武汉地区结核分枝杆菌药物敏感性及氟喹诺酮耐药分子机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
结核病是严重危害人民群众健康的呼吸道传染病。在结核病防治过程中结核分枝杆菌耐药尤其是多重耐药结核病(MDR-TB)已成为有效控制结核病的重要障碍。氟喹诺酮类药物是治疗结核病的二线药,尤其是用于耐多药结核病的联合治疗的核心药物之一。MDR-TB的病人一旦对氟喹诺酮类耐药,病人的预后将更差。氟喹诺酮类药物主要作用于细菌的DNA旋转酶,使细菌DNA复制受阻,从而导致细菌死亡。DNA旋转酶由gyrA和gyrB基因编码。研究表明,细菌gyrA和/或gyrB基因上有一段核苷酸序列与喹诺酮耐药性密切相关,称为喹诺酮耐药决定区(QRDR)。QRDR碱基的改变引起相应的DNA旋转酶的改变,从而导致细菌耐药。1994年,Takiff HE首先克隆并测序了结核分枝杆菌的gyrA和gyrB基因,开始从分子水平研究结核分枝杆菌对氟喹诺酮类药物的耐药机制。在一些氟喹诺酮类药物耐药的结核分枝杆菌中,发现在gyrA基因的QRDR存在突变,突变主要集中在90、91、94位氨基酸,而gyrB基因的QRDR突变少见,但也在一些氟喹诺酮类药物耐药的结核分枝杆菌中未发现gyrA和gyrB基因的QRDR突变。其它的耐药机制如外排泵在临床结核分枝杆菌分离株中在氟喹诺酮耐药中的作用,需要进一步的研究。
     因此,为了解武汉地区结核分枝杆菌对氟喹诺酮的耐药情况,我们收集了一定数量的结核分枝杆菌,测定了这些菌株对主要抗结核药物的体外敏感性。对氧氟沙星耐药的结核分枝杆菌,测定了四种氟喹诺酮类药物最小抑菌浓度(MIC),了解新一代的氟喹诺酮能否用于治疗氧氟沙星耐药的结核分枝杆菌。采用DNA测序技术,检测氧氟沙星耐药和敏感结核杆菌菌株是否存在突变及突变类型,是否存在新的突变,探讨快速检测耐氟喹诺酮类药物结核杆菌的方法及结核杆菌对氟喹诺酮类药物耐药的分子机制,为进一步研究是否存在其它的耐药机制打下基础。
     第一部分结核分枝杆菌对抗结核药物的耐药性分析
     目的通过对武汉市结核病防治所检验科收集的1223株结核分枝杆菌药敏结果分析,了解初复治涂阳患者的结核分杆菌耐药情况,指导临床医生合理选择抗结核药物和治疗方案。
     方法收集2008年武汉市初治涂阳病人结核分枝杆菌菌株688株和武汉市结核病防治所检验科2008年至2009年两年间复治涂阳病人535株结核分枝杆菌的药敏数据进行分析。
     结果药敏试验结果显示:在1223株结核分枝杆菌分离株中,结核分枝杆菌的总耐药率为31.3%,其中,初始耐药率为18.0%,获得耐药率为48.4%。结核分枝杆菌的总耐多药率为12.7%,其中,初始耐多药率为4.5%,获得耐多药率为23.2%。对6种抗结核药物的耐药率:链霉素(SM) 18.7%、异烟肼(INH) 21.1%、利福平(RFP) 16.4%、乙胺丁醇(EMB) 8.3%、氧氟沙星(OFX) 7.6%、卡那霉素(KM) 0.9%,其中,在初治组,6种抗结核药物的耐药率:SM 12.3 %、INH 10.3 %、RFP 5.2%、EMB 2.5 %、OFX 3.6 %、KM 0.4 %;在复治组,对6种抗结核药物的耐药率:SM 26.9 %、INH 35.0%、RFP 30.7%、EMB 15.5%、OFX 12.9%、KM 1.5 %。在MDR-TB菌株中,OFX的耐药率为27.7%(43/155),KM的耐药率为5.2%(8/155)。
     结论复治涂阳病人的耐药率比较高,成为结核病预防控制的威胁,需根据药敏结果合理选择治疗方案。
     第二部分四种氟喹诺酮类药物对结核分枝杆菌的最小抑菌浓度的比较
     目的用刃天青显色法快速测定四种氟喹诺酮对结核分枝杆菌的最小抑菌浓度(MIC),探讨不同氟喹诺酮对结核分枝杆菌的作用和可能的交叉耐药性。
     方法用65株对氧氟沙星敏感的菌株(包括42株耐多药结核分枝杆菌(MDR-TB)菌株)和60株氧氟沙星耐药的菌株为试验菌株,在96孔酶标板中,用Middlebrook 7H9液体培养基将药物进行连续对倍稀释后,加入一定浓度菌液,用显色法测定最小抑菌浓度。
     结果氧氟沙星通过ROC曲线分析所确定的耐药折点浓度为2μg/ml,敏感度为98.3%,特异度为96.9%,准确度为97.6%。加替沙星和莫西沙星对结核分枝杆菌的MIC50和MIC90比氧氟沙星、环丙沙星要低4-8倍,具有比氧氟沙星和环丙沙星更好的抗结核分枝杆菌活性。
     结论新一代氟喹诺酮加替沙星和莫西沙星具有比第三代氟喹诺酮氧氟沙星和环丙沙星更低的最小抑菌浓度,更好的抗菌活性,有可能用于低度氧氟沙星耐药MDR-TB的治疗。
     第三部分gyrA/B基因突变与氟喹诺酮耐药的相关性研究
     目的通过检测gyrA和gyrB基因的喹诺酮耐药决定区(QRDR)序列突变,探讨武汉地区结核分枝杆菌的喹诺酮耐药突变类型及可能的耐药机制。
     方法共收集93株临床分离的结核分枝杆菌,以罗氏比例法为标准,通过PCR直接测序技术(PCR-DS)分析结核分枝杆菌中gyrA和gyrB基因突变情况。对未检测到突变的结核分枝杆菌,加入外排泵抑制剂利血平观察细菌最小抑菌浓度的改变。
     结果在61株氧氟沙星耐药的结核分枝杆菌中,54株(88.5%)在gyrA基因的喹诺酮耐药决定区均存在突变。突变类型有7种单位点突变(A90V,S91P,S91T,D94N, D94Y,D94G及D94A)和2种双位点突变(S91P&D94H,S91T&D94A)。在32株氧氟沙星敏感的MDR-TB菌株中,仅1株存在D94N突变,其余均未检测到突变。gyrB基因在全部菌株中均未检测到突变。7株无突变的结核分枝杆菌,有1株在加入外排泵抑制剂利血平后,最小抑菌浓度下降了8倍。氧氟沙星的MICs与gyrA基因94位不同氨基酸突变无统计学差异(F=0.40,P=0.755),而氧氟沙星的MICs与gyrA基因不同位点(90,91,94)的突变有统计学差异(F=11.70,P<0.0001)。
     结论gyrA基因在90,91和94位的突变是结核分枝杆菌中氟喹诺酮耐药的主要机制。外排泵可能在部分低度氧氟沙星耐药的结核分枝杆菌中起一定的作用。gyrA基因的91位突变可能与低水平氧氟沙星耐药相关。
Tuberculosis is still a respiratory infectious disease that seriously threatens public health. In the practice of prevention from tuberculosis, drug resistance of mycobacterium tuberculosis, especially multidrug-resistant tuberculosis(MDR-TB) has become an important barrier to the effective control of tuberculosis. Fluoroquinolones are the pivotal second-line drugs , particularly in regimen for MDR-TB. Once MDR-TB patients are resistant to fluoroquinolones, they will have poor prognosis. DNA topoisomerases are a diverse set of essential enzymes responsible for maintaining chromosomes in an appropriate topological state. Fluoroquinolones inhibit DNA gyrase(topoisomerase II) and topoisomerase IV, resulting in microbial death for the block of microbial replication.DNA gyrase is a tetrameric A2B2 protein. The A subunit carries the breakage-reunion active site, whereas the B subunit promotes ATP hydrolysis. Mycobacterium tuberculosis has respectively gyrA and gyrB genes encoding the A and B subunits. A conserved region, the quinolone-resistance-determining region(QRDR) of gyrA (320bp) and gyrB(375bp), has been found to be the most important area involved in the exhibition of fluoroquinolone resistance in Mycobacterium tuberculosis. Mutations within the QRDR of gyrA or gyrB gene will result in the resistance to fluoroquinolones. In 1994, Takiff HE for the first time cloned and sequenced the gyrA and gyrB genes and studied resistance mechanisms of fluoroquinolones. Mutations within the QRDR of gyrA have been identified in clinical and laboratory-selected isolates of Mycobacterium tuberculosis, largely clustered at codon 90,91,94,with Asp 94 being relatively frequent.For clinical isolates,gyrB mutations appear to be of much rarer occurrence. Among some fluoroquinolone-resistant Mycobacterium tuberculosis, there are no mutation in gyrA and gyrB genes. More researches are needed to identify new resistance mechanisms.
     In this study, clinical isolates of Mycobacterium tuberculosis were collected from Wuhan and the susceptibility to six antituberculosis drugs were determined. To understand the effect of newer fluoroquinolones on the ofloxacin-resistant Mycobacterium tuberculosis, the MICs of four fluoroquinolones were determined by the resazurin colorimetric assay among the ofloxacin-resistant Mycobacterium tuberculosis. Mutations within the QRDR of gyrA and gyrB genes were detected by DNA direct sequencing to identify the types and frequency of mutations.
     Part I Analysis of drug susceptibility testing results of 1223 MTB strains from patients with smear-positive sputa
     Objective To understand the drug resistance of mycobacterium tuberculosis in patients with smear positive, and provide reasonable regimens to doctors.
     Methods From Janurary 2008 to December 2009, 535 MTB isolates from previously treated patients with smear positive were collected and 688 MTB isolates from new cases with smear positive were also collected during resistance baseline survey in 2008 . The drug resistance data were analyzed by drug susceptibility testing.
     Results The drug susceptibility tests showed that the total resistance rate was 31.3%, the initial and the acquired resistance rate was 18.0% and 48.4%. The total MDR-TB resistance rate was 12.7%, the initial and the acquired MDR-TB resistance rate was 4.5% and 23.2%, respectively. The resistance rate of drug susceptibility testing of streptomycin, isoniazid, rifampicin, ethambutol, ofloxacin and kanamycin was18.7%, 21.1%, 19.4%, 8.3%, 7.6%, 0.9%, respectively. Among the new patients, the resistance rate of drug susceptibility testing of streptomycin, isoniazid, rifampicin, ethambutol , ofloxacin and kanamycin was 12.3 %, 10.3 %, 5.2%, 2.5 %, 3.6 %, 0.4 %, respectively. Among the previously treated patients, The resistance rate of drug susceptibility testing of streptomycin, isoniazid, rifampicin, ethambutol , ofloxacin and kanamycin was 26.9 %, 35.0%, 30.7%, 15.5%, 12.9%, 1.5%, respectively. The ofloxacin and kanamycin resistance rate was 27.7%(43/144) and 5.2%(8/155) among the MDR-TB strains.
     Conclusion The resistance rate is higher among previously treated patients, suggesting that treatment regimen should be changed according to the result of drug susceptibility testing.The high prevalence of drug resistance has been a major challenge for TB control.
     Part II Comparison of MICs of four fluoroquinolones for Mycobaterium tuberculosis by resazurin colometric assay.
     Objective To understand effects and cross-resistance of fluoroquinolones on mycobacterium tuberculosis, four fluoroquinolones’MICs for Mycobaterium tuberculosis were determined by resazurin colorimetric assay.
     Methods MICs of 65 ofloxacin-susceptible Mycobacterium tuberculosis strains and 60 ofloxacin-resistant clinical isolates were detected by resazurin colorimetric assay. The proportion method on L-J medium was used as a gold standard. Breakpoint concentration of ofloxacin were determined by ROC curve analysis.
     Results The best breakpoint value of drug susceptibility testing of Ofloxacin were 2μg/ml, sensitivity was 98.3%, specificity was 96.9% and accuracy was 97.6%. MIC50 and MIC90 of gatifloxacin and moxifloxacin for Mycobaterium tuberculosis were 4-8 times lower than ofloxacin and ciprofloxacin.
     Conclusion Newer fluoroquinolones such as moxifloxacin, gatifloxacin may be used to treat low degree ofloxacin-resistant MDR-TB.
     Part III Association of Mutations of gyrA/B and fluoroquinolone resistance in Mycobacterium tuberculosis.
     Objective The aim of this study was to observe gyrA and gyrB genes mutations and resistance mechnisms of ofloxacin-resistant Mycobacterium tuberculosis(MTB) isolates from Wuhan, China.
     Methods A total of 93 MTB clinical strains were originally isolated from patients with pulmonary tuberculosis. The phenotype of susceptibility of each strain was determined by the proportion method and the QRDR in gyrA and gyrB genes were sequenced with DNA direct sequencing technique. The MICs of ofloxacin and ciprofloxacin were determined at the presence of the efflux pump inhibitor reserpine.
     Results 54 of 61 (88.5%) ofloxacin-resistant MTB clinical isolates had mutations in the QRDR of gyrA gene. The mutation patterns involved seven patterns of single codon mutation ( A90V,S91P,S91T,D94N, D94Y,D94G and D94A) and two patterns of double codons mutation (S91P with D94H, S91P with D94A ). No mutation in gyrB gene was detected among all MTB strains. Among seven MTB strains without gyrA and gyrB genes, the MICs of ofloxacin and ciprofloxacin in one MTB strain decreased 8-fold at the presence of the efflux pump inhibitor reserpine. No differences were detected among strains with different amino acid mutations at codon 94 in the QRDR of gyrA gene(F=0.40,P=0.755). The MICs of all ofloxacin-resistant strains showed significant difference among strains with mutions at condons 90,91 or 94 in gyrA gene(F=11.70,P<0.0001).
     Conclusion Mutations of gyrA codons 90, 91 and 94 constitute the primary mechanism of FQ resistance among Mycobacterium tuberculosis. Efflux pump system may play a role in some low level ofloxacin-resistant MTB strains. Mutations at codon 91 in gyrA gene may relate to low level resistance of ofloxacin.
引文
[1]全国结核病流行病学抽样调查技术指导组,第四次全国结核病流行病学抽样调查报告。中华结核和呼吸杂志,2002,25(1):3-7
    [2]WORLD Health Organization.Global Tuberculosis Control 2008-Surveillance Planning and Financing.Geneva:WHO,2007:6
    [3]WORLD Health Organization.Global Tuberculosis Control 2008-Surveillance Planning and Financing.Geneva:WHO,2008:4
    [4]中华人民共和国卫生部.全国结核病耐药性基线调查报告(2007-2008年).人民卫生出版社,2010:25-52.
    [5]Centers for Disease Control and Prevention.Emergence of Mycobacterium tuberculosis with extensive resistance to second-line drugs.Ann Pharmacother,2006,40:1007-1008.
    [6]Zignol M,Hosseini MS,Wright A,et al.Global incidence of multidrug-resistant tuberculosis.J Infect Dis,2006,194:479-485.
    [7]姜世闻,胡屹,张慧,等.耐药结核病的流行简况.中国防痨杂志,2010,32(6):351-353.
    [1] Anti-tuberculosis drug resistance in the world.Fourth global report.The WHO/ IUATLD global project on anti-tuberculosis drug resistance surveillance,2002- 2007.Geneva,World Health Organization, 2008 (WHO/HTM/TB/2008.394).
    [2] Wright A, Zignol M, Van Deun A,et al.Epidemiology of antituberculosis drug resistance 2002-07: an updated analysis of the Global Project on Anti-Tuberculosis Drug Resistance Surveillance.Lancet. 2009;373(9678):1861-1873.
    [3] Timperi R, Han LL, Sloutsky A,et al.Drug resistance profiles of Mycobacterium tuberculosis isolates: five years' experience and insight into treatment strategies for MDR-TB in Lima, Peru.Int J Tuberc Lung Dis. 2005 ;9(2):175-180.
    [4] Yew WW, Leung CC. Management of multidrug-resistant tuberculosis: Update 2007.Respirology,2008 ;13(1):21-46.
    [5] Chiang CY, Centis R, Migliori GB. Drug-resistant tuberculosis: past, present, future.Respirology. 2010 ;15(3):413-32..
    [6] He GX, Xie YG, Wang LX, et al. Follow-up of patients with multidrug resistant tuberculosis four years after standardized first-line drug treatment.PLoS One. 2010;24;5(5):e10799.
    [7] Multidrug and extensively drug-resistant TB (M/XDR-TB):2010 GLOBAL REPORT ON SURVEILLANCE AND RESPONSE. Geneva,World Health Organization, 2010(WHO/HTM/TB/2010.3)
    [8]中国防痨协会基础专业委员会.结核病诊断实验室检验规程.中国教育文化出版社,2006:46-52.
    [9] Espinal MA, Kim SJ, Suarez PG,et al.Standard short-course chemotherapy for drug-resistant tuberculosis: treatment outcomes in 6 countries. JAMA. 2000,283(19): 2537-2545.
    [10] Becerra MC, Freeman J, Bayona J,et al.Using treatment failure under effectivedirectly observed short-course chemotherapy programs to identify patients with multidrug-resistant tuberculosis. Int J Tuberc Lung Dis. 2000 ,4(2):108-114.
    [11]柳正卫,何海波,缪梓萍,等.984株结核分枝杆菌耐药情况分析.中国防痨杂志,2007,29(2):167-170.
    [12]中华人民共和国卫生部.全国结核病耐药性基线调查报告(2007-2008年).人民卫生出版社,2010:25-52.
    [13] Shao Y, Yang D, Xu W,et al. Epidemiology of anti-tuberculosis drug resistance in a Chinese population: current situation and challenges ahead. BMC Public Health. 2011,11:110.
    [14] SangaréL, DiandéS, Badoum G,et al.Anti-tuberculosis drug resistance in new and previously treated pulmonary tuberculosis cases in Burkina Faso.Int J Tuberc Lung Dis. 2010 ;14(11):1424-1429.
    [15] Bilgin S, Unsal M, Cebi HH,et al.Resistance for anti-tuberculosis drugs in central Black Sea region of Turkey.Pol J Microbiol. 2010;59(2):125-128.
    [16]刘隆平,骆科文,张庭梅,等.耐多药结核分枝杆菌临床株耐药性分析.检验医学,2010,25(9):683-685.
    [17] Bozeman L, Burman W, Metchock B,et al.Fluoroquinolone susceptibility among Mycobacterium tuberculosis isolates from the United States and Canada.Clin Infect Dis. 2005;40(3):386-391.
    [18] Huang TS, Kunin CM, Shin-Jung Lee S,et al.Trends in fluoroquinolone resistance of Mycobacterium tuberculosis complex in a Taiwanese medical centre: 1995-2003. J Antimicrob Chemother. 2005;56(6):1058-1062.
    [19] Jabeen K, Shakoor S, Chishti S,et al.Fluoroquinolone-resistant Mycobacterium tuberculosis, Pakistan, 2005-2009. Emerg Infect Dis. 2011;17(3):564-566.
    [1] Multidrug and extensively drug-resistant TB (M/XDR-TB):2010 GLOBAL REPORT ON SURVEILLANCE AND RESPONSE. Geneva,World Health Organization, 2010 (WHO/HTM/TB/2010.3).
    [2] Yew WW,Chan CK,Leung CC,et al.Comparative roles of levofloxacin and ofloxacin in the treatment of multidrug-resistant tuberculosis:preliminary results of a retrospective study from Hong Kong.Chest,2003,124(4):1476-1481.
    [3] Lu T, Zhao X, Drlica K. Gatifloxacin activity against quinolone-resistant gyrase: allele-specific enhancement of bacteriostatic and bactericidal activities by the C-8-methoxy group. Antimicrob Agents Chemother. 1999,43(12):2969-2974.
    [4] Lu T, Zhao X, Li X, et al. Enhancement of fluoroquinolone activity by C-8 halogen and methoxy moieties: action against a gyrase resistance mutant of Mycobacterium smegmatis and a gyrase-topoisomerase IV double mutant of Staphylococcus aureus. Antimicrob Agents Chemother. 2001 ;45(10):2703-2709.
    [5] Dong Y, Zhao X, Kreiswirth BN,et al.Mutant prevention concentration as a measure of antibiotic potency: studies with clinical isolates of Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2000 ;44(9):2581-2584.
    [6] Poissy J, Aubry A, Fernandez C, et al.Should moxifloxacin be used for the treatment of extensively drug-resistant tuberculosis? An answer from a murine model.Antimicrob Agents Chemother. 2010 ;54(11):4765-4771.
    [7] Martin A,Palomino JC,Portaels F. Rapid diction of ofloxacin resistance in mycobacterium tuberlosis by two low-cost colorimetric methods:resazurin and nitrate reductase assays. J Clin Microbiol,2005,43(4):1612-1616.
    [8]中国防痨协会基础专业委员会.结核病诊断实验室检验规程.中国教育文化出版社,2006:46-51.
    [9] Huang TS, Kunin CM, Shin-Jung Lee S,et al.Trends in fluoroquinolone resistance ofMycobacterium tuberculosis complex in a Taiwanese medical centre: 1995-2003. J Antimicrob Chemother. 2005 ;56(6):1058-1062.
    [10] Agrawal D, Udwadia ZF, Rodriguez C,et al.Increasing incidence of fluoroquinolone- resistant Mycobacterium tuberculosis in Mumbai, India.Int J Tuberc Lung Dis.2009; 13(1):79-83.
    [11] Jabeen K, Shakoor S, Chishti S,et al.Fluoroquinolone-resistant Mycobacterium tuberculosis, Pakistan, 2005-2009. Emerg Infect Dis. 2011;17(3):564-566.
    [12] Umubyeyi AN,Martin A,Zissis G,et al. Evaluation of the resazurin microtiter assay for rapid detection of ofloxacin resistance in M. tuberculosis[J]. Int J Tuberc Lung Dis 2006,10(7):808-811.
    [13] Moadebi S, Harder CK, Fitzgerald MJ,et al. Fluoroquinolones for the treatment of pulmonary tuberculosis[J].Drugs,2007,67(14):2077-2099.
    [14] Wang JY, Lee LN, Lai HC, et al. Fluoroquinolone resistance in Mycobacterium tuberculosis isolates: associated genetic mutations and relationship to antimicrobial exposure. J Antimicrob Chemother. 2007 ;59(5):860-865.
    [15] Von Groll A, Martin A, Jureen P,et al.Fluoroquinolone resistancein Mycobacterium tuberculosis andmutationsin gyrA and gyrB.Antimicrob Agents Chemother. 2009 ;53 (10):4498-4500.
    [16] Peloquin CA, Hadad DJ, Molino LPD,et al. Population pharmacokinetics of Levofloxacin,Gatifloxacin,and Moxifloxacin in adults with pulmonary tuberculosis. Antimicrobial Agents and Chemotherapy,2008,53(3):852-857.
    [1] Jabeen K, Shakoor S, Chishti S,et al.Fluoroquinolone-resistant Mycobacterium tuberculosis, Pakistan, 2005-2009. Emerg Infect Dis. 2011;17(3):564-566.
    [2] Agrawal D, Udwadia ZF, Rodriguez C,et al.Increasing incidence of fluoroquinolone- resistant Mycobacterium tuberculosis in Mumbai, India.Int J Tuberc Lung Dis. 2009 ;13(1):79-83.
    [3] Huang TS, Kunin CM, Shin-Jung Lee S,et al.Trends in fluoroquinolone resistance of Mycobacterium tuberculosis complex in a Taiwanese medical centre: 1995-2003. J Antimicrob Chemother. 2005;56(6):1058-1062.
    [4] Xu,C.,Kreiswirth BN,Sreevatsan S,et al.fluoroquinolone resistance associated with specifc gyrase mutations in clinical isolates of multidrug-resistant Mycobacterium tuberculosis. J.Infect.Dis. 1996,174:1127-1130
    [5] Takiff HE, Salazar L, Guerrero C,et al.Cloning and nucleotide sequence of Mycobacterium tuberculosis gyrA and gyrB genes and detection of quinolone resistance mutations.Antimicrob Agents Chemother. 1994 ;38(4):773-780.
    [6] Yin X, Yu Z. Mutation characterization of gyrA and gyrB genes in levofloxacin- resistant Mycobacterium tuberculosis clinical isolates from Guangdong Province in China.J Infect. 2010 61(2):150-154.
    [7] Von Groll A, Martin A, Jureen P, et al.Fluoroquinolone resistancein Mycobacterium tuberculosis and mutationsin gyrA and gyrB.Antimicrob Agents Chemother. 2009 ;53(10):4498-4500.
    [8] Cui Z, Wang J, Lu J, et al. Association of mutation patterns in gyrA/B genes and ofloxacin resistance levels in Mycobacterium tuberculosis isolates from East China in 2009.BMC Infect Dis. 2011;11(1):78
    [9] Shi R, Zhang J, Li C, et al. 17.Emergence of ofloxacin resistance in Mycobacterium tuberculosis clinical isolates from China as determined by gyrA mutation analysis usingdenaturing high-pressure liquid chromatography and DNA sequencing. J Clin Microbiol. 2006 ;44(12):4566-4568.
    [10] Kocag?z T, Hackbarth CJ, Unsal I, et al.Gyrase mutations in laboratory-selected, fluoroquinolone-resistant mutants of Mycobacterium tuberculosis H37Ra. Antimicrob Agents Chemother. 1996 ;40(8):1768-1774.
    [11] Sun Z, Zhang J, Zhang X, et al. Comparison of gyrA gene mutations between laboratory-selected ofloxacin-resistant Mycobacterium tuberculosis strains and clinical isolates.Int J Antimicrob Agents. 2008 ;31(2):115-121.
    [12] Williams DL, Spring L, Collins L,et al. Contribution of rpoB Mutations to Development of Rifamycin Cross-Resistance in Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 1998, 42(7): 1853-1857.
    [13] Huitric E, Werngren J, Juréen P, et al. Resistance levels and rpoB gene mutations among in vitro-selected rifampin-resistant Mycobacterium tuberculosis mutants. Antimicrob Agents Chemother. 2006 ;50(8):2860-2862.
    [14] Hazbón MH, Brimacombe M, Bobadilla del Valle M, et al.Population genetics study of isoniazid resistance mutations and evolution of multidrug-resistant Mycobacterium tuberculosis.Antimicrob Agents Chemother. 2006,50(8):2640-2649.
    [15] Kim SY, Park YJ, Kim WI,et al.Molecular analysis of isoniazid resistance in Mycobacterium tuberculosis isolates recovered from South Korea.Diagn Microbiol Infect Dis. 2003 ;47(3):497-502.
    [16] Cheng AF, Yew WW, Chan EW, et al.Multiplex PCR amplimer conformation analysis for rapid detection of gyrA mutations in fluoroquinolone-resistant Mycobacterium tuberculosis clinical isolates.Antimicrob Agents Chemother. 2004 ;48(2):596-601.
    [17] Escribano I, Rodríguez JC, Llorca B, et al. Importance of the efflux pump systems in the resistance of Mycobacterium tuberculosis to fluoroquinolones and linezolid. Chemotherapy. 2007;53(6):397-401.
    [18] Gupta AK, Katoch VM, Chauhan DS, et al. Microarray analysis of efflux pump genesin multidrug-resistant Mycobacterium tuberculosis during stress induced by common anti-tuberculous drugs.Microb Drug Resist. 2010 ;16(1):21-28.
    [19] Jarlier V, Nikaido H.Mycobacterial cell wall: structure and role in natural resistance to antibiotics.FEMS Microbiol Lett. 1994;123(1-2):11-18
    [20] Mokrousov I, Otten T, Manicheva O,et al. Molecular characterization of ofloxacin- resistant Mycobacterium tuberculosis strains from Russia. Antimicrob Agents Chemother. 2008 ;52(8):2937-2939.
    [21] Lee AS, Tang LL, Lim IH,et al.Characterization of pyrazinamide and ofloxacin resistance among drug resistant Mycobacterium tuberculosis isolates from Singapore.Int J Infect Dis. 2002 ;6(1):48-51.
    [22] Sulochana S, Narayanan S, Paramasivan CN,et al.Analysis of fluoroquinolone resistance in clinical isolates of Mycobacterium tuberculosis from India.J Chemother. 2007 ;19(2):166-171.
    [23] Antonova OV, Gryadunov DA, Lapa SA,et al.Detection of mutations in Mycobacterium tuberculosis genome determining resistance to fluoroquinolones by hybridization on biological microchips. Bull Exp Biol Med. 2008 ;145(1):108-13.
    [24] Drlica K, Malik M.Fluoroquinolones: action and resistance.Curr Top Med Chem. 2003;3(3):249-82.
    [25] Hegde SS, Vetting MW, Roderick SL,et al.A fluoroquinolone resistance protein from Mycobacterium tuberculosis that mimics DNA.Science. 2005;308(5727):1480-1483.
    [26] Pasca MR, Guglierame P, Arcesi F,et al.Rv2686c-Rv2687c-Rv2688c, an ABC fluoroquinolone efflux pump in Mycobacterium tuberculosis.Antimicrob Agents Chemother. 2004 ;48(8):3175-3178.
    [1] Multidrug and extensively drug-resistant TB (M/XDR-TB):2010 GLOBAL REPORT ON SURVEILLANCE AND RESPONSE. Geneva,World Health Organization, 2010 (WHO/HTM/TB/2010.3)
    [2]中华人民共和国卫生部.全国结核病耐药性基线调查报告(2007-2008年)[M].人民卫生出版社,2010:25-52.
    [3] Heep M, Brandstatter B, Rieger U,et al. Frequency of rpoB mutations inside and outside the cluster I region in rifampin-resistant clinical Mycobacterium tuberculosis isolates.J. Clin. Microbiol.2001,39(1):107–110.
    [4] Chan RC, Hui M, Chan EW, et al. Genetic and phenotypic characterization of drug-resistant Mycobacterium tuberculosis isolates in Hong Kong. J. Antimicrob. Chemother. 2007,59(5):866–873.
    [5] Huitric, E., J. Werngren, P. Jureen, and S. Hoffner.. Resistance levels and rpoB gene mutations among in vitro selected rifampin-resistant Mycobacterium tuberculosis mutants. Antimicrob. Agents Chemother. 2006,50(8):2860– 2862.
    [6] Williams DL, Spring L, Collins L,et al. Contribution of rpoB Mutations to Development of Rifamycin Cross-Resistance in Mycobacterium tuberculosis. Antimi -crob. Agents Chemother. 1998, 42(7): 1853-1857
    [7] Banerjee A, Dubnau E, Quemard A,et al. inhA, a gene encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis.Science,1994,263(5144):227-230
    [8] Rozwarski DA, Grant GA, Barton DH,et al. Modification of the NADH of the isoniazid target (InhA) from Mycobacterium tuberculosis .Science,1998 ,279(5347):98-102.
    [9] Hazbón MH, Brimacombe M, Bobadilla del Valle M, et al.Population genetics study of isoniazid resistance mutations and evolution of multidrug-resistant Mycobacterium tuberculosis.Antimicrob Agents Chemother. 2006,50(8):2640-2649.
    [10] Heym B, Stavropoulos E, HonoréN,et al. Effects of overexpression of the alkylhydroperoxide reductase AhpC on the virulence and isoniazid resistance of Mycobacterium tuberculosis.Infect Immun. 1997 ;65(4):1395-1401.
    [11] Argyrou A, Jin L, Siconilfi-Baez L, et al.Proteome-wide profiling of isoniazid targets in Mycobacterium tuberculosis.Biochemistry. 2006 ;45(47):13947-13953.
    [12] Wang F, Jain P, Gulten G,et al. Mycobacterium tuberculosis dihydrofolate reductase is not a target relevant to the antitubercular activity of isoniazid.Antimicrob Agents Chemother. 2010 ;54(9):3776-3782.
    [13] Ramaswamy SV, Amin AG, G?ksel S,et al.Molecular genetic analysis of nucleotide polymorphisms associated with ethambutol resistance in human isolates of Mycobacterium tuberculosis.Antimicrob Agents Chemother. 2000;44(2):326-336.
    [14] Telenti A, Philipp WJ, Sreevatsan S, et al.The emb operon, a gene cluster of Mycobacterium tuberculosis involved in resistance to ethambutol.Nat Med. 1997 ;3(5): 567-570.
    [15] Perdig?o J, Macedo R, Ribeiro A,et al.Genetic characterization of the ethambutol resistance-determining region in Mycobacterium tuberculosis: prevalence and significance of embB306 mutations.Int J Antimicrob Agents. 2009 ;33(4):334-338.
    [16] Safi H, Sayers B, Hazbón MH,et al.Transfer of embB codon 306 mutations into clinical Mycobacterium tuberculosis strains alters susceptibility to ethambutol, isoniazid, and rifampin.Antimicrob Agents Chemother. 2008 ;52(6):2027-2034.
    [17] Safi H, Fleischmann RD, Peterson SN,et al.Allelic exchange and mutant selection demonstrate that common clinical embCAB gene mutations only modestly increase resistance to ethambutol in Mycobacterium tuberculosis.Antimicrob Agents Chemother. 2010;54(1):103-108.
    [18] Zhang Y, Scorpio A, Nikaido H,et al.Role of acid pH and deficient efflux of pyrazinoic acid in unique susceptibility of Mycobacterium tuberculosis to pyrazinamide.J Bacteriol. 1999 ;181(7):2044-2049.
    [19] Scorpio A, Lindholm-Levy P, Heifets L, et al. Characterization of pncA mutations in pyrazinamide-resistant Mycobacterium tuberculosis.Antimicrob Agents Chemother.1997 ;41(3):540-543.
    [20] Juréen P, Werngren J, Toro JC,et al. Pyrazinamide resistance and pncA gene mutations in Mycobacterium tuberculosis.Antimicrob Agents Chemother. 2008;52(5):1852-4.
    [21] Scorpio A, Zhang Y.Mutations in pncA, a gene encoding pyrazinamidase/ nicotinamidase, cause resistance to the antituberculous drug pyrazinamide in tubercle bacillus.Nat Med. 1996 ;2(6):662-667.
    [22] Zhang Y, Scorpio A, Nikaido H,et al.Role of acid pH and deficient efflux of pyrazinoic acid in unique susceptibility of Mycobacterium tuberculosis to pyrazinamide.J Bacteriol. 1999;181(7):2044-9.
    [23] Von Groll A, Martin A, Jureen P, et al.Fluoroquinolone resistancein Mycobacterium tuberculosis and mutationsin gyrA and gyrB.Antimicrob Agents Chemother. 2009 ;53(10):4498-4500.
    [24] Mokrousov I, Otten T, Manicheva O,et al. Molecular characterization of ofloxacin-resistant Mycobacterium tuberculosis strains from Russia. Antimicrob Agents Chemother. 2008 ;52(8):2937-2939.
    [25] Shi R, Zhang J, Li C, et al. Emergence of ofloxacin resistance in Mycobacterium tuberculosis clinical isolates from China as determined by gyrA mutation analysis using denaturing high-pressure liquid chromatography and DNA sequencing. J Clin Microbiol. 2006 ;44(12):4566-4568.
    [26] Kocag?z T, Hackbarth CJ, Unsal I, et al.Gyrase mutations in laboratory-selected, fluoroquinolone-resistant mutants of Mycobacterium tuberculosis H37Ra. Antimicrob Agents Chemother. 1996 ;40(8):1768-1774.
    [27] Sun Z, Zhang J, Zhang X,et al. Comparison of gyrA gene mutations between laboratory-selected ofloxacin-resistant Mycobacterium tuberculosis strains and clinical isolates.Int J Antimicrob Agents. 2008 ;31(2):115-121.
    [28] Escribano I, Rodríguez JC, Llorca B, García-Pachon E, Ruiz M, Royo G. 12.Importance of the efflux pump systems in the resistance of Mycobacterium tuberculosis to fluoroquinolones and linezolid. Chemotherapy. 2007;53(6):397-401.
    [29] Finken M, Kirschner P, Meier A,et al. Molecular basis of streptomycin resistance in Mycobacterium tuberculosis: alterations of the ribosomal protein S12 gene and point mutations within a functional 16S ribosomal RNA pseudoknot. Mol Microbiol. 1993 ;9(6):1239-1246.
    [30] Cooksey RC, Morlock GP, McQueen A,et al.Characterization of streptomycin resistance mechanisms among Mycobacterium tuberculosis isolates from patients in New York City.Antimicrob Agents Chemother. 1996 ;40(5):1186-1188.
    [31] Okamoto S, Tamaru A, Nakajima C,et al. Loss of a conserved 7-methylguanosine modification in 16S rRNA confers low-level streptomycin resistance in bacteria.Mol Microbiol. 2007 ;63(4):1096-1106.
    [32] Spies FS, da Silva PE, Ribeiro MO,et al.Identification of mutations related to streptomycin resistance in clinical isolates of Mycobacterium tuberculosis and possible involvement of efflux mechanism.Antimicrob Agents Chemother. 2008 ;52(8): 2947-2949.
    [33] Suzuki Y, Katsukawa C, Tamaru A,et al. Detection of kanamycin-resistant Mycobacterium tuberculosis by identifying mutations in the 16S rRNA gene.J Clin Microbiol. 1998;36(5):1220-1225.
    [34] Jugheli L, Bzekalava N, de Rijk P,et al. High level of cross-resistance between kanamycin, amikacin, and capreomycin among Mycobacterium tuberculosis isolates from Georgia and a close relation with mutations in the rrs gene.Antimicrob Agents Chemother. 2009 ;53(12):5064-5068.
    [35] Maus CE, Plikaytis BB, Shinnick TM.Mutation of tlyA confers capreomycin resistance in Mycobacterium tuberculosis.Antimicrob Agents Chemother. 2005 ;49(2):571-577.
    [36] Maus CE, Plikaytis BB, Shinnick TM. Molecular analysis of cross-resistance to capreomycin, kanamycin, amikacin, and viomycin in Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2005 ;49(8):3192-3197.
    [37] DeBarber AE, Mdluli K, Bosman M,et al. Ethionamide activation and sensitivity in multidrug-resistant Mycobacterium tuberculosis. Proc Natl Acad Sci U S A.2000;97(17):9677-9682.
    [38] Vilchèze C, Av-Gay Y, Attarian R, et al. Mycothiol biosynthesis is essential for ethionamide susceptibility in Mycobacterium tuberculosis.Mol Microbiol. 2008 ;69(5): 1316-1329.
    [39] Ardito F, Posteraro B, Sanguinetti M,et al.Evaluation of BACTEC Mycobacteria Growth Indicator Tube (MGIT 960) automated system for drug susceptibility testing of Mycobacterium tuberculosis. J Clin Microbiol. 2001;39(12):4440-4444.
    [40] Lin SY, Desmond E, Bonato D,et al.Multicenter evaluation of Bactec MGIT 960 system for second-line drug susceptibility testing of Mycobacterium tuberculosis complex. J Clin Microbiol. 2009 ;47(11):3630-3634.
    [41] Angeby KA, Werngren J, Toro JC,et al.Evaluation of the BacT/ALERT 3D system for recovery and drug susceptibility testing of Mycobacterium tuberculosis.Clin Microbiol Infect. 2003;9(11):1148-1152.
    [42] Martin A, Morcillo N, Lemus D, et al.Multicenter study of MTT and resazurin assays for testing susceptibility to first-line anti-tuberculosis drugs.Int J Tuberc Lung Dis. 2005;9(8):901-906.
    [43] Leonard B, Coronel J, Siedner M, et al.Inter- and intra-assay reproducibility of microplate Alamar blue assay results for isoniazid, rifampicin, ethambutol, streptomycin, ciprofloxacin, and capreomycin drug susceptibility testing of Mycobacterium tuberculosis.J Clin Microbiol. 2008;46(10):3526-3529.
    [44] Raut U, Narang P, Mendiratta DK,et al. Evaluation of rapid MTT tube method for detection of drug susceptibility of Mycobacterium tuberculosis to rifampicin and isoniazid.Indian J Med Microbiol. 2008;26(3):222-227.
    [45] Park WG, Bishai WR, Chaisson RE, et al. Performance of the microscopic observation drug susceptibility assay in drug susceptibility testing for Mycobacterium tuberculosis.J Clin Microbiol. 2002 ;40(12):4750-4752.
    [46] Minion J, Leung E, Menzies D,et al.Microscopic-observation drug susceptibility and thin layer agar assays for the detection of drug resistant tuberculosis: a systematicreview and meta-analysis.Lancet Infect Dis. 2010 ;10(10):688-698.
    [47] Chauca JA, Palomino JC, Guerra H. Evaluation of rifampicin and isoniazid susceptibility testing of Mycobacterium tuberculosis by a mycobacteriophage D29-based assay.J Med Microbiol. 2007 ;56(Pt 3):360-364.
    [48] Rondón L, Piuri M, Jacobs WR Jr, et al. Evaluation of Fluoromycobacteriophages for detecting drug resistance in Mycobacterium tuberculosis.J Clin Microbiol. 2011;49(5): 1838-1842.
    [49] Bravo LT, Tuohy MJ, Ang C,et al.Pyrosequencing for rapid detection of Mycobacterium tuberculosis resistance to rifampin, isoniazid, and fluoroquinolones.J Clin Microbiol. 2009;47(12):3985-3990.
    [50] Ramirez MV, Cowart KC, Campbell PJ,et al. Rapid detection of multidrug-resistant Mycobacterium tuberculosis by use of real-time PCR and high-resolution melt analysis.J Clin Microbiol. 2010 ;48(11):4003-4009.
    [51] Choi GE, Lee SM, Yi J,et al. High-resolution melting curve analysis for rapid detection of rifampin and isoniazid resistance in Mycobacterium tuberculosis clinical isolates. J Clin Microbiol. 2010;48(11):3893-3898.
    [52] Xu HB, Jiang RH, Sha W,et al. PCR-single-strand conformational polymorphism method for rapid detection of rifampin-resistant Mycobacterium tuberculosis: systematic review and meta-analysis. J Clin Microbiol. 2010 ;48(10):3635-3640.
    [53] Sheen P, Méndez M, Gilman RH,et al.Sputum PCR-single-strand conformational polymorphism test for same-day detection of pyrazinamide resistance in tuberculosis patients.J Clin Microbiol. 2009 ;47(9):2937-2943.
    [54] Hillemann D, Rüsch-Gerdes S, Richter E.Evaluation of the GenoType MTBDRplus assay for rifampin and isoniazid susceptibility testing of Mycobacterium tuberculosis strains and clinical specimens.J Clin Microbiol. 2007 ;45(8):2635-2640.
    [55] Kiet VS, Lan NT, An DD,et al. Evaluation of the MTBDRsl test for detection of second-line-drug resistance in Mycobacterium tuberculosis.J Clin Microbiol. 2010 ;48(8):2934-2939.
    [56] Hillemann D, Rüsch-Gerdes S, Richter E. Feasibility of the GenoType MTBDRsl assay for fluoroquinolone, amikacin-capreomycin, and ethambutol resistance testing of Mycobacterium tuberculosis strains and clinical specimens. J Clin Microbiol. 2009 ; 47(6):1767-1772.
    [57] Yue J, Shi W, Xie J,et al.Mutations in the rpoB gene of multidrug-resistant Mycobac- terium tuberculosis isolates from China.J Clin Microbiol. 2003;41(5):2209- 2212.
    [58] Somoskovi A, Dormandy J, Mitsani D,et al.Use of smear-positive samples to assess the PCR-based genotype MTBDR assay for rapid, direct detection of the Mycobacterium tuberculosis complex as well as its resistance to isoniazid and rifampin.J Clin Microbiol. 2006 ;44(12):4459-4463.
    [59] Zhong M, Wang Y, Sun C,et al. [Growth of rifampin-dependent Mycobacterium tuberculosis in conditions without rifampin]. Zhonghua Jie He He Hu Xi Za Zhi. 2002 ;25(10):588-590.
    [60] Zhong M, Wang YW, Hu PP, et al. [Study on the sequences of amino-acids and their gene codes of the related proteins of rifampin-dependent Mycobacterium tuberculosis. Zhonghua Jie He He Hu Xi Za Zhi. 2006 ;29(2):83-86. Chinese.
    [61] Lee AS, Tang LL, Lim IH,et al.Characterization of pyrazinamide and ofloxacin resistance among drug resistant Mycobacterium tuberculosis isolates from Singapore.Int J Infect Dis. 2002 ;6(1):48-51.
    [62] Sulochana S, Narayanan S, Paramasivan CN,et al.Analysis of fluoroquinolone resistance in clinical isolates of Mycobacterium tuberculosis from India.J Chemother. 2007 ;19(2):166-171.
    [63] Antonova OV, Gryadunov DA, Lapa SA,et al.Detection of mutations in Mycobacterium tuberculosis genome determining resistance to fluoroquinolones by hybridization on biological microchips. Bull Exp Biol Med. 2008 ;145(1):108-13.
    [64] Drlica K, Malik M.Fluoroquinolones: action and resistance.Curr Top Med Chem. 2003;3(3):249-82.
    [65] Hegde SS, Vetting MW, Roderick SL,et al.A fluoroquinolone resistance protein fromMycobacterium tuberculosis that mimics DNA.Science. 2005;308(5727):1480-1483.
    [66] Pasca MR, Guglierame P, Arcesi F,et al.Rv2686c-Rv2687c-Rv2688c, an ABC fluoroquinolone efflux pump in Mycobacterium tuberculosis.Antimicrob Agents Chemother. 2004 ;48(8):3175-8.
    [67] Tyagi S, Kramer FR.Molecular beacons: probes that fluoresce upon hybridization.Nat Biotechnol. 1996 ;14(3):303-308.
    [68] Papaparaskevas J, Houhoula DP, Siatelis A,et al.Molecular-beacon-based real-time PCR for detection and quantification of Mycobacterium tuberculosis DNA in clinical samples.J Clin Microbiol. 2008;46(9):3177-3178.
    [69] Piatek AS, Telenti A, Murray MR,et al.Genotypic analysis of Mycobacterium tuberculosis in two distinct populations using molecular beacons: implications for rapid susceptibility testing.Antimicrob Agents Chemother. 2000 ;44(1):103-110.
    [70] Banerjee R, Allen J, Lin SY,et al.Rapid drug susceptibility testing with a molecular beacon assay is associated with earlier diagnosis and treatment of multidrug-resistant tuberculosis in California.J Clin Microbiol. 2010 ;48(10):3779-3781.
    [71] Zhang Y, Wade MM, Scorpio A,et al.Mode of action of pyrazinamide: disruption of Mycobacterium tuberculosis membrane transport and energetics by pyrazinoic acid. J Antimicrob Chemother. 2003;52(5):790-795.
    [72] Zimhony O, Cox JS, Welch JT,et al. Pyrazinamide inhibits the eukaryotic-like fatty acid synthetase I (FASI) of Mycobacterium tuberculosis.Nat Med. 2000 ;6(9): 1043-1047.
    [73] Boshoff HI, Mizrahi V, Barry CEШ.Effects of pyrazinamide on fatty acid synthesis by whole mycobacterial cells and purified fatty acid synthase I. J Bacteriol. 2002 ;184(8):2167-2172.
    [74] Takiff HE, Salazar L, Guerrero C,et al.Cloning and nucleotide sequence of Mycobacterium tuberculosis gyrA and gyrB genes and detection of quinolone resistance mutations.Antimicrob Agents Chemother. 1994 ;38(4):773-780.
    [75] Yin X, Yu Z. Mutation characterization of gyrA and gyrB genes in levofloxacin-resistant Mycobacterium tuberculosis clinical isolates from Guangdong Province in China.J Infect. 2010 61(2):150-154.
    [76] Cheng AF, Yew WW, Chan EW, et al.Multiplex PCR amplimer conformation analysis for rapid detection of gyrA mutations in fluoroquinolone-resistant Mycobacterium tuberculosis clinical isolates.Antimicrob Agents Chemother. 2004 ; 48(2):596-601.
    [77] Shi R, Zhang J, Otomo K,et al.Lack of correlation between embB mutation and ethambutol MIC in Mycobacterium tuberculosis clinical isolates from China. Antimicrob Agents Chemother. 2007 ;51(12):4515-4517.
    [78] Vannelli TA, Dykman A, Ortiz de Montellano PR. The antituberculosis drug ethionamide is activated by a flavoprotein monooxygenase. J Biol Chem. 2002; 277(15):12824-12829.
    [79] Herrera-León L, Molina T, Saíz P, et al. New multiplex PCR for rapid detection of isoniazid-resistant Mycobacterium tuberculosis clinical isolates. Antimicrob Agents Chemother. 2005 ;49(1):144-147.
    [80] Tho DQ, Ha DT, Duy PM,et al. Comparison of MAS-PCR and GenoType MTBDR assay for the detection of rifampicin-resistant Mycobacterium tuberculosis.Int J Tuberc Lung Dis. 2008 ;12(11):1306-1312.
    [81] Al-Mutairi NM, Ahmad S, Mokaddas E Performance comparison of four methods for detecting multidrug-resistant Mycobacterium tuberculosis strains. Int J Tuberc Lung Dis. 2011 ;15(1):110-115.
    [82] Caws M, Tho DQ, Duy PM,et al. PCR-restriction fragment length polymorphism for rapid, low-cost identification of isoniazid-resistant Mycobacterium tuberculosis. J Clin Microbiol. 2007 Jun;45(6):1789-93.
    [83] Shimizu Y, Dobashi K, Yoshikawa Y, et al. Five-antituberculosis Drug-resistance Genes Detection Using Array System.J Clin Biochem Nutr. 2008 ;42(3):228-234.
    [84] Yao C, Zhu T, Li Y,et al.Detection of rpoB, katG and inhA gene mutations in Mycobacterium tuberculosis clinical isolates from Chongqing as determined by microarray. Clin Microbiol Infect. 2010;16(11):1639-1643.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700