151-9.
    [21] Tierney RJ, Steven N, Young LS, et al. Epstein-Barr virus latency in blood mononuclear cells: analysis of viral gene transcription during primary infection and in the carrier state. J Virol 1994, 68:7374-85.
    [22] Niedobitek G, Agathanggelou A, Steven N, et al. Epstein-Barr virus (EBV) in infectious mononucleosis: detection of the virus in tonsillar B lymphocytes but not in desquamated oropharyngeal epithelial cells. J Clin Pathol: Mol Pathol 2000, 53:37-42.
    [23] Karajannis MA, Hummel M, Anagnostopoulos I, et al. Strict lymphotropism of Epstein-Barr virus during acute infectious mononucleosis in nonimmunocompromised individuals. Blood 1997;89:2856-62.
    [24] Tao Q, Srivastava G, Chan ACL, et al. Evidence for lytic infection by Epstein-Barr virus in mucosal lymphocytes instead of nasopharyngeal epithelial cells in normal individuals. J Med Virol 1995,45:71-7.
    [25] Niedobitek G, Young LS. Epstein-Barr virus and non-Hodgkin's lymphomas. The non-Hodgkin's lymphomas, 2nded. London: Arnold 1997:309-29.
    [26] Bonnet M, Guinebretiere JM, Kremmer E, et al. Detectionof Epstein-Barr virus in invasive breast cancers. J Natl Cancer Inst 1999, 91:1376-81.
    [27] Sasagawa T, Shimakage M, Nakamura M, et al. Epstein-Barr virus genes expression in cervical intraepithelial neoplasia and invasive cervical cancer: a comparative studywith human papillomavirus infection. Hum Pathol 2000, 31:318-26.
    [28] McClain KL, Leach CT, Jenson HB, et al. Association of Epstein-Barr virus with leiomyosarcomas in young people with AIDS. New Engl J Med, 1995, 332:12-18.
    [29] Lee ES, Locker J, Nalesnik M, et al. The association of Epstein-Barr virus with smooth-muscle tumors occurring after organ transplantation. New Engl J Med 1995, 332:19-24
    [30] Kikuta H, Sakiyama Y, Matsumoto S, et al. Fatal Epstein-Barr virus-associated hemophagocytic syndrome. Blood 1993, 82:3259-3264
    [31] Su IJ, Wang CH, Cheng AL, Chen RL. Hemophagocytic syndrome in Epstein-Barr virus-associated T-lymphoproliferative disorders: disease spectrum, pathogenesis, and management. Leuk Lymphoma. 1995, 19:401-406
    [32] Tosato G,Magrath I, Koski I, et al. Activation of suppressor T cells during Epstein-Barr-virus-induced infectious mononucleosis. N Engl J Med 1979, 201: 1133-7.
    [33] Trapani JA, Sutton VR, Smyth MJ. CTL granules: evolution of vesicles essential for combating virus infection. Immunol Today 1999, 20:351-356
    [34] Rickinson AB, Moss DJ. Human cytotoxic T lymphocyte responses to Epstein-Barr virus infection. Annu Rev Immunol 1997, 15: 405-431.
    [31] Khanna R, Busson P, Burrows SR, et al. Molecular characterization of antigen-processing function in nasopharyngeal carcinoma: evidence for efficient presentation of Epstein-Barr virus cytotoxic T-cell epitopes by NPC cells.Cancer Res 1998; 58: 310-314.
    [32] Khanna R, Burrows SR, Role of cytotoxic T lymphocytes in Epstein-Barr virus-associated disease. Annu Rev Microbiol, 2000; 54:19-48.
    [33] Callan, M. F. C., J. Steven, P. Krausa, J. D. K. Wilson, P. A. H. Moss, G. M. Gillespie, J. I. Bell, A. B. Rickinson, A. J. McMichael. Large clonal expansions of CD8+ T-cells in acute infectious mononucleosis. Nat. Med 1996; 2:906-911.
    [34] Tan LC, Gudgeon N, Annels, NE, et al. A re-evaluation of the frequency of CD8+ T cells specific for EBV in healthy virus carriers. J. Immunol 1999; 162:1827-1832.
    [35] Steven PL, Anthony TC, Wendy A, et al. CTL Control of EBV in Nasopharyngeal Carcinoma (NPC): EBV-Specific CTL Responses in the Blood and Tumors of NPC Patients and the Antigen-Processing Function of the Tumor Cells. J Immunol 2000 Jul; 165: 573.
    [36] Bollard CM, Aguilar KC, Straathof B, et al. Cytotoxic T lymphocyte therapy for Epstein-Barr virus+ Hodgkin's disease. J Exp Med 2004; 200:1623-1633
    [37] Rooney CM, Smith CA, Brenner MK, et al. Prophylaxis and treatment of Epstein-Barr virus lymphoproliferative diseaseusing genetically modified cytotoxic T lymphocytes. Lancet 1995; 345:9-13.
    [38] Gustafsson A, Levitsky V, Zou JZ, et al. Epstein-Barr virus (EBV) load in bone marrow transplant recipients at risk to develop posttransplant lymphoproliferative disease: prophylactic infusion of EBV-specific cytotoxic T cells. Blood 2000; 95:807-812
    [39] Haque T, Amlot PL, Helling N, et al. Reconstitution of EBV-specific T cell immunity in solid organ transplant recipients. J Immunol 1998; 160:6204-6209.
    [40] Khanna R, Bell S, Sherritt M, et al. Activation and adoptive transfer of Epstein-Barr virus-specific cytotoxic T cells in solid organ transplant patients with posttransplant lymphoproliferative disease. Proc Natl Acad Sci 1999; 96:1039-1043.
    [41] Kanegane H, Miyawaki T, Kato K, et al. A novel subpopulation of CD45RA+ CD4+ T cells expressing IL-2 receptor -chain (CD25) and having a functionally transitional nature into memory cells. Int Immunol 1991 Dec; 3: 1349 -1356.
    [42] Tan LC, Annels N, Rickenson AB, et al. A reevaluation of the frequency of cytotoxic T-cells specific for Epstein-Barr virus in longtermvirus carriers. J Immunol 1999; 162:1827-1835.
    [43] Tellam J, Connolly G, Green, KJ, et al. Endogenous presentation of CD8+ T cell epitopes from Epstein-Barr virus-encoded nuclear antigen 1. J Exp Med 2004; 199:1421-1431.
    [44] Christian M, Kara LB, Marion S, Ming L, et al. Human CD4+ T Lymphocytes Consistently Respond to the Latent Epstein-Barr Virus Nuclear Antigen EBNA1. J Exp Med May 2000; 191: 1649-1654.
    [45] Stephen G, Oliver LE, Uluhan S, et al. Generating CTLs against the subdominant Epstein-Barr virus LMP1 antigen for the adoptive immunotherapy of EBV-associated malignancies. Blood Mar 2003; 101: 1905 -1912.
    [46] Jaikumar D, Martina S, Scott T, et al. Therapeutic LMP1 polyepitope vaccine for EBV-associated Hodgkin disease and nasopharyngeal carcinoma. Blood Apr 2003; 101:3150-3156.
    [47] Heussinger N, Buttner M, Ott G, et al. Expression of the Epstein-Barr virus (EBV)-encoded latent membrane protein 2A (LMP2A) in EBV-associated nasopharyngeal carcinoma. J Pathol 2004; 203:696-699.
    [48] Catherine MB, Elizabeth B, Helen H, et al.The Use of Autologous LMP2-Specific Cytotoxic T Lymphocytes (CTL) for the Treatment of Relapsed EBV-Positive Hodgkin Disease and Non-Hodgkin Lymphoma. Blood Nov 2005; 106: 773-776.
    [49] Barbara S , John AG , Markus MH, et al. Treatment of solid organ transplant recipients with autologous Epstein Barr virus-specific cytotoxic T lymphocytes (CTLs). Blood Nov 2006; 108: 2942 - 2949.
    [50] SP Lee, JM Brooks, Hatim AJ, et al. CD8 T Cell Recognition of Endogenously Expressed Epstein-Barr Virus Nuclear Antigen 1. J Exp Med May 2004; 199: 1409-1420.
    [51] David HD, Masayuki N, Joanne CP, et al. Inactivation of NF-κB by EBV BZLF-1 -Encoded ZEBRA Protein in Human T Cells. J Immunol Dec 1999; 163: 6261-6265.
    [52] Laura JP, Catherine CH, Tristana O, et al. Interleukin-10 Blocks Atherosclerotic Events In Vitro and In Vivo. Arterioscler Thromb Vasc Biol Dec 1999; 19: 2847.
    [53] Yang Z, Chen M, Wu R, et al. Suppression of Autoimmune Diabetes by Viral IL-10 Gene Transfer J Immunol Jun 2002; 168: 6479-6483.
    [54] Masood R, Zhang Y, Bond MW, et al. Interleukin-10 is an autocrine growth factor for acquired immunodeficiency syndrome-related B-cell lymphoma . Blood Jun 1995; 85: 3423-3430.
    [55] Hratch A, Viktor V, Florence L, et al. Epstein-Barr Virus (EBV) Genome and Expression in Breast Cancer Tissue: Effect of EBV Infection of Breast Cancer Cells on Resistance to Paclitaxel (Taxol). J Virol Jan 2006; 80: 845 - 853.
    [56] Zhang Y, Ohyashiki JH, Takaku T, et al. The molecular signature of viral and cellular genes in Epstein-Barr (EB) virus-associated T/NK-cell lymphoproliferative disorders (LPD). AACR Meeting Abstracts Apr 2005; 2005: 81.
    [57] David HD, Masayuki N, Colm AK, et al. Stable expression of Epstein-Barr virus BZLF-1-encoded ZEBRA protein activates p53-dependent transcription in human Jurkat T-lymphoblastoid cells. Blood Jul 2000; 96: 625 - 634.
    [58] Steven PL, Lesley EW, Michael M, et al. MHC class II-restricted presentation of endogenously synthesized antigen: Epstein-Barr virus transformed B cell lines can present the viral glycoprotein gp340 by two distinct pathways. Int Immunol May 1993; 5: 451-460.
    [59] C Thomas, A Dankesreiter, H Wolf, and F Schwarzmann.The BZLF1 promoter of Epstein-Barr virus is controlled by E box-/HI-motif-binding factors during virus latency. J Gen Virol Apr 2003; 84: 959 - 964.
    [60] Gasque P, Chan P, Mauger C, et al. Identification and characterization of complement C3 receptors on human astrocytes. J Immunol Mar 1996; 156: 2247-2231.
    [61] Chang ET and Adam HO. The Enigmatic Epidemiology of Nasopharyngeal Carcinoma. Cancer Ep idemiol. Biomarkers Prev Oct 2006; 15:1765 -1777.
    [63] Sun LM, Epplein M, Li CI, et al. Trends in the Incidence Rates of Nasopharyngeal Carcinoma among Chinese Americans Living in Los Angeles County and the San Francisco Metropolitan Area, 1992-2002. Am J Epidemiol Dec 2005; 162: 1174 - 1178.
    [64] Dimery IW, Peters LJ, Goepfert H, et al. Effectiveness of combined induction chemotherapy and radiotherapy in advanced nasopharyngeal carcinoma. J Clin Oncol Oct 1993; 11: 1919-1928.
    [65] Casanova M, Ferrari A, Gandola L, et al. Undifferentiated nasopharyngeal carcinoma in children and adolescents: Comparison between staging systems. Ann Onc Aug 2001; 12: 1157-1162.
    [66] Yang R, Diehl S, Pfeiffer R, et al. Evaluation of Risk Factors for Nasopharyngeal Carcinoma in High-Risk Nasopharyngeal Carcinoma Families in Taiwan. Cancer Epidemiol Biomarkers Prev Apr 2005; 14: 900 - 905.
    [67] Foo KF, Tan EH, Leong SS, et al. Gemcitabine in metastatic nasopharyngeal carcinoma of the undifferentiated type. Ann Onc Jan 2002; 13: 150 - 156.
    [68] Hao SP, Tsang NM, and CN Chang. Salvage Surgery for Recurrent Nasopharyngeal Carcinoma. Arch Otolaryngol Head Neck Surg Jan 2002; 128: 63-67.
    [69] Leung Sf, Tam JS, Chart ATC, et al. Improved Accuracy of Detection of Nasopharyngeal Carcinoma by Combined Application of Circulating Epstein-Ban" Virus DNA and Anti-Epstein-Barr Viral Capsid Antigen IgA Antibody. Clin Chem Feb 2004; 50: 339-345.
    [70] Mould RF and Tai THP. Nasopharyngeal carcinoma: treatments and outcomes in the 20th century. Br J Radiol Apr 2002; 75: 307-310.
    [71] Chart ATC, Teo PML, and Johnson PJ. Nasopharyngeal carcinoma. Ann Onc Jul 2002; 13: 1007-1015.
    [72] 洪明晃,郭翔主编.鼻咽癌.第1版.北京:中国医药科技出版社,2003,12.
    [73] 田永泉主编.耳鼻咽喉.头颈外科学.第6版.北京:人民卫生出版社,2004,8.
    [74] MP Thompson and Kurzrock R.Epstein-Barr Virus and Cancer. Clin Cancer Res Feb 2004; 10: 803.
    [75] Liu MT, Hsieh CY, Chang TH, et al. Prognostic Factors Affecting the Outcome of Nasopharyngeal Carcinoma Jpn J Clin Oncol Oct 2003; 33:501-508.
    [76] Ou SH, Zell JA, Ziogas A, et al. Epidemiology of nasopharyngeal carcinoma in the United States: improved survival of Chinese patients within the keratinizing squamous cell carcinoma histology. Ann Onc Jan 2007; 18:29-35.
    [77] Sahraoui S, Acharki A, Benider A, et al. Nasopharyngeal carcinoma in children under 15 years of age: A retrospective review of 65 patients. Ann Onc Dec 1999; 10: 1499-1502.
    [78] Hildesheim A, Anderson LM, Chen C J, et al. CYP2E1 genetic polymorphisms and risk of nasopharyngeal carcinoma in Taiwan. J Natl Cancer Inst, Aug 1997; 89: 1207-1212.
    [79] L Dong, Masaki Y, Takegami T, et al. Cloning and expression of two human recombinant monoclonal Fab fragments specific for EBV viral capsid antigen. Int Immunol Mar 2007; 19:331-336.
    [80] Fachiroh J, Paramita DK, Hariwiyanto B, et al.Single-Assay Combination of Epstein-Barr Virus (EBV) EBNA1-and Viral Capsid Antigen-pl8-Derived Synthetic Peptides for Measuring Anti-EBV Immunoglobulin G (IgG) and IgA Antibody Levels in Sera from Nasopharyngeal Carcinoma Patients: Options for Field Screening. J Clin Microbiol Apr 2006; 44:1459-1467.
    [81] Zhang Y, Huang Y, Xiao J, Y. Xia, et al. Manifestation and prognostic value of EBV serology in nasal/nasopharyngeal T and NK-cell lymphomas. ASCO Meeting Abstracts Jun 2006; 24: 7596-7580.
    [82] Stevens SJC, Verkuijlen SAWM, Hariwiyanto B, et al. Diagnostic Value of Measuring Epstein-Barr Virus (EBV) DNA Load and Carcinoma-Specific Viral mRNA in Relation to Anti-EBV Immunoglobulin A (IgA) and IgG Antibody Levels in Blood of Nasopharyngeal Carcinoma Patients from Indonesia. J Clin Microbiol Jul 2005; 43:3066-3073.
    [83] Grunsven WM, Heerde EC, Haard HJ, et al.Gene mapping and expression of two immunodominant Epstein-Barr virus capsid proteins. J Virol Jul 1993; 67:3908-3916.
    [84] Glaser R, Strain EC, Tan" KL, et al. Changes in Epstein-Barr virus antibody titers associated with aging. Proc Soc Exp Biol Med Jul 1985; 179: 352.
    [85] Leung S, Tam JS, Chan ATC, et al. Improved Accuracy of Detection of Nasopharyngeai Carcinoma by Combined Application of Circulating Epstein-Barr Virus DNA and Anti-Epstein-Barr Viral Capsid Antigen IgA Antibody. Clin Chem Feb 2004; 50:339-345.
    [86] Agbalika F, Larghero J, Marais D, et ai.Recipient Epstein Barr Virus (EBV) Seropositivity with IgG Antibodies Against Early Antigens (EA) Could Be a Predictive Marker for the Early Onset of Post Transplant Lymphoproliferative Disorders (PTLDs) after Allogeneic Non T Depleted Stem Cell Transplantation. Blood, Nov 2004; 104: 2263.
    [87] Linderholm M, Boman J, Juto P, et al.Comparative evaluation of nine kits for rapid diagnosis of infectious mononucleosis and Epstein-Barr virus-specific serology. J Clin Microbiol Jan 1994; 32:259-261.
    [88] 李泽卿,肖健云,田勇泉,等血清EB病毒特异性DNA酶抗体的检测[J]中国耳鼻咽喉颅底外科杂志,2000,6;71-73.
    [89] Finerty S, Tarlton J, Mackett M, et al. Protective immunization against Epstein-Barr virus-induced disease in cottontop tamarins using the virus envelope glycoprotein gp340 produced from a bovine papillomavirus expression vector. J Gen Virol Feb 1992; 73:449-453.
    [90] Straathof KCM, Bollard CM, Popat U, et al.Treatment of nasopharyngeal carcinoma with Epstein-Barr virus-specific T lymphocytes. Blood Mar 2005; 105: 1898-1904.
    [91] Redchenko IV, Rickinson AB. Accessing Epstein-Barr virus-specific T cell memory with peptide loaded dendritic cells. J of Virol, 1999, 73: 334-342.
    [92] Li JH, Chia M, Shi W, et al. Tumor-targeted gene therapy for nasopharyngeal carcinoma. Cancer Res, 2002, 62 (1): 171-178.
    [93] Subklewe M, Chahroudi A, Schmaijohn A, et al. Induction of Epstein-Barr vires specific cytotoxic T lymphocyte responses using dendritic cells pulsed with EBNA-3A peptides or uv-inactivated recombinant EBNA-3A vaccinia virus. Blood, 1999, 94: 1372-1381.
    [94] Rooney CM, Roskyow MA, Suzuki N. Treatment of relapsed Hodgkin's disease using EBV-specific cytotoxic T cells. Ann Oncol, 1998, 9 (Suppl 5): S129-132.
    [95] Roony CM,Smith CA, Ng CY, et al. Infusion of cytotoxic T cells for the prevention and treatment of Rpstein-Barr virus-induced lymphoma in allogeneic transplant recipients. Blood, 1998,92 : 15492-1555.
    [96] Duraiswamy J, Sherritt M, Thomson S, et al. Therapeutic LMP1 polyepitope vaccine for EBV-associated Hodgkin disease and nasopharyngeal carcinoma.Blood, Apr 2003; 101: 3150-3156.
    [97] Murray PG, Constandinou CM, Crocker J, et al. Analysis of Major Histocompatibility Complex Class Ⅰ, TAP Expression, and LMP2 Epitope Sequence in Epstein-Barr Vires-Positive Hodgkin's Disease Blood Oct 1998; 92: 2477-2483.
    [98] Karin C, Straathof, Ann ML, et al. Characterization of Latent Membrane Protein-Specificity in CTL Lines from Patients with EBV-Positive Nasopharyngeal Carcinoma and Lymphoma. J Immunol 2005,175 : 413724147.
    [99] 姚堃,彭光勇,谢芳艺,丁传林,周锋。EB病毒潜伏膜蛋白2A重组体外转染树突状细胞激发特异性CTL的研究。中国免疫学杂志2004;20(12):1-6
    [100] 姚堃,许继军,彭光勇,丁传林,周锋,谢芳艺。EB病毒LMP2A特异性CTL的体外诱导及分析。现代免疫学杂志2004;24(3):194-197。
    [101] Sun Hua, Yao Kun, Chen Yun, Zhou Fengo Induction of T-cell immunity against Epstein-Barr virus associated tumors by means of adenovirally transduced dendritic cells. Chinese Medical Journal 2004; 117(10): 1558-1563
    [102] 许继军,姚堃,彭光勇,谢芳艺,丁传林,朱建中。痘苗病毒载体介导爱波斯坦-巴尔病毒潜伏期膜蛋白2A基因转染树突状细胞对其功能的影响.南京医科大学学报2002;22(3):179-182
    [103] 彭光勇,姚堃,许琳,徐江英,谢芳艺。EB病毒潜伏膜蛋白2A重组腺病毒的制备及表达。中国免疫学2002;18(3):155-161
    [104] 彭光勇,姚堃,谢芳艺,许继军,丁传林。腺病毒载体介导EB病毒潜伏膜蛋白2A基因转染树突状细胞对其功能的影响。中华实验和临床病毒学杂志2002:16(2):171-175
    [105] Xu Jie-jie, Yao Kun, Yu Cheng-jie, Chen Xi, Sun-Hua, Li Po-Zhou. The biological characteristics in vitro and anti-NPC effect in vivo of CTL induced by Ad5-LMP2A transfected DCs. Chinese Medical Journal 2006;
    [106] 王湛,周玲,吴小兵等.Ad2LMP2重组腺病毒疫苗在恒河猴体内免疫效果的研究.中华实验与临床病毒学杂志,2006,20:62-65.
    [107] Subklewe M, Paludan C, Tsang ML, et al. Dendritic Cells Cross-present Latency Gene Products from Epstein-Barr Virus-transformed B Cells and Expand Tumor-reactive CD8+ Killer T CellsJ. Exp. Med., Feb 2001; 193: 405.
    [108] K Sebelin, A Meier, Matthias P, et al. Analysis of EBV-Specific T Cell Responses in Transplant Recipients with PTLD. Blood Nov 2005; 106: 1915-1918.
    [109] Redchenko Ⅳ and Rickinson AB.Accessing Epstein-Ban" Virus-Specific T-Cell Memory with Peptide-Loaded Dendritic Cells. J Virol Jan 1999; 73: 334-342.
    [110] Su Z, Peluso MV, Raffegerst SH, et al. The generation of Lrnp2a-specific cytotoxic T lymphocytes for the treatment of patients with Epstein-Barr virus-positive Hodgkin disease. Eur J Immunol, 2001,31: 947-958.
    [111] CM Bollard, E Buza, H Huls, et al.The Use of Autologous LMP2-Specific Cytotoxic T Lymphocytes (CTL) for the Treatment of Relapsed EBV-Positive Hodgkin Disease and Non-Hodgkin Lymphoma. Blood (ASH Annual Meeting Abstracts), Nov 2005; 106: 773.
    [112] Gahn B, Siller-Lopez F, Pirooz AD, et al. Adenoviral gene transfer into dendritic cells efficiently amplifies the immune response to Lmp2A antigen: a potential treatment strategy for Epsstein-Barr virus-positive Hodgkin's lymphoma. Int J Cancer, 2001, 93: 706-713.
    [1] Baumforth KRN, Young LS, Flavell KJ, et al. The Epstein-Barr vires and its association with human cancers. J Clin Pathol: Mol Pathol, 1999, 52 (6): 307-322.
    [2] Rickinson AB, KieV E. Epstein-Barr virus. Fields virology 1996:2397-2446.
    [3] Chan ATC, Teo PML, and Johnson PJ. Nasopharyngeal carcinoma. Ann Onc Jul 2002; 13: 1007-1015.
    [4] MP Thompson and Kurzrock R. Epstein-Barr Vires and Cancer. Clin Cancer Res Feb 2004; 10: 803.
    [5] Li JH, Chia M, Shi W, et al. Tumor-targeted gene therapy for nasopharyngeal carcinoma. Cancer Res, 2002, 62 (1): 171-178.
    [6] Karin C, Straathof, Ann ML, et al. Characterization of Latent Membrane Protein-Specificity in CTL Lines from Patients with EBV-Positive Nasopharyngeal Carcinoma and Lymphoma. J Immunol 2005, 175: 413724147.
    [7] Khanna R, Burrows SR, Role of eytotoxic T lymphocytes in Epstein-Barr virus-associated disease. Annu Rev Microbiol, 2000 ; 54: 19-48.
    [8] Steven PL, Anthony TC, Wendy A, et al. CTL Control of EBV in Nasopharyngeal Carcinoma (NPC): EBV-Specific CTL Responses in the Blood and Tumors of NPC Patients and the Antigen-Processing Function of the Tumor Cells. J Immunol 2000 Jul; 165: 573.
    [9] Stephen G, Oliver LE, Uluhan S, et al. Generating CTLs against the subdominant Epstein-Barr virus LMP1 antigen for the adoptive immunotherapy of EBV-associated malignancies. Blood Mar 2003; 101: 1905-1912.
    [10] Niedobitek G. Epstein-Barr virus infection in the pathogenesis of nasopharyngeal carcinoma. J Clin Pathol: Mol Pathol, 2000, 53 (5): 248-254.
    [11] Izumi KM. Identification of EBV transforming genes by recombinant EBV technology. Sem Cancer Biol, 2001,11: 407-414.
    [12] Imai S, Nishikawa, Takada K, et al. Cell-to-cell contact as an efficient mode of Epstein-Barr virus infection of diverse human epithelial cells. J Virol, 1998, 72 (2) : 4371-4378.
    [13] Voo KS, Fu T, Wang HY, et al. Evidence for the Presentation of Major Histocompatibility Complex Class I-restricted Epstein-Barr Virus Nuclear Antigen 1 Peptides to CD8+ T Lymphocyte. J Exp Med Feb 2004; 199: 459.
    [14] Voo KS, Peng GY, Z Guo, et al. Functional Characterization of EBV-Encoded Nuclear Antigen 1-Specific CD4+ Helper and Regulatory T Cells Elicited by In vitro Peptide Stimulation. Cancer Res Feb 2005; 65: 1577 -1586.
    [15] Ahsan N, Kanda T, Nagashima K, et al.Epstein-Barr Virus Transforming Protein LMP1 Plays a Critical Role in Virus Production. J Virol Apr 2005; 79: 4415 -4424.
    [16] Rickinson AB, Moss DJ. Human cytotoxic T lymphocyte responses to Epstein-Barr virus infection. Annu Rev Immunol, 1997,15: 405-431.
    [17] Li JH, Chia M, Shi W, et al. Tumor-targeted gene therapy for nasopharyngeal carcinoma. Cancer Res, 2002, 62 (1): 171-178.
    [18] Steven PL, Rosemary JT, Wendy AT, et al. Lee SP, Tierney RJ, Thomas WA, et al. Conserved CTL Epitopes within EBV Latent Membrane Protein 2: A potential target for CTL-based tumor therapy. J Immunol, 1997,158: 3325-3334.
    [19] Gahn B, Siller-Lopez F, Pirooz AD, et al. Adenoviral gene transfer into dendritic cells efficiently amplifies the immune response to Lmp2A antigen: a potential treatment strategy for Epsstein-Barr virus-positive Hodgkin's lymphoma. Int J Cancer, 2001, 93: 706-713.
    [20] Karin C, Straathof, Ann ML, et al. Characterization of Latent Membrane Protein -Specificity in CTL Lines from Patients with EBV-Positive Nasopharyngeal Carcinoma and Lymphoma. J Immunol 2005 ,175 : 413724147.
    [1] Yao V,Platell C,Hall JC. Dendritic cells. ANZJ Surgery 2002, 72 (7):501-506.
    [2] Hart DNJ. Dendritic cells: unique leukocyte populations which control the primary immune response. Blood, 1997, 90: 3245-3287.
    [3] Inaba K. Dendritic cells as antigen-presenting cells in vivo. Immunol Cell Biol, 1997, 75: 206-208.
    [4] Mailliard RB, Dallal RM, Son Yi, et al. Dendritic ceils promote T-cell survival or death depending upon their maturation state and presentation of antigen [J]. Immunol Invest, 2000, 29 (2): 177-185.
    [5] Steinman RM. The dendritic cell system and its role in immunogenicity. Annu Rev Immunol, 1991, 9: 271-296.
    [6] Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature, 1998, 392: 245-252.
    [7] Immerman JM, Levy R. Dendritic cell vaccines for cancer immunotherapy. Annu Rev Med, 1999, 50: 507-529.
    [8] Mackensen A,Herbst B,Chen JL, et al. Phase I study in melanoma patientsof a vaccine with peptide2pulsed dendritic cells generated in vitro fromCD34+ hematopoietic progenitor cells. Int. J Cancer, 2000, 86 (3):385-392.
    [9] Steinman RM, Cohn ZA. Identification of a novell cell type in peripheral lymphoid organs of mice.I. Morphology, quantiaton, tissue distribution. J Exp Med, 1973, 137: 1142-1162.
    [10] 王月丹,谢玮,邱玉华等.细胞因子诱导不同来源的贴壁细胞分化为树突状细胞的研究.上海免疫学杂志,2000,3:140-144.
    [11] Young JW, Szabolcs P, Moore MAS. Identification of dendritic cell colony-forming units among normal human CD34+ Bone marrow progenitors of GM-CSF and TNF-α. J Exp Med, 1995, 182: 1111-1120.
    [12] Berthier R,Martinon-Ego C, Lahade AM,et al. A two-step culture method starting with early growth factors permits enhanced production of functional dendritic cells from murine splenocytes. J Immunol Methods, 2000, 239(5) :952107.
    [13] Seager Danciger J, Lutz M,Hama S, et al. Method for large scale isolation ,culture and cryopreservation of human monocytes suitable for chemotaxis ,cellular adhesion assays, macrophage and dendritic cell differentiation. J Immunol Methods, 2004, 288 (122): 123-134.
    [14] Aichun Liu, Takahashi M, Narita M, et al. Generation of function and mature dendritic cells from cord blood and bone marrow CD34+ cells by two-step culture combined with calcium ionophore treatment. J Immunol Methods, 2002, 261(122): 49-63.
    [15] Goxe B, Latour N, Chokri M, et al. Simplified method to generate large quantities of dendritic cells suitable for clinical applications. Immunol Inv, 2000, 29 (3): 319-336.
    [16] Olweus J, BitMansour A, Wamke R, et al. Dendritic cell ontogeny: a human dendritic cell lineage of myeloid origin. Proc Natl Acad Sci USA, 1997, 94: 12551-12556.
    [17] Nouri-Shirazi M, Banchereau J, Fay J, et al. Dendritic cell based tumor vaccines. Immunology Letters, 2000, 74: 5-10.
    [18] Jenne L, Schuler G, Steinkasserer A, et al. Viral vectors for dendritic cell-based immunotherapy. TRENDS in immunology, 2001, 22:102-107.
    [19] Jonuleit H, Schmitt E, Steinbrink K, et al. Dendritic cells as a tool to induce anergic and regulatory T cells. Trends Immunol, 2001, 22 (7): 394-400.
    [20] Res P, Martinez CE, Cristina JA, et al. CD34+CD38dim cells in the human thymus can differentiate into T, Nature Killer, and dendritic cells but are distinct from pluripotent stem cells. Blood, 1996, 87: 5196-5206.
    [21] Gunzer M, Janich S, Varga G, et al. Dendritic cells and tumor immunity. Seminars in Immunology, 2001, 13: 291-302.
    [22] Marten A, Renoth S, Heinicke T, et al. Allogeneic dendritic cells fused with tumor cells : preclinical results and outcome of a clinical phase Ⅰ/Ⅱ trial in patients with metastatic renal cell carcinoma. Hum Gene Ther, 2003, 14 (5) :483-494.
    [23] Rhea D, Johnson ME, Havenga MJE, et al. Strategies for improved antigen delivery into dendritic cells. TRENDS in molecular Medicine, 2001, 7:91-94.
    [24] 彭光勇,姚堃。诱导特异性CTL为基础的EBV相关肿瘤免疫治疗策策略。细胞与分子免疫学杂志,2002,18(2):198-200.
    [25] 彭光勇,姚堃,谢芳艺,等。腺病毒载体介导EB病毒潜伏期膜蛋白2A基 因转染树突状细胞对其功能的影响。中华实验与临床病毒学杂志,2002,16(2):94-98
    [26] Su Z, Peluso M, Raffegerst SH, et al. The generation of LMP2a-specific cytotoxic T lymphocytes for the treatment of patients with Epstein-Barr virus-positive Hodgin disease. Eur J Immunol, 2001, 31: 947-958.
    [1] Rickinson AB, Moss DJ. Human cytotoxic T lymphocyte responses to Epstein-Barr virus infection. Annu Rev Immunol 1997, 15:405-431.
    [2] Khanna R, Burrows SR, Role of cytotoxic T lymphocytes in Epstein-Barr virus-associated disease. Annu Rev Microbiol, 2000; 54 :19-48.
    [3] Callan, M. F. C., J. Steven, P. Krausa, J. D. K. Wilson, P. A. H. Moss, G. M. Gillespie, J. I. Bell, A. B. Rickinson, A. J. McMichael. Large clonal expansions of CD8+ T-cells in acute infectious mononucleosis. Nat. Med1996; 2:906-911.
    [4] Lee SP, Chan AT. C, Cheung S.T, et al. CTL control of EBV in Nasopharyngeal Carcinoma (NPC): EBV-specific CTL responses in the blood and tumors of NPC patients and the antigen-processing function of the tumor cells. J Immunol, 2000, 165: 573-582
    [5] 周玲,姚庆云,Lee S,等。鼻咽癌病人和正常人群中EB病毒特异性T细胞对靶抗原的识别和应答.病毒学报,2001,17(1):7-10
    [6] Stenger S, Mazzaccaro R J, Uyemura K,et al.Differential effects of cytolytic T cell subsets on intracellular infection. Science, 1997, 276:1684-1687
    [7] Khanna R, Busson P, Burrows SR, et al. Molecular characterization of antigen-processing function in nasopharyngeal carcinoma: evidence for efficient presentation of Epstein-Barr virus cytotoxic T-cell epitopes by NPC cells.Cancer Res 1998; 58: 310-314.
    [8] Steven PL, Anthony TC, Wendy A, et al. CTL Control of EBV in Nasopharyngeal Carcinoma (NPC): EBV-Specific CTL Responses in the Blood and Tumors of NPC Patients and the Antigen-Processing Function of the Tumor Cells. J Immunol 2000 Jul; 165: 573.
    [9] Niedobitek G. Epstein-Barr virus infection in the pathogenesis of nasopharyngeal carcinoma. J Clin Pathol: Mol Pathol, 2000, 53(5):248-254
    [10] MP Thompson and Kurzrock R.Epstein-Barr Virus and Cancer. Clin Cancer Res Feb 2004; 10: 803.
    [11] Everett E V, David N L, Ralph W. Nasopharyngeal carcinoma. The Lancet, 1997,350:1087-1091
    [12] Young L S, Dawson C W, Eliopoulos A G..The expression and function of Epstein-Barr virus encoded latent genes. J Clin Pathol: Mol Pathol, 2000, 53(5): 238-247.
    [13] 沈关心,周汝麟主编。现代免疫学实验技术。武汉:湖北科学技术出版社,1998,10
    [14] Khanna R, Burrows SR. Role of cytotoxic T lymphocytes in Epstein-Barr virus-associated disease. Annu Rev Microbiol, 2000, 54: 19-48
    [15] Khanna R, Tellam J, Duraiswamy J, et al. Immunotherapeutic strategies for EBV-associated malignancies. TRENDS in Molecular Medicine, 2001, 7(6): 270-276
    [16] 王莉,吴玉章。CTL与Th1/Th2极化。第三军医大学学报,2000,22(10):985-988
    [17] Subklewe M, Paludan C, Tsang ML, etal. Dendritic cells cross-present latency gene products from Epstein-Barr virus-transformed B cells and expand Tumor-reactive CD8+ killer T cells. J.Exp.Med, 2001, 193:405-411
    [18] Jenne L, Schuler G, Steinkasserer A, et al. Viral vectors for dendritic cell-based immunotherapy. TRENDS in immunology, 2001, 22: 102-107.
    [19] Jonuleit H, Schmitt E, Steinbrink K, et al . Dendritic cells as a tool to induce anergic and regulatory T cells. Trends Immunol, 2001, 22 (7): 394-400.
    [20] Straathof KCM, Bollard CM, Popat U, et al.Treatment of nasopharyngeal carcinoma with Epstein-Barr virus-specific T lymphocytes. Blood Mar 2005; 105: 1898-1904.
    [21] Redchenko IV, Rickinson AB. Accessing Epstein-Barr virus-specific T cell memory with peptide loaded dendritic cells. J of Virol, 1999, 73: 334-342.
    [22] Li JH, Chia M, Shi W, et al. Tumor-targeted gene therapy for nasopharyngeal carcinoma. Cancer Res, 2002, 62 (1): 171-178.
    [23] Kuss I, Hat haway B , Ferris RL , et al . Decreased absolute counts of T lymphocyte subset s and t heir relation to disease in squamous cell carcinoma of t he head and neck [J]. Clin Cancer Res 2004 ,10(11): 375523762.
    [24] Okano M. Epstein-Barr Virus infection and its role in the expanding spectrum of human diseases. Acta Paediatr 1998, 87 (1): 112
    [25] Khanna R, Tellam J, Duraiswamy J, et al. Immunotherapeutic strategies for EBV-associated malignancies. TRENDS in Molecular Medicine 2001, 7(6): 270 -276.
    [26] K Sebelin, A Meier, Matthias P, et al. Analysis of EBV-Specific T Cell Responses in Transplant Recipients with PTLD. Blood Nov 2005; 106: 1915-1918.
    [27] CM Bollard, E Buza, H Huls, et al.The Use of Autologous LMP2-Specific Cytotoxic T Lymphocytes (CTL) for the Treatment of Relapsed EBV-Positive Hodgkin Disease and Non-Hodgkin Lymphoma. Blood (ASH Annual Meeting Abstracts) Nov 2005; 106: 773.
    [28] Karin C, Straathof, Ann ML, et al. Characterization of Latent Membrane Protein -Specificity in CTL Lines from Patients with EBV-Positive Nasopharyngeal Carcinoma and Lymphoma. J Immunol 2005,175 : 413724147.
    [1] Burkitt DP. A sarcoma involving the jaws in African children. Br. J. Surg 1958, 46: 218-223.
    [2] Epstein MA, Achong B and Barr, Y. Virus particles in cultured lymphoblasts from Burkitt's lymphoma. Lancet 1964,1: 702-703.
    [3] Baumforth KRN, Young LS, Flavell KJ, et al. The Epstein-Barr virus and its association with human cancers. J Clin Pathol: Mol Pathol, 1999, 52 (6): 307-322.
    [4] Murray PG and Young LS. The role of the Epstein-Barr virus in human disease. Front Biosci 2002, 7d: 519-540.
    [5] Rickinson AB, KieV E. Epstein-Barr virus. Fields virology 1996:2397-2446.
    [6] Sixby JW, Shirley P, Chesney PJ, Buntin D M. Detection of a second widespread strain of Epstein-Barrvirus. Lancet 1989, 2:761-765.
    [7] Van Baarle D, Hovenkamp E, Dukers NH, et al. High prevalence of Epstein-Barrvirus type 2 among homosexual men is caused by sexual transmission.J. Infect. Dis. 2000, 181: 2045-2049.
    [8] Rowe D. Epstein-Barr virus immortalization and latency. Front Biosci. 1999, 4: 346-371.
    [9] Babcock GJ, Decker LL, Volk M, et al. EBV persistence in memory B cells in vivo. Immunity 1998, 9:395-404.
    [10] Fachiroh J, Paramita DK, Hariwiyanto B, et al.Single-Assay Combination of Epstein-Barr Virus (EBV) EBNA1- and Viral Capsid Antigen-p18-Derived Synthetic Peptides for Measuring Anti-EBV Immunoglobulin G (IgG) and IgA Antibody Levels in Sera from Nasopharyngeal Carcinoma Patients: Options for Field Screening. J Clin Microbiol Apr 2006; 44: 1459-1467.
    [11] Stevens SJC, Verkuijlen SAWM, Hariwiyanto B, et al. Diagnostic Value of Measuring Epstein-Barr Virus (EBV) DNA Load and Carcinoma-Specific Viral mRNA in Relation to Anti-EBV Immunoglobulin A (IgA) and IgG Antibody Levels in Blood of Nasopharyngeal Carcinoma Patients from Indonesia. J Clin Microbiol Jul 2005; 43:3066-3073.
    [12] Khanna R, Sherritt M, Burrows SR. EBV structural antigens, gp350 and gp85, as targets for ex vivo virus-specific CTL during acute infectious mononucleosis: potential use of gp350/gp85 CTL epitopes for vaccine design. J Immunol 1999, 162: 3063-3069.
    [13] Tanner J, Alfieri C, Chatila T. Induction of interleukin-6 after stimulation of human B-cell CD21 by Epstein-Barr virus glycoproteins gp350 and gp220. J Virol. 1996,70: 570-575.
    [14] Ceccarelli DFJ and Frappier L. Functional Analyses of the EBNA1 Origin DNA Binding Protein of Epstein-Barr Virus. J Virol Jun 2000; 74: 4939 - 4948.
    [15] Kempkes B, Zimber-Strobl U, Eissner G, et al. Epstein—Barr virus nuclear antigen 2 (EBNA2)-oestrogen receptor fusion proteins complement the EBNA2-deficient Epstein—Barr virus strain P3HR1 in transformation of primary B cells but suppress growth of human B cell lymphoma lines. J Gen Virol Feb 1996; 77: 227-237.
    [16] Lin J, Johannsen E, Robertson E, and Kieff E. Epstein-Barr Virus Nuclear Antigen 3C Putative Repression Domain Mediates Coactivation of the LMP1 Promoter with EBNA-2. J Viro Jan 2002; 76: 232 - 242.
    [17] Ahsan N, Kanda T, Nagashima K, and Takada K. Epstein-Barr Virus Transforming Protein LMP1 Plays a Critical Role in Virus Production. J Virol Apr 2005; 79: 4415-4424.
    [18] Goormachtigh G, Ouk T, Mougel A, et al. Autoactivation of the Epstein-Barr Virus Oncogenic Protein LMP1 during Type II Latency through Opposite Roles of the NF-κB and JNK Signaling Pathways J Virol Aug 2006; 80: 7382 - 7393.
    [19] Chen H, Hutt-Fletcher L, Cao L, et al. A Positive Autoregulatory Loop of LMP1 Expression and STAT Activation in Epithelial Cells Latently Infected with Epstein-Barr Virus. J Virol Apr 2003; 77: 4139 - 4148.
    [20] Lu J, Chua H, Chen SY, et al. Regulation of Matrix Metalloproteinase-1 by Epstein-Barr Virus Proteins. Cancer Res Jan 2003; 63: 256 - 262.
    [21] Wang S, Rowe M, and Lundgren E. Expression of the Epstein Barr Virus Transforming Protein LMP1 Causes a Rapid and Transient Stimulation of the Bcl-2 Homologue Mcl-1 Levels in B-Cell Lines. Cancer Res Oct 1996; 56: 4610 - 4613
    [22] Longnecker R, Miller C L, Miao X Q, et al.The last seven transmembrane and carboxy-terminal cytoplasmic domains of Epstein-Barr virus latent membrane protein 2 (LMP2) are dispensable for lymphocyte infection and growth transformation in vitro. J Virol Apr 1993; 67: 2006 - 2013.
    [23] Toni Portis and Richard Longnecker Epstein-Barr Virus LMP2A Interferes with Global Transcription Factor Regulation When Expressed during B-Lymphocyte Development. J Virol Jan 2003; 77: 105 -114.
    [24] Scholle F, Bendt KM, and Raab-Traub N.Epstein-Barr Virus LMP2A Transforms Epithelial Cells, Inhibits Cell Differentiation, and Activates Akt. J Virol Nov 2000; 74: 10681 -10689.
    [25] Merchant M, Caldwell RG, and Longnecker R.The LMP2A ITAM Is Essential for Providing B Cells with Development and Survival Signals In Viv.J Virol Oct 2000; 74: 9115-9124.
    [26] Rovedo M and Longnecker R.Epstein-Barr Virus Latent Membrane Protein 2B (LMP2B) Modulates LMP2A Activity. J Virol Jan 2007; 81: 84 - 94.
    [27] Felton-Edkins ZA, Kondrashov A, Karali D, et al. Epstein-Barr Virus Induces Cellular Transcription Factors to Allow Active Expression of EBER Genes by RNA Polymerase III. J Biol Chem Nov 2006; 281: 33871 - 33880.
    [28] Niedobitek G. Epstein-Barr virus infection in the pathogenesis of nasopharyngeal carcinoma. J Clin Pathol: Mol Pathol, 2000, 53 (5): 248-254.
    [29] MP Thompson and Kurzrock R.Epstein-Barr Virus and Cancer. Clin Cancer Res Feb 2004;10:803.
    [30] Chan ATC, Teo PML, and Johnson PJ. Nasopharyngeal carcinoma. Ann One Jul 2002; 13: 1007-1015.
    [31] Liu MT, Hsieh CY, Chang TH, et al. Prognostic Factors Affecting the Outcome of Nasopharyngeal Carcinoma Jpn J Clin Oncol Oct 2003; 33: 501 - 508.
    [32] Leung Sf, Tam JS, Chan ATC, et al.Improved Accuracy of Detection of Nasopharyngeal Carcinoma by Combined Application of Circulating Epstein-Barr Virus DNA and Anti-Epstein-Barr Viral Capsid Antigen IgA Antibody. Clin Chem Feb 2004; 50: 339 - 345.
    [33] Tanner J, Weis J, Fearon D, Whang Y. Epstein-Barr virus gp350/220 binding to the B lymphocyte C3d receptor mediatesabsorption, capping, and endocytosis. Cell 1987,50: 203-213.
    [34] Karin C, Straathof, Ann ML, et al. Characterization of Latent Membrane Protein -Specificity in CTL Lines from Patients with EBV-Positive Nasopharyngeal Carcinoma and Lymphoma. J Immunol 2005 ,175 : 413724147.
    [35] Lee MAH, Kang JH, Lee KS, and Hong YS.Epstein-Barr virus (EBV) associated gastric cancer and its clinical characteristics. ASCO Meeting Abstracts, Jul 2004; 22: 4263.
    [1] Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD. Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol 2002; 3:991-998.
    [2] Berzofsky JA, Ahlers JD, Belyakov IM. Strategies for designing and optimizing new generation vaccines. Nat Rev Immunol. 2001; 1:209-219.
    [3] Finn OJ. Cancer vaccines: between the idea and the reality. NatRev Immunol. 2003;3: 630-641.
    [4] Davis ID, Jefford M, Parente P, Cebon J. Rational approaches to human cancer immunotherapy. J LeukocBiol. 2003;73:3-29.
    [5] Shortman K, LiuYJ. Mouse and human dendritic cell subtypes. NatRev Immunol. 2002; 2: 151-161.
    [6] Karsunky H, Merad M, Cozzio A, Weissman IL, Manz MG. Flt3 ligand regulates dendritic cell development from Flt3 lymphoid and myeloid committed progenitors to Flt3 dendritic cells in vivo. J Exp Med. 2003; 198:305-313.
    [7] AmicoA D, Wu L.The early progenitors of mouse dendritic cells and plasma cytoid predendritic ceils are within the bone marrow hemopoietic precursors expressing Flt3. J Exp Med. 2003;198:293-303.
    [8] Salio M, Cella M, Vermi W, et al. Plasma cytoid dendritic cells prime IFN-gamma-secreting melanoma-specific CD8 lymphocytes and are found in primary melanoma lesions. Eur J Immunol. 2003; 33:1052-1062.
    [9] Ebner S, Ehammer Z, Holzmann S, et al. Expression of C-type lectin receptors by subsets of dendritic cells in human skin. Int Immunol. 2004;16:877-887.
    [10] Guermonprez P, Valladeau J, Zitvogel L, Thery C, Amigorena S. Antigen presentation and T cell stimulation by dendritic cells. Annu Rev Immunol. 2002; 20: 621-667.
    [11] Guermonprez P, Saveanu L, Kleijmeer M,Davoust J,VanEndert P, Amigorena S. ER phago some fusion defines an MHC class I crospresentation compartment in dendritic cells. Nature.2003;425:397-402.
    [12] Moody DB, Porcelli SA. Intracellular pathways of CD1 antigen presentation. NatRev Immunol.2003; 3:11-22.
    [13] Joyce S, VanKae L. CD1-restricted antigen psentation: anoily matter. Curr Opin Immunol. 2003 ;15:95-104.
    [14] Fujimoto Y, Tu L, Miller AS, et al. CD83 expression influences CD4 T cell development in the thymus. Cell.2002; 108:755-767.
    [15] Lechmann M, Berchtold S, Hauber J, Steinkassere A. CD83 on dendritic cells: more than just a marker for maturation. Trends Immunol.2002; 23:273-275.
    [16] Tseng SY, Otsujim, Gorski K,et al.J Exp Med, 2001,193(7):839-846.
    [17] Dieu MC, Vanbervliet B, Vicari A, et al. Selective recruitment of immature and mature dendritic cells by distinct chemokines expressed in different an atomic sites. J Exp Med1998,188(2):373-386.
    [18] Thumann P, Moc I, Humrich J, et al. Antigen loading of dendritic cells with whole tumor cell preparations.J Immunol Methods. 2003; 277:1-16.
    [19] Schuler-Thurner B, Schultz ES, Berger TG, et al.Rapid induction of tumor-specific type 1 T helper cells in metastatic melanoma patients by vaccinationwith mature, cryop reserved, peptide-loadedmonocyte-derived dendritic cells. J Exp Med 2002; 195: 1279-1288.
    [20] Thurner B, Roder C, Dieckmann D, et al. Generation of large numbers of fully mature and stable dendritic cells from leukapheresis products for clinical application. J Immunol Methods. 1999; 223:1-15.
    [21] Bender A, Sapp M, Schuler G, Steinman RM, Bhardwaj N. Improved methods for the generation of dendritic cells from nonproliferating progenitors in human blood. J Immunol Methods. 1996; 196:121-135.
    [22] Banchereau J, Palucka AK, Dhodapkar M, et al.Immune and clinical responses in patients with metastatic melanoma to CD34(_) progenitorderiveddendritic cell vaccine. Cancer Res. 2001;61:6451-6458.
    [23] Hsu FJ, Benike C, Fagnoni F, et al. Vaccination of patients with B-cell lymphoma using autologous antigen-pulsed dendritic cells. Nat Med. 1996; 2:52-58
    [24] Jonuleit H, Kuhn U, Muller G, et al. Pro-inflammatory cytokines and prostaglandins induce maturation of potent immunostimulatory dendritic cells under fetal calf serum-free conditions. Eur J Immunol.1997; 27:3135-3142.
    [25] Kalinski P, Vieira PL, Schuitemaker JH, Jong EC, Kapsenberg ML. Prostaglandin E(2) is a selectiveinducer of interleukin-12 p40 (IL-12p40) production and an inhibitor of bioactive IL-12p70 heterodimer. Blood. 2001; 97:3466-3469.
    [26] Lee AW, Truong T, Bickham K, et al. A clinical grade cocktail of cytokines and PGE (2) results in uniform maturation of human monocyte-deriveddendritic cells: implications for immunotherapy.Vaccine. 2002;20 (Suppl 4):A8-A22.
    [27] Wang RF, Wang HY. Enhancement of antitumor immunity by prolonging antigen presentation on dendritic cells. Nat Biotechnol. 2002; 20:149-154.
    [28] Timmerman JM, Czerwinski DK, Davis TA, et al. Idiotype-pulsed dendritic cell vaccination for Bcell lymphoma: clinical and immune responses in 35 patients. Blood. 2002;99:1517-1526.
    [29] Heiser A, Coleman D, Dannull J, et al. Autologous dendritic cells transfected with prostate-specific antigen RNA stimulate CTL responses against metastatic prostate tumors. J Clin Invest. 2002; 109:409-417.
    [30] Engelmayer J, Larsson M, Lee A, et al. Mature dendritic cells infected with canarypox virus elicit strong anti-human immunodeficiency virus CD8 and CD4 T-cell responses from chronically infected individuals. J Virol. 2001;75:2142-2153.
    [31] Klein C, Bueler H, Mulligan RC. Comparative analysis of genetically modified dendritic cells and tumor cells as therapeutic cancer vaccines.J Exp Med. 2000; 191: 1699-1708.
    [32] Larregina AT, Morelli AE, Tkacheva O, et al. Highly efficient expression of transgenic proteins by naked DNA-transfected dendritic cells through terminal differentiation. Blood. 2004; 103:811-819.
    [33] Mullins DW, Sheasley SL, Ream RM, et al. Route of immunization with peptide-pulsed dendritic cells controls the distribution of memory and effector T cells in lymphoid tissues and determines the pattern of regional tumor control. J Exp Med.2003; 198:1023-1034.
    [34] Fong L, Brockstedt D, Benike C, Wu L, EnglemanEG. Dendritic cells injected via different routes induce immunity in cancer patients. J Immunol. 2001;166: 4254-4259.
    [35] Redchenko IV, Rickinson AB. Accessing Epstein-Barr virus-specific T cell memory with peptide loaded dendritic ceils. J of Virol, 1999, 73: 334-342.
    [36] Subklewe M, Chahroudi A, Schmaljohn A, et al. Induction of Epstein-Barr virus specific cytotoxic T lymphocyte responses using dendritic cells pulsed with EBNA-3A peptides or uv-inactivated recombinant EBNA-3A vaccinia virus. Blood, 1999, 94: 1372-1381.
    [37] Duraiswamy J, Sherritt M, Thomson S, et al. Therapeutic LMP1 polyepitope vaccine for EBV-associated Hodgkin disease and nasopharyngeal carcinoma.Blood, Apr 2003; 101:3150-3156.
    [38] Su Z, Peluso MV, Raffegerst SH, et al. The generation of Lmp2a-specific cytotoxic T lymphocytes for the treatment of patients with Epstein-Barr viruspositive Hodgkin disease. Eur J Immunol, 2001,31: 947-958.
    [39] Gahn B, Siller-Lopez F, Pirooz AD, et al. Adenoviral gene transfer into dendritic cells efficiently amplifies the immune response to Lmp2A antigen: a potential treatment strategy for Epsstein-Barr virus-positive Hodgkin's lymphoma. Int J Cancer, 2001, 93: 706-713.
    [40] Murray PG, Constandinou CM, Crocker J, et al. Analysis of Major Histocompatibility Complex Class Ⅰ, TAP Expression, and LMP2 Epitope Sequence in Epstein-Barr Virus-Positive Hodgkin's Disease Blood Oct 1998; 92: 2477-2483.
    [41] Karin C, Straathof, Ann ML, et al. Characterization of Latent Membrane Protein -Specificity in CTL Lines from Patients with EBV-Positive Nasopharyngeal Carcinoma and Lymphoma. J Immunol 2005,175: 413724147.
    [42] 杜海军,周玲,左建民,等.EBV-LMP2多肽所激活的特异性CTL对鼻咽癌细胞杀伤活性的研究.肿瘤学杂志,2004,10(2):92-94.
    [43] 王湛,周玲,吴小兵等.Ad2LMP2重组腺病毒疫苗在恒河猴体内免疫效果的研究.中华实验与临床病毒学杂志,2006,20:62-65.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700