过继单一pMHC特异性的同种CTL清除体内特定性状的靶细胞
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于移植排斥反应的存在,T细胞对于同种细胞的应答通常被认为是有害的。然而伴随移植物抗宿主病(GVHD)发生的移植物抗白血病反应/移植物抗肿瘤反应,表明了同种反应性T细胞中存在一群有利的细胞,在清除恶性肿瘤中具有巨大作用。我们的前期工作提示同种T细胞与一般抗原反应性T细胞一样,识别的表位均为抗原肽/MHC复合物(pMHC),且均具有pMHC特异性,故在实际应用中有可能根据同种反应性T细胞的不同特异性将有利和不利的同种T细胞区分开。本研究拟在单个pMHC水平上,提供实验依据证实过继单一表位特异性的同种CTL可在体内清除特定性状的靶细胞,同时避免多组织损伤的发生。不仅有利于进一步认识同种反应发生的机制及其规律,而且为利用同种T细胞打破病理性耐受(慢性感染与肿瘤等)提供了新手段。
     然而由于细胞表面存在极其繁多的pMHC,用传统的方法制备获得的同种反应性T细胞为针对多种表位的细胞群体。因此,本研究通过建立“单一表位特异性同种T细胞诱导体系”制备单一表位特异性同种CTL(胰岛素肽/H-2Kb特异性同种CTL),并过继输入动物体内,攻击表达该pMHC的靶细胞(H-2b小鼠的胰岛β细胞),观察其特异性杀伤效应。论文共分为三部分,其主要内容与结果如下:
     一、制备H-2Kb/IgG2aFc分子,其能有效结合到C3H小鼠巨噬细胞表面
     首先通过融合C57BL/6小鼠H-2Kb重链胞外段和IgG2aFc段获得H-2Kb/IgG2aFc融合基因,并与小鼠小鼠β2m基因分别插入杆状病毒双表达载体pFastBacTMDual的PP10和PPH启动子下游,利用昆虫杆状病毒表达系统表达以二聚体形式存在的β2m/H-2Kb/IgG2aFc分子(简称H-2Kb二聚体)。融合分子中IgG2aFc为高亲和力的Fc,可通过与FcR的相互作用加载H-2Kb二聚体到C3H小鼠巨噬细胞(H-2Kk)表面,使其能够“提呈”单一同种表位(特异性肽/H-2Kb),从而为诱导单一pMHC特异性的同种CTL奠定了基础。
     二、体内外联合诱导自身/同系淋巴细胞产生胰岛素肽/H-2Kb特异性的同种CTL
     利用加载了胰岛素肽/H-2Kb二聚体的自身巨噬细胞作为抗原刺激细胞,经过腹腔注射C3H小鼠(H-2Kk),诱导其产生针对胰岛素肽/H-2Kb表位的特异性同种T细胞,收集并对其进行特异性四聚体染色和细胞毒效应检测。结果显示诱导产生的CD8+T细胞特异性四聚体染色频率显著高于非特异性四聚体染色频率;同时,该CTL对具有相应表位(胰岛素肽/H-2Kb)的靶细胞具有明显的杀伤作用,而对无关表位的靶细胞杀伤率极低。
     三、尾静脉过继诱生的单一pMHC特异性的同种T细胞定向损伤胰岛β细胞
     将胰岛素肽/H-2Kb特异性CTL由尾静脉分别过继受者C57BL/6小鼠(H-2b)、B6C3F1小鼠(H-2b×k)和SCID beige小鼠(H-2d),过继后监测血糖、胰岛素及淋巴细胞浸润情况。结果显示接受过继后,受者C57BL/6和B6C3F1小鼠第3天便出现明显的血糖升高,胰岛素水平降低并且胰岛出现较明显的β细胞缺如和T细胞浸润;而受者SCID beige小鼠血糖和胰岛素水平未见明显变化,组织未见明显损伤。结果提示过继的单一pMHC特异性CTL能够定向杀伤特定性状的靶细胞。
     本研究的创新点和意义:
     1.提供直接的动物体内实验证据显示同种反应的发生机制,即任何抗原肽,只要能够与MHC分子结合,都能够形成同种T细胞的识别表位;同种反应性T细胞与一般抗原反应性T细胞一样,都具有pMHC特异性。
     2.选用小鼠体内胰岛β细胞损伤作为观察同种CTL效应的指标,研究结果将显示过继特异性同种T细胞是干预病理性免疫耐受的新途径,同时为研究同种反应提供新的技术平台。
Although the T-cell response to allogeneic cells is typically regarded as a detrimental phenomenon responsible for rejection of transplanted allografts and graft-versus-host disease following haematopoietic stem cell transplantation, beneficial components also exist within the alloreactive population. The graft-versus-leukemia (GVLR) or graft-versus-tumor reaction (GVTR) accompanying with the graft-versus-host disease (GVHD) suggests the dramatic effect of the allogeneic T cells on eradicating malignant disease. And our previous studies suggest that it is the peptide/MHC complex as a whole recognized by allogeneic T cells and the recognition is pMHC specific. So it is possible to discriminate the good from the bad depending on their pMHC disparities. In this study, we aim to investigate alloreactivity at a single pMHC level and provide the in vivo experimental evidence that the transfused single pMHC specific allogeneic CTLs could target eliminating specified antigens without GVHD, which would pave the way for further exploring the mechanism and regulatory mode of allo-reactivity, in addition, add to our arsenal for breaking pathological immune tolerance.
     However, because there are exceedingly wide range of cell surface pMHC complexes, it is essentially the combination of allogeneic T cells against multiple epitopes prepared with traditional access. Therefore, we set up a "single pMHC induction system " to prepare single pMHC specific CTLs (InsB/H-2Kb specific) and transfused the induced allogeneic CTLs to target imparing isletsβcells with InsB/H-2Kb expression.
     1. Preparation of divalent H-2Kb/IgG2aFc and its binding to H-2Kk macrophages.
     The H-2Kb/IgG2aFc hybrid gene was constructed by recombining cDNA coding for the extracellular domains (al,a2,a3) of H-2Kb with that for Fc fragment (Hinge,CH2,CH3) of murine IgG2a heavy chain. Then the hybrid H-2Kb/IgG2aFc sequence and mouseβ2m sequence were respectively inserted into the double promoters of pFastBacTMual vector for divalent H-2Kb/IgG2aFc expression (short for H-2Kb dimer).
     The H-2Kb dimer consists of a divalent TCR-ligands and an IgG2aFc receptor (FcR) conjunctive moiety. And the H-2Kb dimer can be introduced as an allogeneic MHC molecule to Macrophages (H-2Kk) via the Fc and FcR interaction, which paves the way for generation of allogeneic CTLs with single pMHC specificity.
     2. Preparing pMHC-specific, alloreactive CTLs through an in vivo primed plus ex vivo enhanced way.
     Splenocytes of C3H (H-2Kk) were stimulated cells, while the H-2Kk macrophages (M(?)) bearing InsB/H-2Kb dimer were stimulating cells. The stimulating cells were i.p. injected into mouse C3H (H-2Kk) for InsB/H-2Kb specific, allogeneic CTLs induction. Splenocytes stimulated by autologous Mcp bearing the InsB/H-2Kb dimer were more frequently stained with the corresponding tetramer than those with irrelavent-tetramer and exhibited an elevated cytotoxicity against specific targets with InsB/H-2Kb epitope.
     3. An insulin-producing P-cell targeted damage caused by i.v. adoptive transfusion of the induced allogeneic T cells
     The InsB/H-2Kb-specific allogeneic T cells were i.v. transfused into recipient mice C57BL/6 (H-2b)、B6C3F1(H-2b×k) or SCID beige (H-2d). Then we monitored the variation in blood glucose concentration (BGC), serum insulin level and took out immuno-histochemical detection of pancreatic islets with anti-mouse CD3 or anti-mouse insulin antibody which turned out to be that on day 3 ater transfusion with InsB/H-2Kb-specific allogeneic T cells there was an increased BGC, decreased serum insulin, visible T cells infiltration and isletsβcells great loss in pancreatic islets of C57BL/6 and B6C3F1. While there was no corresponding changes in recipient SCID beige on the whole. Taken together, the target damage toβcells offered the in vivo evidence that the transfused allogeneic T cells could traffic to target sites and carry out the exact cytolytic effects in a pMHC-specific manner.
引文
[1]Stauss HJ. Immunotherapy with CTLs restricted by nonself MHC. Immunol Today. 1999.20(4):180-3.
    [2]Comoli P, Maccario R, Locatelli F, et al. Adoptive Transfer of Herpesvirusspecific Cytotoxic T Lymphocytes in Transplant Recipients. Herpes.2000.7(1):9-12.
    [3]Kishi Y, Kami M, Oki Y, et al. Donor lymphocyte infusion for treatment of life-threatening respiratory syncytial virus infection following bone marrow transplantation. Bone Marrow Transplant.2000.26(5):573-6.
    [4]Slavin S, Nagler A, Shapira M, Panigrahi S, Samuel S, Or A. Non-myeloablative allogeneic stem cell transplantation focusing on immunotherapy of life-threatening malignant and non-malignant diseases. Crit Rev Oncol Hematol.2001.39(1-2): 25-9.
    [5]Ghosh A, Koestner W, Hapke M, et al. Donor T cells primed on leukemia lysate-pulsed recipient APCs mediate strong graft-versus-leukemia effects across MHC barriers in full chimeras. Blood.2009.113(18):4440-8.
    [6]Horowitz MM, Gale RP, Sondel PM, et al. Graft-versus-leukemia reactions after bone marrow transplantation. Blood.1990.75(3):555-62.
    [7]Gratwohl A, Brand R, Apperley J, et al. Graft-versus-host disease and outcome in HLA-identical sibling transplantations for chronic myeloid leukemia. Blood.2002. 100(12):3877-86.
    [8]Ringden O, Labopin M, Gorin NC, et al. Is there a graft-versus-leukaemia effect in the absence of graft-versus-host disease in patients undergoing bone marrow transplantation for acute leukaemia. Br J Haematol.2000.111(4):1130-7.
    [9]Burroughs L, Storb R. Low-intensity allogeneic hematopoietic stem cell transplantation for myeloid malignancies:separating graft-versus-leukemia effects from graft-versus-host disease. Curr Opin Hematol.2005.12(1):45-54.
    [10]Li JM, Giver CR, Lu Y, Hossain MS, Akhtari M, Waller EK. Separating graft-versus-leukemia from graft-versus-host disease in allogeneic hematopoietic stem cell transplantation. Immunotherapy.2009.1(4):599-621.
    [11]Rezvani AR, Storb RE Separation of graft-vs.-tumor effects from graft-vs.-host disease in allogeneic hematopoietic cell transplantation. J Autoimmun.2008.30(3): 172-9.
    [12]Coghill JM, Carlson MJ, Panoskaltsis-Mortari A, et al. Separation of graft-versus-host disease from graft-versus-leukemia responses by targeting CC-chemokine receptor 7 on donor T cells. Blood.2010.
    [13]Mackinnon S, Papadopoulos EB, Carabasi MH, et al. Adoptive immunotherapy evaluating escalating doses of donor leukocytes for relapse of chronic myeloid leukemia after bone marrow transplantation:separation of graft-versus-leukemia responses from graft-versus-host disease. Blood.1995.86(4):1261-8.
    [14]Michalek J, Collins RH, Durrani HP, et al. Definitive separation of graft-versus-leukemia-and graft-versus-host-specific CD4+T cells by virtue of their receptor beta loci sequences. Proc Natl Acad Sci U S A.2003.100(3):1180-4.
    [15]Kolb HJ, Schattenberg A, Goldman JM, et al. Graft-versus-leukemia effect of donor lymphocyte transfusions in marrow grafted patients. Blood.1995.86(5):2041-50.
    [16]Collins RH Jr, Shpilberg O, Drobyski WR, et al. Donor leukocyte infusions in 140 patients with relapsed malignancy after allogeneic bone marrow transplantation. J Clin Oncol.1997.15(2):433-44.
    [17]Garcia KC, Tallquist MD, Pease LR, et al. Alphabeta T cell receptor interactions with syngeneic and allogeneic ligands:affinity measurements and crystallization. Proc Natl Acad Sci U S A.1997.94(25):13838-43.
    [18]Reiser JB, Darnault C, Guimezanes A, et al. Crystal structure of a T cell receptor bound to an allogeneic MHC molecule. Nat Immunol.2000.1(4):291-7.
    [19]Rudolph MG, Wilson IA. The specificity of TCR/pMHC interaction. Curr Opin Immunol.2002.14(1):52-65.
    [20]Luz JG, Huang M, Garcia KC, et al. Structural comparison of allogeneic and syngeneic T cell receptor-peptide-major histocompatibility complex complexes:a buried alloreactive mutation subtly alters peptide presentation substantially increasing V(beta) Interactions. J Exp Med.2002.195(9):1175-86.
    [21]Reiser JB, Gregoire C, Darnault C, et al. A T cell receptor CDR3beta loop undergoes conformational changes of unprecedented magnitude upon binding to a peptide/MHC class I complex. Immunity.2002.16(3):345-54.
    [22]Heath WR, Hurd ME, Carbone FR, Sherman LA. Peptide-dependent recognition of H-2Kb by alloreactive cytotoxic T lymphocytes. Nature.1989.341(6244):749-52.
    [23]Chen X, Yan Y, Lu S, et al. Raising allo-restricted cytotoxic T lymphocytes by co-culture of murine splenocytes with autologous macrophage bearing the peptide/allo-major histococompatibility complex. Hum Immunol.2009.70(2): 79-84.
    [24]Weng X, Lu S, Zhong M, et al. Allo-restricted CTLs generated by coculturing of PBLs and autologous monocytes loaded with allogeneic peptide/HLA/IgGl-Fc fusion protein. J Leukoc Biol.2009.85(3):574-81.
    [25]Weng X, Zhong M, Liang Z, et al. Peptide-dependent inhibition of alloreactive T-cell response by soluble divalent HLA-A2/IgG molecule in vitro. Transplantation. 2007.84(10):1298-306.
    [26]Hosken NA, Bevan MJ. An endogenous antigenic peptide bypasses the class I antigen presentation defect in RMA-S. J Exp Med.1992.175(3):719-29.
    [27]Esquivel F, Yewdell J, Bennink J. RMA/S cells present endogenously synthesized cytosolic proteins to class I-restricted cytotoxic T lymphocytes. J Exp Med.1992. 175(1):163-8.
    [28]Sheil JM, Shepherd SE, Klimo GF, Paterson Y. Identification of an autologous insulin B chain peptide as a target antigen for H-2Kb-restricted cytotoxic T lymphocytes. J Exp Med.1992.175(2):545-52.
    [29]Shastri N, Gonzalez F. Endogenous generation and presentation of the ovalbumin peptide/Kb complex to T cells. J Immunol.1993.150(7):2724-36.
    [30]Hulett MD, Hogarth PM. Molecular basis of Fc receptor function. Adv Immunol. 1994.57:1-127.
    [31]Weinshank RL, Luster AD, Ravetch JV. Function and regulation of a murine macrophage-specific IgG Fc receptor, Fc gamma R-alpha. J Exp Med.1988.167(6): 1909-25.
    [32]Heyman B. Regulation of antibody responses via antibodies, complement, and Fc receptors. Annu Rev Immunol.2000.18:709-37.
    [33]Bedard C, Kamen A, Tom R, Massie B. Maximization of recombinant protein yield in the insect cell/baculovirus system by one-time addition of nutrients to high-density batch cultures. Cytotechnology.1994.15(1-3):129-38.
    [34]Ayres MD, Howard SC, Kuzio J, Lopez-Ferber M, Possee RD. The complete DNA sequence of Autographa californica nuclear polyhedrosis virus. Virology.1994. 202(2):586-605.
    [35]Bernard A, Payton M, Radford KR. Protein expression in the baculovirus system. Curr Protoc Protein Sci.2001. Chapter 5:Unit5.5.
    [36]Murphy CI, Piwnica-Worms H, Grunwald S, Romanow WG, Francis N, Fan HY. Overview of the baculovirus expression system. Curr Protoc Mol Biol.2004. Chapter 16:Unit 16.9.
    [37]Andersson M, Freland S, Johansson MH, et al. MHC class I mosaic mice reveal insights into control of Ly49C inhibitory receptor expression in NK cells. J Immunol.1998.161(12):6475-9.
    [38]Shao H, Peng Y, Liao T, et al. A shared epitope of the interphotoreceptor retinoid-binding protein recognized by the CD4+and CD8+autoreactive T cells. J Immunol.2005.175(3):1851-7.
    [39]Mellman I, Plutner H, Ukkonen P. Internalization and rapid recycling of macrophage Fc receptors tagged with monovalent antireceptor antibody:possible role of a prelysosomal compartment. J Cell Biol.1984.98(4):1163-9.
    [40]Fahmy TM, Bieler JG, Schneck JP. Probing T cell membrane organization using dimeric MHC-Ig complexes. J Immunol Methods.2002.268(1):93-106.
    [41]Wang YD, Chen WF. Detecting specific cytotoxic T lymphocytes against SARS-coronavirus with DimerX HLA-A2:Ig fusion protein. Clin Immunol.2004. 113(2):151-4.
    [42]Ailor E, Betenbaugh MJ. Modifying secretion and post-translational processing in insect cells. Curr Opin Biotechnol.1999.10(2):142-5.
    [43]Joshi L, Davis TR, Mattu TS, et al. Influence of baculovirus-host cell interactions on complex N-linked glycosylation of a recombinant human protein. Biotechnol Prog.2000.16(4):650-6.
    [44]Sandoval C, Curtis H, Congote LF. Enhanced proliferative effects of a baculovirus-produced fusion protein of insulin-like growth factor and alpha(1)-proteinase inhibitor and improved anti-elastase activity of the inhibitor with glutamate at position 351. Protein Eng.2002.15(5):413-8.
    [45]Ravetch JV, Kinet JP. Fc receptors. Annu Rev Immunol.1991.9:457-92.
    [46]Matzinger P, Bevan MJ. Hypothesis:why do so many lymphocytes respond to major histocompatibility antigens. Cell Immunol.1977.29(1):1-5.
    [47]Luft T, Rizkalla M, Tai TY, et al. Exogenous peptides presented by transporter associated with antigen processing (TAP)-deficient and TAP-competent cells: intracellular loading and kinetics of presentation. J Immunol.2001.167(5): 2529-37.
    [48]Man S, Salter RD, Engelhard VH. Role of endogenous peptide in human alloreactive cytotoxic T cell responses. Int Immunol.1992.4(3):367-75.
    [49]Powis SJ, Townsend AR, Deverson EV, Bastin J, Butcher GW, Howard JC. Restoration of antigen presentation to the mutant cell line RMA-S by an MHC-linked transporter. Nature.1991.354(6354):528-31.
    [50]Gabathuler R, Reid G, Kolaitis G, Driscoll J, Jefferies WA. Comparison of cell lines deficient in antigen presentation reveals a functional role for TAP-1 alone in antigen processing. J Exp Med.1994.180(4):1415-25.
    [51]Hirsch R, Archibald J, Gress RE. Differential T cell hyporesponsiveness induced by in vivo administration of intact or F(ab')2 fragments of anti-CD3 monoclonal antibody. F(ab')2 fragments induce a selective T helper dysfunction. J Immunol. 1991.147(7):2088-93.
    [52]Chattopadhyay PK, Melenhorst JJ, Ladell K, et al. Techniques to improve the direct ex vivo detection of low frequency antigen-specific CD8+T cells with peptide-major histocompatibility complex class I tetramers. Cytometry A.2008. 73(11):1001-9.
    [53]Godoy-Ramirez K, Makitalo B, Thorstensson R, Sandstrom E, Biberfeld G, Gaines H. A novel assay for assessment of HIV-specific cytotoxicity by multiparameter flow cytometry. Cytometry A.2005.68(2):71-80.
    [54]Cullen CM, Jameson SC, DeLay M, et al. A divalent major histocompatibility complex/IgGl fusion protein induces antigen-specific T cell activation in vitro and in vivo. Cell Immunol.1999.192(1):54-62.
    [55]Smith PA, Brunmark A, Jackson MR, Potter TA. Peptide-independent recognition by alloreactive cytotoxic T lymphocytes (CTL). J Exp Med.1997.185(6):1023-33.
    [56]Jankovic V, Remus K, Molano A, Nikolich-Zugich J. T cell recognition of an engineered MHC class I molecule:implications for peptide-independent alloreactivity. J Immunol.2002.169(4):1887-92.
    [57]Wang W, Man S, Gulden PH, Hunt DF, Engelhard VH. Class I-restricted alloreactive cytotoxic T lymphocytes recognize a complex array of specific MHC-associated peptides. J Immunol.1998.160(3):1091-7.
    [58]Moris A, Teichgraber V, Gauthier L, Buhring HJ, Rammensee HG. Cutting edge: characterization of allorestricted and peptide-selective alloreactive T cells using HLA-tetramer selection. J Immunol.2001.166(8):4818-21.
    [59]Altman JD, Moss PA, Goulder PJ, et al. Phenotypic analysis of antigen-specific T lymphocytes. Science.1996.274(5284):94-6.
    [60]Doherty PC. The numbers game for virus-specific CD8+ T cells. Science.1998. 280(5361):227.
    [61]Lee WW, Nam KH, Terao K, Yoshikawa Y. Age-related telomere length dynamics in peripheral blood mononuclear cells of healthy cynomolgus monkeys measured by Flow FISH. Immunology.2002.105(4):458-65.
    [62]Kwok WW, Ptacek NA, Liu AW, Buckner JH. Use of class II tetramers for identification of CD4+ T cells. J Immunol Methods.2002.268(1):71-81.
    [63]Sidobre S, Kronenberg M. CD1 tetramers:a powerful tool for the analysis of glycolipid-reactive T cells. J Immunol Methods.2002.268(1):107-21.
    [64]Arora SK. Analysis of intracellular cytokines using flowcytometry. Methods Cell Sci.2002.24(1-3):37-40.
    [65]Wells A, Gudmundsdottir H, Walsh M, Turka LA. Single-cell analysis of T-cell responses in vitro and in vivo:role of costimulatory signals. Transplant Proc.1999. 31(1-2):814-5.
    [66]Marcusson-Stahl M, Cederbrant K. A flow-cytometric NK-cytotoxicity assay adapted for use in rat repeated dose toxicity studies. Toxicology.2003.193(3): 269-79.
    [67]Lee-MacAry AE, Ross EL, Davies D, et al. Development of a novel flow cytometric cell-mediated cytotoxicity assay using the fluorophores PKH-26 and TO-PRO-3 iodide. J Immunol Methods.2001.252(1-2):83-92.
    [68]Sheehy ME, McDermott AB, Furlan SN, Klenerman P, Nixon DF. A novel technique for the fluorometric assessment of T lymphocyte antigen specific lysis. J Immunol Methods.2001.249(1-2):99-110.
    [69]Lecoeur H, Fevrier M, Garcia S, Riviere Y, Gougeon ML. A novel flow cytometric assay for quantitation and multiparametric characterization of cell-mediated cytotoxicity. J Immunol Methods.2001.253(1-2):177-87.
    [70]Childs R, Chernoff A, Contentin N, et al. Regression of metastatic renal-cell carcinoma after nonmyeloablative allogeneic peripheral-blood stem-cell transplantation. N Engl J Med.2000.343(11):750-8.
    [71]Kurrer MO, Pakala SV, Hanson HL, Katz JD. Beta cell apoptosis in T cell-mediated autoimmune diabetes. Proc Natl Acad Sci U S A.1997.94(1):213-8.
    [72]Russell PS, Chase CM, Sykes M, Ito H, Shaffer J, Colvin RB. Tolerance, mixed chimerism, and chronic transplant arteriopathy. J Immunol.2001.167(10):5731-40.
    [73]Vignard V, Lemercier B, Lim A, et al. Adoptive transfer of tumor-reactive Melan-A-specific CTL clones in melanoma patients is followed by increased frequencies of additional Melan-A-specific T cells. J Immunol.2005.175(7): 4797-805.
    [74]Oflazoglu E, Elliott M, Takita H, Ferrone S, Henderson RA, Repasky EA. Adoptively transferred human lung tumor specific cytotoxic T cells can control autologous tumor growth and shape tumor phenotype in a SCID mouse xenograft model. J Transl Med.2007.5:29.
    [75]Boni A, Muranski P, Cassard L, et al. Adoptive transfer of allogeneic tumor-specific T cells mediates effective regression of large tumors across major histocompatibility barriers. Blood.2008.112(12):4746-54.
    [76]Ma H, Kapp JA. Peptide affinity for MHC influences the phenotype of CD8(+) T cells primed in vivo. Cell Immunol.2001.214(1):89-96.
    [77]Alexander-Miller MA. High-avidity CD8+T cells:optimal soldiers in the war against viruses and tumors. Immunol Res.2005.31(1):13-24.
    [78]Gattinoni L, Klebanoff CA, Palmer DC, et al. Acquisition of full effector function in vitro paradoxically impairs the in vivo antitumor efficacy of adoptively transferred CD8+T cells. J Clin Invest.2005.115(6):1616-26.
    [79]Speiser DE, Romero P. Toward improved immunocompetence of adoptively transferred CD8+T cells. J Clin Invest.2005.115(6):1467-9.
    [1]Weiden PL, Flournoy N, Thomas ED, et al. Antileukemic effect of graft-versus-host disease in human recipients of allogeneic-marrow grafts. N Engl J Med.1979. 300(19):1068-73.
    [2]Horowitz MM, Gale RP, Sondel PM, et al. Graft-versus-leukemia reactions after bone marrow transplantation. Blood.1990.75(3):555-62.
    [3]Waldmann H, Cobbold S. Exploiting tolerance processes in transplantation. Science. 2004.305(5681):209-12.
    [4]Whitelegg A, Barber LD. The structural basis of T-cell allorecognition. Tissue Antigens.2004.63(2):101-8.
    [5]Suchin EJ, Langmuir PB, Palmer E, Sayegh MH, Wells AD, Turka LA. Quantifying the frequency of alloreactive T cells in vivo:new answers to an old question. J Immunol.2001.166(2):973-81.
    [6]Matzinger P, Bevan MJ. Hypothesis:why do so many lymphocytes respond to major histocompatibility antigens. Cell Immunol.1977.29(1):1-5.
    [7]Whitelegg AM, Oosten LE, Jordan S, et al. Investigation of peptide involvement in T cell allorecognition using recombinant HLA class I multimers. J Immunol.2005. 175(3):1706-14.
    [8]Smith PA, Brunmark A, Jackson MR, Potter TA. Peptide-independent recognition by alloreactive cytotoxic T lymphocytes (CTL). J Exp Med.1997.185(6):1023-33.
    [9]Baker RJ, Hernandez-Fuentes MP, Brookes PA, Chaudhry AN, Cook HT, Lechler RI. Loss of direct and maintenance of indirect alloresponses in renal allograft recipients:implications for the pathogenesis of chronic allograft nephropathy. J Immunol.2001.167(12):7199-206.
    [10]Simpson E, Scott D, James E, et al. Minor H antigens:genes and peptides. Transpl Immunol.2002.10(2-3):115-23.
    [11]Goulmy E, Schipper R, Pool J, et al. Mismatches of minor histocompatibility antigens between HLA-identical donors and recipients and the development of graft-versus-host disease after bone marrow transplantation. N Engl J Med.1996. 334(5):281-5.
    [12]Mutis T, Verdijk R, Schrama E, Esendam B, Brand A, Goulmy E. Feasibility of immunotherapy of relapsed leukemia with ex vivo-generated cytotoxic T lymphocytes specific for hematopoietic system-restricted minor histocompatibility antigens. Blood.1999.93(7):2336-41.
    [13]Kolb HJ, Schattenberg A, Goldman JM, et al. Graft-versus-leukemia effect of donor lymphocyte transfusions in marrow grafted patients. Blood.1995.86(5):2041-50.
    [14]Childs R, Chernoff A, Contentin N, et al. Regression of metastatic renal-cell carcinoma after nonmyeloablative allogeneic peripheral-blood stem-cell transplantation. N Engl J Med.2000.343(11):750-8.
    [15]Collins RH Jr, Shpilberg O, Drobyski WR, et al. Donor leukocyte infusions in 140 patients with relapsed malignancy after allogeneic bone marrow transplantation. J Clin Oncol.1997.15(2):433-44.
    [16]Fabre JW. The allogeneic response and tumor immunity. Nat Med.2001.7(6): 649-52.
    [17]Mackinnon S, Papadopoulos EB, Carabasi MH, et al. Adoptive immunotherapy evaluating escalating doses of donor leukocytes for relapse of chronic myeloid leukemia after bone marrow transplantation:separation of graft-versus-leukemia responses from graft-versus-host disease. Blood.1995.86(4):1261-8.
    [18]Marijt WA, Heemskerk MH, Kloosterboer FM, et al. Hematopoiesis-restricted minor histocompatibility antigens HA-1-or HA-2-specific T cells can induce complete remissions of relapsed leukemia. Proc Natl Acad Sci U S A.2003.100(5): 2742-7.
    [19]Fontaine P, Roy-Proulx G, Knafo L, Baron C, Roy DC, Perreault C. Adoptive transfer of minor histocompatibility antigen-specific T lymphocytes eradicates leukemia cells without causing graft-versus-host disease. Nat Med.2001.7(7): 789-94.
    [20]den Haan JM, Sherman NE, Blokland E, et al. Identification of a graft versus host disease-associated human minor histocompatibility antigen. Science.1995. 268(5216):1476-80.
    [21]Stauss HJ. Immunotherapy with CTLs restricted by nonself MHC. Immunol Today. 1999.20(4):180-3.
    [22]Sadovnikova E, Stauss HJ. Peptide-specific cytotoxic T lymphocytes restricted by nonself major histocompatibility complex class I molecules:reagents for tumor immunotherapy. Proc Natl Acad Sci U S A.1996.93(23):13114-8.
    [23]Gao L, Bellantuono I, Elsasser A, et al. Selective elimination of leukemic CD34(+) progenitor cells by cytotoxic T lymphocytes specific for WT1. Blood.2000.95(7): 2198-203.
    [24]Bellantuono I, Gao L, Parry S, et al. Two distinct HLA-A0201-presented epitopes of the Wilms tumor antigen 1 can function as targets for leukemia-reactive CTL. Blood. 2002.100(10):3835-7.
    [25]Amrolia PJ, Reid SD, Gao L, et al. Allorestricted cytotoxic T cells specific for human CD45 show potent antileukemic activity. Blood.2003.101(3):1007-14.
    [26]Sadovnikova E, Jopling LA, Soo KS, Stauss HJ. Generation of human tumor-reactive cytotoxic T cells against peptides presented by non-self HLA class I molecules. Eur J Immunol.1998.28(1):193-200.
    [27]Dutoit V, Guillaume P, Romero P, Cerottini JC, Valmori D. Functional analysis of HLA-A*0201/Melan-A peptide multimer+CD8+T cells isolated from an HLA-A*0201-donor:exploring tumor antigen allorestricted recognition. Cancer Immun.2002.2:7.
    [28]Mutis T, Gillespie G, Schrama E, Falkenburg JH, Moss P, Goulmy E. Tetrameric HLA class I-minor histocompatibility antigen peptide complexes demonstrate minor histocompatibility antigen-specific cytotoxic T lymphocytes in patients with graft-versus-host disease. Nat Med.1999.5(7):839-42.
    [29]Mommaas B, Stegehuis-Kamp JA, van HAG, et al. Cord blood comprises antigen-experienced T cells specific for maternal minor histocompatibility antigen HA-1. Blood.2005.105(4):1823-7.
    [30]Falkenburg JH, Wafelman AR, Joosten P, et al. Complete remission of accelerated phase chronic myeloid leukemia by treatment with leukemia-reactive cytotoxic T lymphocytes. Blood.1999.94(4):1201-8.
    [31]Moris A, Teichgraber V, Gauthier L, Buhring HJ, Rammensee HG. Cutting edge: characterization of allorestricted and peptide-selective alloreactive T cells using HLA-tetramer selection. J Immunol.2001.166(8):4818-21.
    [32]Bonini C, Ferrari G, Verzeletti S, et al. HSV-TK gene transfer into donor lymphocytes for control of allogeneic graft-versus-leukemia. Science.1997. 276(5319):1719-24.
    [33]Oosten LE, Blokland E, van HAG, et al. Artificial antigen-presenting constructs efficiently stimulate minor histocompatibility antigen-specific cytotoxic T lymphocytes. Blood.2004.104(1):224-6.
    [34]Savage P, Gao L, Vento K, et al. Use of B cell-bound HLA-A2 class I monomers to generate high-avidity, allo-restricted CTLs against the leukemia-associated protein Wilms tumor antigen. Blood.2004.103(12):4613-5.
    [35]Stanislawski T, Voss RH, Lotz C, et al. Circumventing tolerance to a human MDM2-derived tumor antigen by TCR gene transfer. Nat Immunol.2001.2(10): 962-70.
    [36]Kessels HW, Wolkers MC, den Boom MD v, der Valk MA v, Schumacher TN. Immunotherapy through TCR gene transfer. Nat Immunol.2001.2(10):957-61.
    [37]Xue SA, Gao L, Hart D, et al. Elimination of human leukemia cells in NOD/SCID mice by WT1-TCR gene-transduced human T cells. Blood.2005.106(9):3062-7.
    [38]Hacein-Bey-Abina S, von KC, Schmidt M, et al. A serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency. N Engl J Med.2003.348(3):255-6.
    [39]Wood KJ, Sakaguchi S. Regulatory T cells in transplantation tolerance. Nat Rev Immunol.2003.3(3):199-210.
    [40]Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol.1995.155(3):1151-64.
    [41]Kingsley CI, Karim M, Bushell AR, Wood KJ. CD25+CD4+ regulatory T cells prevent graft rejection:CTLA-4-and IL-10-dependent immunoregulation of alloresponses. J Immunol.2002.168(3):1080-6.
    [42]Taylor PA, Lees CJ, Blazar BR. The infusion of ex vivo activated and expanded CD4(+)CD25(+) immune regulatory cells inhibits graft-versus-host disease lethality. Blood.2002.99(10):3493-9.
    [43]Cohen JL, Trenado A, Vasey D, Klatzmann D, Salomon BL. CD4(+)CD25(+) immunoregulatory T Cells:new therapeutics for graft-versus-host disease. J Exp Med.2002.196(3):401-6.
    [44]Hoffmann P, Ermann J, Edinger M, Fathman CG, Strober S. Donor-type CD4(+)CD25(+) regulatory T cells suppress lethal acute graft-versus-host disease after allogeneic bone marrow transplantation. J Exp Med.2002.196(3):389-99.
    [45]Levings MK, Sangregorio R, Roncarolo MG. Human cd25(+)cd4(+) t regulatory cells suppress naive and memory T cell proliferation and can be expanded in vitro without loss of function. J Exp Med.2001.193(11):1295-302.
    [46]Davies JD, Leong LY, Mellor A, Cobbold SP, Waldmann H. T cell suppression in transplantation tolerance through linked recognition. J Immunol.1996.156(10): 3602-7.
    [47]Cai J, Lee J, Jankowska-Gan E, et al. Minor H antigen HA-1-specific regulator and effector CD8+T cells, and HA-1 microchimerism, in allograft tolerance. J Exp Med. 2004.199(7):1017-23.
    [48]Hara M, Kingsley CI, Niimi M, et al. IL-10 is required for regulatory T cells to mediate tolerance to alloantigens in vivo. J Immunol.2001.166(6):3789-96.
    [49]Yamada A, Chandraker A, Laufer TM, Gerth AJ, Sayegh MH, Auchincloss H Jr. Recipient MHC class II expression is required to achieve long-term survival of murine cardiac allografts after costimulatory blockade. J Immunol.2001.167(10): 5522-6.
    [50]Koksoy S, Elpek KG, Yolcu ES, Shirwan H. Tolerance to rat heart grafts induced by intrathymic immunomodulation is mediated by indirect recognition primed CD4+CD25+ Treg cells. Transplantation.2005.79(11):1492-7.
    [51]Wells AD, Li XC, Li Y, et al. Requirement for T-cell apoptosis in the induction of peripheral transplantation tolerance. Nat Med.1999.5(11):1303-7.
    [52]Baan CC, der Mast BJ v, Klepper M, et al. Differential effect of calcineurin inhibitors, anti-CD25 antibodies and rapamycin on the induction of FOXP3 in human T cells. Transplantation.2005.80(1):110-7.
    [53]Kawai M, Kitade H, Mathieu C, Waer M, Pirenne J. Inhibitory and stimulatory effects of cyclosporine A on the development of regulatory T cells in vivo. Transplantation.2005.79(9):1073-7.
    [54]Coenen JJ, Koenen HJ, van RE, Hilbrands LB, Joosten I. Rapamycin, and not cyclosporin A, preserves the highly suppressive CD27+ subset of human CD4+CD25+ regulatory T cells. Blood.2006.107(3):1018-23.
    [55]Gregori S, Casorati M, Amuchastegui S, Smiroldo S, Davalli AM, Adorini L. Regulatory T cells induced by 1 alpha,25-dihydroxyvitamin D3 and mycophenolate mofetil treatment mediate transplantation tolerance. J Immunol.2001.167(4): 1945-53.
    [56]Andre-Schmutz I, Le DF, Hacein-Bey-Abina S, et al. Immune reconstitution without graft-versus-host disease after haemopoietic stem-cell transplantation:a phase 1/2 study. Lancet.2002.360(9327):130-7.
    [57]Graca L, Thompson S, Lin CY, Adams E, Cobbold SP, Waldmann H. Both CD4(+)CD25(+) and CD4(+)CD25(-) regulatory cells mediate dominant transplantation tolerance. J Immunol.2002.168(11):5558-65.
    [58]Jiang S, Camara N, Lombardi G, Lechler RI. Induction of allopeptide-specific human CD4+CD25+regulatory T cells ex vivo. Blood.2003.102(6):2180-6.
    [59]Hoffmann P, Eder R, Kunz-Schughart LA, Andreesen R, Edinger M. Large-scale in vitro expansion of polyclonal human CD4(+)CD25high regulatory T cells. Blood. 2004.104(3):895-903.
    [60]Jonuleit H, Schmitt E, Schuler G, Knop J, Enk AH. Induction of interleukin 10-producing, nonproliferating CD4(+) T cells with regulatory properties by repetitive stimulation with allogeneic immature human dendritic cells. J Exp Med. 2000.192(9):1213-22.
    [61]Mirenda V, Berton I, Read J, et al. Modified dendritic cells coexpressing self and allogeneic major histocompatability complex molecules:an efficient way to induce indirect pathway regulation. J Am Soc Nephrol.2004.15(4):987-97.
    [62]Heslop HE, Ng CY, Li C, et al. Long-term restoration of immunity against Epstein-Barr virus infection by adoptive transfer of gene-modified virus-specific T lymphocytes. Nat Med.1996.2(5):551-5.
    [63]Kershaw MH, Wang G, Westwood JA, et al. Redirecting migration of T cells to chemokine secreted from tumors by genetic modification with CXCR2. Hum Gene Ther.2002.13(16):1971-80.
    [64]Sakaguchi S, Sakaguchi N, Shimizu J, et al. Immunologic tolerance maintained by CD25+ CD4+ regulatory T cells:their common role in controlling autoimmunity, tumor immunity, and transplantation tolerance. Immunol Rev.2001.182:18-32.
    [65]Edinger M, Hoffmann P, Ermann J, et al. CD4+CD25+ regulatory T cells preserve graft-versus-tumor activity while inhibiting graft-versus-host disease after bone marrow transplantation. Nat Med.2003.9(9):1144-50.
    [66]Kolb HJ, Schattenberg A, Goldman JM, et al. Graft-versus-leukemia effect of donor lymphocyte transfusions in marrow grafted patients. Blood.1995.86(5):2041-50.
    [67]Riddell SR, Watanabe KS, Goodrich JM, Li CR, Agha ME, Greenberg PD. Restoration of viral immunity in immunodeficient humans by the adoptive transfer of T cell clones. Science.1992.257(5067):238-41.
    [68]Finn OJ. Cancer vaccines:between the idea and the reality. Nat Rev Immunol.2003. 3(8):630-41.
    [69]den Haan JM, Meadows LM, Wang W, et al. The minor histocompatibility antigen HA-1:a diallelic gene with a single amino acid polymorphism. Science.1998. 279(5353):1054-7.
    [70]Mommaas B, Kamp J, Drijfhout JW, et al. Identification of a novel HLA-B60-restricted T cell epitope of the minor histocompatibility antigen HA-1 locus. J Immunol.2002.169(6):3131-6.
    [71]Pierce RA, Field ED, Mutis T, et al. The HA-2 minor histocompatibility antigen is derived from a diallelic gene encoding a novel human class I myosin protein. J Immunol.2001.167(6):3223-30.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700