介孔分子筛SBA-15负载Ni-B非晶态合金催化噻吩加氢脱硫性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用化学还原法制备了Ni-B/SBA-15非晶态合金催化剂,以噻吩加氢脱硫为探针反应,研究了不同的SBA-15改性方法对Ni-B/SBA-15催化加氢脱硫性能的影响。采用等离子发射光谱法(ICP)、小角X衍射(小角XRD)、程序升温还原(TPR)、程序升温脱附(TPD)等方法考察了载体和催化剂的结构及表面性能。
     本文第一部分分别采用原位合成和后处理改性的方法将磺酸基团引入介孔分子筛SBA-15,以增强SBA-15表面酸性,提高催化剂加氢脱硫反应的活性。结果表明,与未改性SBA-15为载体相比,对甲苯磺酸原位加入及对甲苯磺酸后处理改性SBA-15负载的Ni-B非晶态合金催化剂具有较多的酸量和吸附中心,有利于硫化物分子中的C-S键断裂,从而提高催化剂脱硫的效率。
     本文第二部分采用共价接枝法制备APTS改性SBA-15,将氨基官能团引入SBA-15改善其化学环境,其负载的Ni-B催化剂噻吩转化率达到50.8%。由于氨基与Ni2+的络合作用,有助于Ni在催化剂中的分散,因而更容易被还原。ICP结果表明,在相同的制备条件下,相比未改性的SBA-15,APTS改性SBA-15使其催化剂中Ni的负载量增加,并且非晶态合金组成中Ni的含量也增大,B的含量降低,有利于提高催化剂的活性。
     本文第三部分采用燃烧法制备得到SBA-15-ZnO复合载体,并以其为载体制备了Ni-B非晶态合金催化剂。结果表明,随着ZnO在复合载体中的含量增大,其负载的催化剂加氢脱硫反应活性有所降低。然而,由于ZnO制备成本大大地低于SBA-15,且其制备工艺远比SBA-15合成简单。因此,可选择添加少量ZnO与SBA-15制备复合载体用于加氢脱硫反应。
In this paper, with chemical reduction method Ni-B/SBA-15 amorphous alloy catalyst was prepared using different modified SBA-15 as surpports. The catalytic activity of catalysts was characterized with thiophene hydrodesulfurization reaction. Moreover, supports and catalysts were characterized by ICP, small-angle XRD, TPR, TPD, SEM and TEM.
     In the first part of this thesis, SBA-15 was modified with TsOH by in situ synthesis and post treatment modification method respectively. It was found that the catalyst performance of Ni-B catalysts supported by SBA-15 containing TsOH was better than the one supported by pure SBA-15. SBA-15 modified with TsOH by both two kinds of methods has more acid sites and harder acid ability, which would benefit for breaking C-S bond and then improving efficiency of catalyst.
     In the second part, Ni-B/SBA-15-APTS which has higher catalytic activity was prepared. The complexation between -NH2 and Ni2+ was benefit for the good dispersion of Ni-B alloy particles and more Ni2+ could be reduced. ICP results also show that quantity of Ni supported in SBA-15-APTS was bigger than pure SBA-15, and the content of Ni in Ni-B amorphous alloy was increased.
     Finaly, Ni-B amorphous alloy was prepared with ZnO-SBA-15 composite support was prepared. It was discovered that the hydrodesulfurization poperty of catalyst with ZnO-SBA-15 composite support was decreased with the introduction of ZnO. While the preparation process was much easier than the one of SBA-15, and the cost of the former also was lower than the latter. So ZnO-SBA-15 composite support with certain quantity of ZnO was considerable for hydrodesulfurization.
引文
[1]Kresge C T, Leonowicz M E, Roth W J, et al. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism [J]. Nature.1992,359:710-712.
    [2]Choudhary V R, Jana S K, Patil N S. Acylation of aromatic compounds using moisture insensitive InC13 impregnated mesoporous Si-MCM-41 catalyst [J]. Tetrahedron Letters.2002, 43(6):1105-1107.
    [3]Ravikovitch P I, Wei D, Chueh W T, et al. Evaluation of Pore Structure Parameters of MCM-41 Catalyst Supports and Catalysts by Means of Nitrogen and Argon Adsorption [J]. J. Phys. Chem. B.1997,101(19):3671-3679.
    [4]A C, A M, V M, et al. Hydrocracking of Vacuum Gasoil on the Novel Mesoporous MCM-41 Aluminosilicate Catalyst [J]. Journal of Catalysis.1995,153(1):25-31.
    [5]Long R, Yang R T. Pt/MCM-41 catalyst for selective catalytic reduction of nitric oxide with hydrocarbons in the presence of excess oxygen [J]. Catalysis Letters.1998,52(1-2):91-96.
    [6]鲁墨弘,王安杰,李翔等。以MCM-41作载体的磷化镍催化剂的加氢脱氮性能[J]。石油学报。2006,22(6):33-38.
    [7]Zhao X S, Lu G Q (Millar G J. Advances in Mesoporous Molecular Sieve MCM-41 [J]. Ind. Eng. Chem. Res.1996,35(7):2075-2090.
    [8]R R, M K J, H K C. Disordered molecular sieve with branched mesoporous channel network [J]. Journal of physical chemistry.1996,100(45):17718-17721.
    [9]Chen L Y, Jaenicke S, Chuah G K. Thermal and hydrothermal stability of framework-substituted MCM-41 mesoporous materials [J]. Microporous Materials.1997,12(4-6): 323-330.
    [10]Inagaki S, Guan S. Ohsuna T, et al. An ordered mesoporous organosilica hybrid material with a crystal-like wall structure [J]. Nature.2002,416:304-307.
    [11]Mokaya R. Al Content Dependent Hydrothermal Stability of Directly Synthesized Aluminosilicate MCM-41 [J]. J. Phys. Chem. B.2000,104(34):8279-8286.
    [12]Mokaya R. Improving the Stability of Mesoporous MCM-41 Silica via Thicker More Highly Condensed Pore Walls [J]. J. Phys. Chem. B.1999,103(46):10204-10208.
    [13]Lim M H, Blanford C F, Stein A. Synthesis and Characterization of a Reactive Vinyl-Functionalized MCM-41:Probing the Internal Pore Structure by a Bromination Reaction [J]. J. Am. Chem. Soc.1997,119(17):4090-4091.
    [14]Diaz I, Marquez-Alvarez C, Mohino F, et al. A novel synthesis route of well ordered, sulfur-bearing MCM-41 catalysts involving mixtures of neutral and cationic surfactants [J]. Microporous and Mesoporous Materials.2001, (44-45):295-302.
    [15]Zhao D, Feng J, Huo Q, et al. Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores [J]. Science,1998,279(5350):548-552.
    [16]Diaz I, Mohino F, Perez-Pariente J. et al. Synthesis, characterization and catalytic activity of MCM-41-type mesoporous silicas functionalized with sulfonic acid [J]. Applied Catalysis A: General.2001,205(1-2):19-30.
    [17]袁兴东,沈健,李国辉等。SBA-15介孔分子筛表面的磺酸基改性及其催化性能[J]。催化学报。2002,23(5):435-438.
    [18]邵艳秋,王冰,罗玉杰。磺酸基功能化的有序SBA-15-S03H介孔分子筛的合成及其在苯酚叔丁基化反应中的应用[J]。分子科学学报。2008,24(3):202-205.
    [19]张明伟,王力,高登征。新型疏水性固体酸SBA-15-S03H催化剂制备及其催化性能[J]。工业催化。2008,16(5):28-30.
    [20]张强,矫庆泽,闵恩泽。固体超强酸(SO42-/ZrO2)的异丁烷/1-丁烯烷基化反应性能和失活研究[J]。高等学校化学学报。2005,26(6):1130-1132.
    [21]Wong M S, Huang H C, Ying J Y. Supramolecular-Templated Synthesis of Nanoporous Zirconia-Silica Catalysts [J]. Chemistry of Materials.2002,14(5):1961-1973.
    [22]Garg S, Soni K, Kumaran G M, et al. Acidity and catalytic activities of sulfated zirconia inside SBA-15 [J]. Catalysis Today.2009,141(1-2):125-129.
    [23]张雪峥,乐英红等。PW/SBA-15负载型催化剂的性能研究[J]。高等学校化学学报。2001,22(7):1169-1172.
    [24]杨丽娜,亓玉台,袁兴东等。磷钨酸改性介孔分子筛SBA-15催化剂的酸性及水热稳定性的研究[J]。石油化工。2005,34(3):222-225.
    [25]Yang L, Qi Y, Yuan X, et al. Direct synthesis, characterization and catalytic application of SBA-15 containing heteropolyacid H3PW12O40 [J]. Journal of Molecular Catalysis A:Chemical. 2005,229(1-2):199-205.
    [26]Liu Q, Wu W, Wang J, et al. Characterization of 12-tungstophosphoric acid impregnated on mesoporous silica SBA-15 and its catalytic performance in isopropylation of naphthalene with isopropanol [J]. Microporous and Mesoporous Materials.2004,76(1-3):51-60.
    [27]Rao P M, Wolfsonb A, Kababyac S, et al. Immobilization of molecular H3PW12O40 heteropolyacid catalyst in alumina-grafted silica-gel and mesostructured SBA-15 silica matrices [J]. Journal of Catalysis.2005,232(1):210-225.
    [28]Sawant D P, Justus J, Balasubramanian V V, et al. Heteropoly Acid Encapsulated SBA-15/TiO2 Nanocomposites and Their Unusual Performance in Acid-Catalysed Organic Transformations [J]. Chem. Eur. J.2008,14(10):3200-3212.
    [29]Yu S, Wang L, Chen B, et al. Assembly of Heteropoly Acid Nanoparticles in SBA-15 and Its Performance as an Acid Catalyst [J]. Chem. Eur. J.2005,11(13):3894-3898.
    [30]Khodakov A Y, Bechara R, Griboval-Constant A. Fischer-Tropsch synthesis over silica supported cobalt catalysts:mesoporous structure versus cobalt surface density [J]. Applied Catalysis A:General.2003,254(2):273-288.
    [31]金杏妹.工业应用催化剂[M].上海:华东理工大学出版社,2004.7-7.
    [32]Lu G, Zhao R, Qian G, et al. A Highly Efficient Catalyst Au/MCM-41 for Selective Oxidation Cyclohexane Using Oxygen [J]. Catalysis Letters.2004,97(3-4):115-118.
    [33]Lu G, Jia D, Qian G, et al. Gold nanoparticles in mesoporous materials showing catalytic selective oxidation cyclohexane using oxygen [J]. Applied Catalysis A:General.2005,280(2): 175-180.
    [34]Wang H, Li R, Zheng Y, et al. Bismuth-Containing SBA-15 Mesoporous Silica Catalysts for Solvent-Free Liquid-Phase Oxidation of Cyclohexane by Molecular Oxygen [J]. Helvetica Chimica Acta.2007,90(9):1837-1847.
    [35]Reddy S S, Raju B D, Padmasri A H, et al. Novel and efficient cobalt encapsulated SBA-15 catalysts for the selective oxidation of cyclohexane [J]. Catalysis Today.2009,141(1-2):61-65.
    [36]Zhang Q, Li Y, An D, et al. Catalytic behavior and kinetic features of FeOx/SBA-15 catalyst for selective oxidation of methane by oxygen [J]. Applied Catalysis A:General.2009,356(1): 103-111.
    [37]Saikia L, Srinivas D. Redox and selective oxidation properties of Mn complexes grafted on SBA-15 [J]. Catalysis Today.2009,141(1-2):66-71.
    [38]Srinivasa D, Ratnasamy P. Spectroscopic and catalytic properties of SBA-15 molecular sieves functionalized with acidic and basic moieties [J]. Microporous and Mesoporous Materials. 2007,105(1-2):170-180.
    [39]Wang G, Zhang L, Deng J, et al. Preparation, characterization, and catalytic activity of chromia supported on SBA-15 for the oxidative dehydrogenation of isobutane [J]. Applied Catalysis A:General.2009,355(1-2):192-201.
    [40]Liu Y, Cao Y, Yi N, et al. Vanadium oxide supported on mesoporous SBA-15 as highly selective catalysts in the oxidative dehydrogenation of propane [J]. Journal of Catalysis.2004, 224(2):417-428.
    [41]Yan L, Ding Y J, Lin L W, et al. In situ formation of HRh(CO)2(PPh3)2 active species on the surface of a SBA-15 supported heterogeneous catalyst and the effect of support pore size on the hydroformylation of propene [J]. Journal of Molecular Catalysis A:Chemical.2009,300(1-2): 116-120.
    [42]Eswaramoorthi I, Dalai A K. A comparative study on the performance of mesoporous SBA-15 supported Pd-Zn catalysts in partial oxidation and steam reforming of methanol for hydrogen production [J]. International journal of hydrogen energy.2009,34(6):2580-2590.
    [43]Calles J A, Carrero A, Vizcaino A J. Ce and La modification of mesoporous Cu-Ni/SBA-15 catalysts for hydrogen production through ethanol steam reforming [J]. Microporous and Mesoporous Materials.2009,119(1-3):200-207.
    [44]温钦武,沈健,李会鹏等.介孔分子筛催化剂Co-Mo/SBA-15的制备及其加氢脱硫性能[J].石油学报.2009,25(1):42-47.
    [45]Olivasa A, Zepeda T A. Impact of Al and Ti ions on the dispersion and performance of supported NiMo(W)/SBA-15 catalysts in the HDS and HYD reactions [J]. Catalysis Today.2009, 143(1-2):120-125.
    [46]Diego Valencia, Tatiana Klimova. Effect of the support composition on the characteristics of NiMo and CoMo/(Zr)SBA-15 catalysts and their performance in deep hydrodesulfurization [J]. Catalysis Today.2011,166 (1)91-101
    [47]Badamali S K, Luque R, Clark J H, et al. Microwave assisted oxidation of a lignin model phenolic monomer using Co(salen)/SBA-15 [J]. Catalysis Communications.2009,10(6): 1010-1013.
    [48]Shibasaki Y, Nakamura M, Kondo J N, et al. Oxidative Coupling Polymerization of Substituted Phenols with a Copper Amine Catalyst Immobilized within Mesoporous Silica [J]. Macromolecular Symposia.2006,245-246(1):87-92.
    [1]Zhao D, Feng J, Huo Q, et al. Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores [J]. Science.1998,279(5350):548-552.
    [1]Okamoto Y, Nitta Y, Imanaka T. Surface characterization of nickel boride and nickel phosphide catalysts by X-ray photoelectron spectroscopy [J]. J Chem Soc Faraday Trans.1979, 75(8):2027-2039
    [2]Molnar A, Smith G V, Bartok M, et al. New catalytic materials from amorphous alloys [J]. Adv in Catal.1989,36:329-85
    [3]石秋杰,陈昭平,罗来涛等.海泡石对非晶态Ni-B合金催化剂的改性研究[J].物理化学学报.2000,16(6):501-506
    [4]Deng J F, Chen H Y. A novel amorphous Ni-W-P alloy powder and its hydrogen-ation activity [J]. J Mater Sci Lett.1993,12(19):1508-1510
    [5]Glavee G N, Klabunde K J, Sorensen C M et al. Borohydride reduction of cobalt ions in water: Chemistry leading to nanoscal metal, boride, or brorate particles [J]. Langmuir.1993,9(1) 162-169
    [6]Li H X,Wang W J, Li H et al. Crystallization deactivation of Ni-P/SiO2 amorphous catalyst and the stabilizing effect of silica support on the Ni-P amorphous structure [J]. J Catal.2000, 194(1):211-221
    [7]Lee H C and Butt J B. Kinetic of the desulfurization of thiophene:Reaction of thiophene and butane [J].J Catal,1977,49(3):320
    [8]Miller J T, Meyers B L, Modica F S, et al. Hydrogen temperature-programmed desorption (H2 TPD) of supported platinum catalysts [J]. J Catal,1993,143(2):395-408
    [9]左东华,谢玉萍,聂红等.4,6-二甲基二苯并噻吩加氢脱硫反应机理的研究Ⅰ.NiW体系催化剂的催化行为[J].催化学报.2002,23(3):271-272
    [10]田志茗.酸改性SBA-15介孔材料制备、表征及催化性能[D].大连理工大学,2008.
    [11]郑修成,袁程远,赵文平等.介孔分子筛SBA-15的合成与表征.郑州大学学报[J].2008,40(1):101-106
    [12]Chu C W, Kirby D P, Murphy P D, et al. Polymer/Roughened Metal Interface [J]. J. Adhes. Sci. Technol.1993 (7):417-434
    [13]孙慧,邓启刚,田志茗.SBA-15负载对甲苯磺酸催化合成乙酸正丁酯[J].化工时刊.2006,20(11): 30-32
    [14]Margolese D, Melera J A, Christiansen S C, et al. Direct Syntheses of Ordered SBA-15 Mesoporous Silica Containing Sulfonic Acid Groups [J]. Chem Mater.2000,12(8):2448-2459
    [15]Mijoin J, Thevenin V, Aguirre N G, Yeze H, et al. Dihydrointermediates in hydrodesulfurization of dibenzothiophene-type compounds[J].Appl Catal A,1999,180(1):95-104
    [16]王奂玲,闫亮,赵睿等.氨丙基官能化介孔分子筛的合成及催化性能的研究[J].分子催化.2(2005):1-5
    [17]Kallury K M R, Thompson M. Chemically Modified Srface [J].Cambridge:The Royal Society of Chemistry.1994,58-128
    [18]Wojcieszak R, Monteverdi S, Ghanbaja J, et al. Study of Ni-Ag/SiO2 catalysts prepared by reduction in aqueous hydrazine [J]. Journal of Colloid and Interface Science.2008.317(1): 166-174
    [1]Mihaela Mureseanu, Aurora Reiss, Loan Stefanescu, et al. Modified SBA-15 for heavy metal ions remediation [J]. Chemosphere.2008,73(9):1499-1504
    [2]ZHONG Zhen-Xing, WEI Qi, WANG Fei, LI Qun-Yan, ea al. Synthesis of Aminopropyl-functionalized Periodic Mesoporous Organosilica by Post-grafting Method [J]. Journal of Inorganic Materials.2008,23 (2):408-412
    [3]李凤仪,张荣斌,石秋杰等.稀土在负载型非晶态Ni-B/Al2O3合金上作用研究[J].稀土.2000,21(4):38-42
    [4]钟振兴,韦奇,王飞等.后接枝法合成氨丙基修饰的周期性介孔氧化硅材料[J].无机材料学报.2008,23(2):408-412
    [5]戚蕴石,固体催化剂设计[M],上海,华东理工大学出版社,1994:46
    [6]Prakash A M, Unnikrishnan S. Synthesis of SAPO-34:high silicon incorporation in the presence of morpholine as template [J]. J.Chem.soc.Faraday Trans.1994,90(15):2291-2296
    [7]王刚,颜峰,滕兆刚等.二氧化硅表面的APTS修饰[J].化学进展.2006,18(2-3):239-245
    [1]Jean-Claude M'Peko, Deusdedit L. Spavieri Jr, Charles L. da Silva et al. Electrical properties of zirconia-alumina composites,Solid State Ionics[J] 156 (2003) 59-69
    [2]J.G. Seo, Min Hye Youn, In Kyu Song et al. Hydrogen production by steam reforming of LNG over Ni/Al2O3-ZrO2 catalysts:Effect of Al2O3-ZrO2 supports prepared by a grafting method, Journal of Molecular Catalysis A:Chemical [J]268 (2007) 9-14
    [3]Li Ning(李凝),Luo Lai-tang(罗来涛),Ou Yang-yan(欧阳燕)。纳米ZrO2/Al2O3复合载体及Ni/ZrO2/Al2O3催化剂的性能研究,Chinese Journal of Catalysis(催化学报)[J],2005,26(9):775-779
    [4]杨静.ZnO基复合载体负载Ni基催化剂催化噻吩加氢脱硫的研究[D].南昌大学,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700