Ni-Ce/SiO_2催化剂的制备、表征及其CO甲烷化性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
CO甲烷化不但在合成氨、石油化工制氢方面得到广泛应用,而且在其他许多方面也具有重要的应用价值,如燃料电池中氢气纯化;城市煤气中CO解毒以提高其热值;F-T合成中避免甲烷产生的研究等;尤其是近年来利用焦炉煤气甲烷化以及劣质煤经气化、甲烷化合成代用天然气,已成为学术界和产业界共同瞩目的一个研究课题。同时,在理论研究方面,由于该反应体系简单而常被用作研究甲烷化催化剂的探针反应。
     在CO甲烷化催化剂中,贵金属Ru催化活性最高,但由于价格昂贵,使其应用受到限制;Ni具有较好的活性,且价格相对低廉,大多数富氢气体中少量CO的甲烷化过程都普遍使用镍基催化剂。为了提高催化剂的催化性能,在催化剂中加入适宜助剂可谓一种有效的方法。常用的助剂有碱金属、碱土金属以及稀土金属氧化物,其中Ce02由于具有良好的储放氧能力、氧化还原性以及分散表层活性组分等特性而在催化领域广泛受到青睐。
     Si02气凝胶具有小粒径、高比表面积、高孔隙率等特性,是一种性能优良的催化剂载体。本课题组前期研究工作表明,Ni/SiO2催化剂具有较好的CO甲烷化催化活性,本文在前期工作的基础上,采用等体积浸渍法制备了一系列Ni/SiO2和Ni-M/SiO2(M=Ce、 Co、 Cu)催化剂,考察了不同助剂对Ni/SiO2催化剂CO甲烷化催化活性影响,同时进一步优化了Ni-Ce/SiO2催化剂的各种制备条件(包括不同Ni/Ce比、Ce含量、浸渍顺序等)。在此基础上,通过N2-physisorption、 XRD、 H2-TPR、 TPD、 TPSR等手段对催化剂的结构和表面性质进行表征,深入探讨了Ce助剂的引入对催化剂上甲烷化反应物与产物分子吸脱附行为的影响。本文最后还考察了反应工艺条件(包括空速、反应温度、原料气中CO含量)对Ni-Ce/SiO2催化剂甲烷化催化活性的影响,以及该催化剂的耐热稳定性和寿命。主要结果如下:
     1.助剂Ce的添加能有效提高Ni/SiO2催化剂的CO甲烷化活性。其中,7wt%Ni-2wt%Ce/SiO2表现出优于7wt%Ni/SiO2和13wt%Ni/SiO2的催化性能,其催化CO甲烷化反应起燃温度和完全转化温度分别为190℃和230℃。
     2.对7wt%Ni/SiO2和7wt%Ni-2wt%Ce/SiO2催化剂进行结构和表面性质表征,结果表明,将Ce引入Ni/SiO2催化剂后,NiO、 CeO2和Si02三者之间产生了相互作用,虽对催化剂的织构特征影响不大,但显著促进了催化剂中活性镍物种的分散,减弱了活性组分与载体间的相互作用,增加了活性比表面积,并促使在催化剂表面形成了新的中等强度的CO吸附中心,增强了催化剂对CO的吸附活化能力,显著提高了催化剂的CO甲烷化活性。
     3.在针对7wt%Ni-2wt%Ce/SiO2催化剂CO甲烷化反应工艺条件、耐热稳定性及寿命考察实验中发现,在空速由3000h1提高到10000h-1的过程中,催化剂上CO转化率略有下降;在考察的反应温度范围内(100-640℃),该催化剂具有宽的反应活性温度区域;在550℃高温下反应后催化剂耐热稳定性良好,在240℃、7000h-1、1%CO的评价条件下,催化剂在近240h的寿命考察实验中活性未见下降。
Carbon monoxide methanation not only has been widely used in these aspects such as hydrogen preparation in synthesis of ammonia and petroleum chemicals, but also has important applications in other many fields. For example, hydrogen purification in fuel cells; improvement of the calorific value of city gas and the study on avoiding generation of methane in F-T synthesis and so on. Especially in recent years, the synthesis of the substitute natural gas through the methanation of coke oven gas or the gasification and methanation of the low quality coal has attracted a great deal of attention in aeademia and industry fields. Meanwhile, in the theoretical research aspect, CO methanation is ofen used as a probe reaction to study the methanation catalyst beeause it is a simple reaction system.
     Among the catalysts for CO methanation, noble-metal Ru catalytic activity is the highest, but its expensive price makes its application limited. However, Ni-based catalyst is widely used for the removal of a small amount of CO in hydrogen-rich gas because of its higher catalytic activity and lower price. In order to improve the catalytic performance of catalyst, adding suitable promoters in catalyst has been considered as an effective way. Alkali metals, alkaline earth metals and rare earth metal oxides are ofen used as catalyst promoters. Specially, CeO2is widely favored in the catalytic field because of its excellent storage and supply oxygen capacity, oxidation-reduction quality and the characteristics of dispersing the surface active component, etc.
     SiO2aerogel has been used as an excellent catalyst carrier because of its small size, high specific surface area, high porosity and other properties. Our previous studies suggested that the Ni/SiO2catalyst possessed higher catalytic activity for CO methanation. Therefore, in this paper, a series of Ni/SiO2and Ni-M/SiO2(M=Ce、Co、 Cu) catalysts were prepared by incipient-wetness impregnation method, and the catalytic activity was investigated. The effects of preparation conditions (including different Ni/Ce ratios, Ce loading, impregnation orders, etc.) on the CO methanation activity of the Ni-Ce/SiO2catalyst were also studied. On this basis, the structure and surface properties of the catalysts were investigated by N2-physisorption, XRD, H2-TPR, TPD and TPSR techniques and so on, and the effect of the addition of Ce promoter on the absorption and desorption behaviors of the methanation reactants and product was discussed thoroughly. At last, the influence of technological conditions (such as space velocity, reaction temperature, CO content in feed gas) on the catalytic activity of the Ni-Ce/SiO2catalyst, and heat-resistant stability and lifetime were investigated. The main results were as follows:
     1. The addition of Ce promoter remarkably enhanced the catalytic activity of Ni/SiO2catalyst for CO methanation. The catalytic activity of the7wt%Ni-2wt%Ce/SiO2was higher than that of the7wt%Ni/SiO2and13wt%Ni/SiO2, and its light-off temperature and the lowest complete conversion temperature was190℃and230℃, respectively.
     2. The structure and surface properties of the7wt%Ni/SiO2and7wt%Ni-2wt%Ce/SiO2were characterized. The results showed that the interaction was generated among NiO, CeO2and SiO2due to the additon of Ce, which did not significantly change the texture characteristics of the catalyst, but markedly promoted the dispersion of the active Ni species, decreased the interaction between the active component and support, increased the active surface areas. Furthermore, new moderate intensity CO adsorption sites were formed on the surface of the7wt%Ni-2wt%Ce/SiO2catalyst. As a result, the catalyst owned higher adsorption and activation capacity toward CO, and exhibited higher catalytic activity for CO methanation.
     3. In the study of the technological conditions, heat-resistant stability and lifetime on the7wt%Ni-2wt%Ce/SiO2catalyst, we found that in the course of space velocity from3000h-1to10000h-1, CO conversion rate slightly decreased; In the range of100-640℃, the catalyst had wider reaction activity temperature range; The catalyst possessed higher heat-resistant stability after reaction at550℃, and its activity was not declined in about240h lifetime test experiment under the conditions of240℃,7000h-1,1%CO.
引文
[1]胡大成,高加俭,贾春苗,等.甲烷化催化剂及反应机理的研究进展[J].过程工程学报,2011,11(5):880-893.
    [2]蔺华林,李克健,赵利军.煤制合成天然气现状及其发展[J].上海化工,2010,35(9):25-28.
    [3]姚飞.中国发展煤制天然气/煤层气战略意义及相关政策解读[C].中国煤制天然气/煤层气(国际)高峰论坛,鄂尔多斯,2009:30-47.
    [4]毛树禄.助剂和制备方法对钉基氨合成催化剂活性与甲烷化的影响[D].福州:福州大学硕士学位论文,2004.
    [5]REHMAT A, RANDHAVA S S. Selective Methanation of Carbon Monoxide [J]. Ind. Eng. Chem., Prod. Res. Dev.,1970,9(4):512-515.
    [6]KIMURA M, MIYAO T, KOMORI S, et al. Selective Methanation of CO in Hydrogen-rich Gases Involving Large Amounts of CO2 over Ru-modified Ni-Al Mixed Oxide Catalysts [J]. Appl. Catal., A,2010,379(1-2):182-187.
    [7]GALLETTI C, SPECCHIA S, SARACCO G, et al. CO-Selective Methanation over Ru-γAl2O3 Catalysts in H2-Rich Gas for PEMFC Applications [J]. Chem. Eng. Sci., 2010, 65(1):590-596.
    [8]KARN F S, SHULTZ J F, ANDERSON R B. Hydrogenation of Carbon Monoxide and Carbon Dioxide on Supported Ruthenium Catalysts at Moderate Pressures [J]. Ind. Eng. Chem., Prod. Res. Dev.,1965, 4(4):265-269.
    [9]MCKEE D W. Interaction of Hydrogen and Carbon Monoxide on Platinum Group Metals [J]. J. Catal.,1967, 8(3):240-249.
    [10]LONDHE V P, KAMBLE V S, GUPTA N M. Effeet of Hydrogen Reduction on the CO Adsorption and Methanation Reaction over Ru/TiO2 and Ru/Al2O3 Catalysts [J]. J. Mol. Catal. A:Chem.,1997,121(1):33-44.
    [11]STRUIS R P W J, SCHILDHAUER T J, CZEKAJ I, et al. Sulphur Poisoning of Ni Catalysts in the SNG Production from Biomass:A TPO/XPS/XAS Study [J]. Appl. Catal., A, 2009,362(1-2):121-128.
    [12]王莉萍,张永发.煤制甲烷基础研究和工艺开发进展[J].山西能源与节能,2009,(1):51-55.
    [13]刘其海,莫欣满,董新法,等.富氢重整气中微量一氧化碳的选择性催化甲烷化[J].天然气化工,2007,32(5):58-62.
    [14]CHEN B S, FALCONER J L, BAILEY K M, et al. Methanation Sites on a Low Loading Ni/Al2O3 Catalyst [J]. Applied Catalysis, 1990, 66(1):283-300.
    [15]SENANAYAKE S D, EVANS J, AGNOLI S, et al. Water-Gas Shift and CO Methanation Reactions over Ni-CeO2(111) Catalysts [J]. Top. Catal., 2011,54(1-4): 34-41.
    [16]MA S L, TAN Y S, HAN Y Z. Methanation of Syngas over Coral Reef-like Ni/Al2O3 Catalysts [J]. J. Nat. Gas Chem.,2011,20(4):435-440.
    [17]CHOUDHURY M B I, AHMED S, SHALABI M A, et al. Preferential Methanation of CO in a Syngas involving CO2 at Lower Temperature Range [J]. Appl. Catal., A,2006, 314(1):47-53.
    [18]吴浩,潘智勇,宗保宁,等.非晶态Ni合金催化剂用于低温甲烷化反应的研究[J].化工进展,2005,24(3):299-302.
    [19]LIU Q H, DONG X F, SONG Y B, et al. Removal of CO from Reformed Fuels by Selective Methanation over Ni-B-Zr-Oδ Catalysts [J]. J. Nat. Gas Chem.,2009, 18(2): 173-178.
    [20]URASAKI K, TANPO Y, TAKAHIRO T, et al. Selective Methanation of CO in Reformate Gas over Ni/TiO2 Catalyst [J]. Chem. Lett.,2010, 39(9):972-973.
    [21]MEN Y, KOLB G, ZAPF R, et al. Selective Methanation of Carbon Monoxide in Hydrogen-rich Reformate Using Microstructured Reactor [J]. Chem. Lett.,2009, 38(8): 824-825.
    [22]WANG Y Q, QI S T, HOU Y J. CO Hydrogenation Catalyzed by Supported Ni-Cu Bimetallic Catalysts [J]. React. Kinet. Catal. Lett.,2000, 70(2):213-271.
    [23]WANG C, WANG Q X, SUN X D, et al. CO Hydrogenation to Light Alkenes over Mn-Fe Catalysts Prepared by Coprecipitation and Sol-Gel Methods [J]. Catal. Lett.,2005, 105(1-2):93-101.
    [24]HAYASHI H, CHEN L Z, TAGO T, et al. Catalytic Properties of Fe/SiO2 Catalysts Prepared Using Microemulsion for CO Hydrogenation [J]. Appl. Catl., A: Gen, 2002, 231(1):81-89.
    [25]SHROFF M D, KALAKKAD D S, COULTER K E, et al. Activation of Precipitated Iron: Fischer-Tropsch Synthesis Catalysts [J]. J. Catal,1995,156(2): 185-207.
    [26]KEYSER M J, EVERSON R C, ESPINOZA R L. Fischer-Tropsch Kinetic Studies with Cobalt-Managanese Oxide Catalysts [J]. Ind. Eng. Res.,2000,39(1):48-54.
    [27]HABAZAKIA H, YAMASAKIA M, ZHANG B P, et al. Co-Methanation of Carbon Monoxide and Carbon Dioxide on Supported Nickel and Cobalt Catalysts Prepared from Amorphous Alloys [J]. Appl. Catal., A, 1998,172(1):131-140.
    [28]周学良.精细化工产品手册:催化剂[M].北京:化学工业出版社,2002.
    [29]GALLETTI C, SPECCHIA S, SARACCO G, et al. CO-selective Methanation over Ru/y-Al2O3 Catalysts in H2-rich Gas for PEMFC Applications [J]. Chem. Eng. Sci.,2010, 65(1):590-596.
    [30]THAMPI K R, LUCARELLI L, KIWI J. Characterization of a Ruthenium/Titania Catalyst for Selective Methanation at Room Temperature and Atmospheric Pressure [J]. Langmuir, 1991,7(11):2642-2648.
    [31]KAMBLE V S, LONDHE V P, GUPTA N M, et al. Studies on the Sulfur Poisoning of Ru-RuOx/TiO2 Catalyst for the Adsorption and Methanation of Carbon Monoxide [J]. J. Catal., 1996,158(2):427-438.
    [32]CHITPONG N, PRASERTHDAM P, JONGSOMJIT B, et al. A Study on Characteristics and Catalytic Properties of Co/ZrO2-B Catalysts towards Methanation [J]. Catal. Lett.,2008,128(1-2):119-126.
    [33]莫欣满,董新法,刘其海,等.纳米Zr02负载Ni催化剂催化CO选择性甲烷化[J].石油化工,2008,37(7):656-660.
    [34]HOUALLA M, KIBBY C L, PETRAKIS L, et al. Surface Characterization of Methanation Catalysts Formed by Oxidation of Nickel-Silicon Intermetallics [J]. J. Phys. Chem.,1983,87(19):3689-3693.
    [35]郑荣兵,徐新良,徐亚荣,等.CO甲烷化研究进展[J].河南化工,2011,28(2):3-6.
    [36]路霞,陈世恒,王万丽,等.CO甲烷化Ni基催化剂的研究进展[J].石油化工,2010,39(3):340-345.
    [37]朱警,戴伟,穆玮,等.选择加氢催化剂载体氧化铝的改性及其工业应用(I)[J].化工进展,2004,23(2):192-194.
    [38]朱警,戴伟,穆玮,等.选择加氢催化剂载体氧化铝的改性及其工业应用(II)[J]. 化工进展,2004,23(3):300-303.
    [39]LONDHE V P, KAMBLE V S, GUPTA N M. Effect of Hydrogen Reduction on the CO Adsorption and Methanation Reaction over Ru/TiO2 and Ru/Al2O3 Catalysts [J]. J. Mol. Catal. A:Chem.,1997,121(1):33-44.
    [40]TAKENAKA S, SHIMIZU T, OTSUKA K. Complete Removal of Carbon Monoxide in Hydrogen-Rich Gas Stream through Methanation over Supported Metal Catalysts [J]. Int. J. Hydrogen Energy,2004, 29(10): 1065-1073.
    [41]武瑞芳.Zr02助剂对Ni/SiO2催化剂CO甲烷化催化活性的影响[D].太原:山西大学硕士学位论文,2009.
    [42]王国营,邵忠财,高景龙,等.纳米氧化锆在催化领域中的应用[J].化工中间体,2007,11:24-28.
    [43]CHUAH G K, JAENICKE S, CHEONG S A, et al. The Influence of Preparation Condition on the Surface Area of Airconia [J]. Appl. Catal., A,1996,145(1-2):267-284.
    [44]李凝,罗来涛.ZrO2/Al2O3复合载体中ZrO2的晶相和晶粒尺寸对Ni基催化剂性能的影响[J].桂林工学院学报,2005,25(4):529-533.
    [45]LIU Q H, LIAO L W, LIU Z L, et al. Effect of ZrO2 Crystalline Phase on the Performance of Ni-B/ZrO2 Catalyst for the CO Selective Methanation [J]. Chin. J. Chem. Eng.,2011,19(3):434-438.
    [46]徐慧珍,施介华,王利盛,等.CO在担载Ru催化剂上的吸脱附作用及其表面加氢反应[J].催化学报,1993,14(4):251-256.
    [47]徐振刚,罗伟,王乃继,等.费托合成催化剂载体的研究进展[J].煤炭转化,2008,31(3):92-95.
    [48]SHI P, LIU C J. Characterization of Silica Supported Nickel Catalyst for Methanation with Improved Activity by Room Temperature Plasma Treatment [J]. Catal. Lett.,2009, 133(1-2):112-118.
    [49]LI X, YANG X Z, TANG H D, et al. Effect of Supports on Catalytic Performance of Nickel-Based Catalyst for Methanation [J]. Chinese Journal of Catalysis, 2011,32(8): 1400-1404.
    [50]李健.富氢中一氧化碳选择氧化的铈基气凝胶催化剂的研究[D].呼和浩特:内蒙古工业大学硕士学位论文,2007.
    [51]赵永祥.镍基复合氧化物气凝胶的制备、表征和顺配选择加氢反应性能[D].兰 州:中国科学院兰州化学物理研究所博士论文,2002.
    [52]魏文龙.负载型纳米Ce02复合载体的制备及其性能的研究[D].南昌:南昌大学硕士学位论文,2007.
    [53]高军.泡沫金属微反应器内富氢重整气中CO优先甲烷化净化[D].广州:华南理工大学硕士学位论文,2010.
    [54]陈豫,王文灼,胡常伟,等.La, Na, Mg, Ba对低镍甲烷化催化剂性能的影响[J].天然气化工,1990,(5):5-11.
    [55]汪仁,薛其信,吴善良.负载型Ni-La203甲烷化催化剂的研究[J].燃料化学学报,1983,11(4):1-12.
    [56]王敏炜,罗来涛,李凤仪.镍钼镧甲烷化催化剂性能[J].南昌大学学报,1993,15(3-4):63-69.
    [57]魏树权,李丽波,商永臣,等.沉淀型Ni-La2O3/ZrO2催化剂上CO2甲烷化性能的研究[J].天然气化工,2004,29(5):10-13.
    [58]张文胜,戴伟,王秀玲,等.新型甲烷化催化剂的研究[J].石油化工,2005,34(增刊):115-116.
    [59]XAVIER K O, SREEKALA R, RASHID K K A, et al. Doping Effects of Cerium Oxide on Ni/Al2O3 Catalysts for Methanation [J]. Catal. Today, 1999, 49(123):17-21.
    [60]樊劭,王彩红,袁振,等.铝铈助剂对镍基甲烷化催化剂性能的影响[J].煤炭转化,2010,33(2):68-71.
    [61]刘新华,李晓丽,等.La203对Ni/Al2O3甲烷化催化剂的影响[J].物理化学学报,1995,11(8):746-750.
    [62]安智华,郝茂荣,张俊卿,等.La203在镍系甲烷化催化剂中的助剂作用[J].包头钢铁学院学报,1999,18(4):428-431.
    [63]胡泽善,张量渠,郭慎独.La203对天然气转化Ni/a-Al2O3催化剂性能的影响[J].催化学报,1992,13(2):83-89.
    [64]石玉,田虹,王晓晶,等.钼、稀土对镍基甲烷化催化剂性能的调变[J].内蒙古大学学报(自然科学版),2001,32(2):197-201.
    [65]王敏炜,罗来涛,李凤仪,等.M003对Ni-La/7-Al2O3催化剂上CO和CO2甲烷化性能的影响[J].南昌大学学报,1999,21(1):72-75.
    [66]王宁.Ni-Fe/y-Al2O3双金属催化剂的制备、表征及其CO甲烷化研究[D].太原:山西大学硕上学位论文,2010.
    [67]高锦春,朱卓群,陈霭璠.Ni催化剂上CO甲烷化动力学的研究[J].北京化工学院学报(自然科学版),1990,17(1):67-74.
    [68]SCHOUBYE P. Methanation of CO on a Ni Catalyst [J]. J. Catal.,1970, 18(1): 118-119.
    [69]ALSTRUP I, TAVARES M T. Kinetics of Carbon Formation from CH4+H2 on Silica-supported Nickel and Ni-Cu Catalysts [J]. J. Catal.,1993,139(2):513-524.
    [70]HERWIJNEN T V, DOESBURG H V, JONG W A D. Kinetics of the Methanation of CO and CO2 on a Nickel Catalyst [J]. J. Catal.,1973,28(3):391-402.
    [71]周世忠,林守如,方一明,等.在Ni-MgO-La2O3-Al2O3催化剂上CO2、 CO加氢甲烷化反应动力学研究[J].化学工程,1991,19(2):24-28.
    [72]徐超.基于J-103H催化剂的合成气甲烷化研究[D].上海:华东理工大学硕士学位论文,2011.
    [73]周革,陈诵英,彭少逸.镍催化剂上甲烷化反应的压力效应本质[J].石油化工,1994,23(4):216-220.
    [74]WISE H, MELARTY J C. Hydrogenation of Surface Carbon on Alumina-supported Nickel [J]. J. catal.,1979,57(3):406-416.
    [75]TOSHIAKI M, HLROYUKL M, HISAO I. Kinetics, Isotope Effects, and Mechanism for the Hydrogenation of Carbon Monoxide on Supported Nickel Catalysts [J]. J. Phys. Chem.,1982,86(14):2753-2760.
    [76]陈绍谦.一氧化碳甲烷化反应研究[J].化学研究与应用,1998,10(2):154-158.
    [77]GUO X Y, ZHONG B, PENG S Y. Monte Carlo Simulation to Study the Kinetics of CO Methanation [J]. Chem. Phys. Lett.,1995,233(5-6):580-584.
    [78]BAJUSZ I G, GOODWIN JR J G. Hydrogen and Temperature Effects on the Coverages and Activities of Surface Intermediates during Methanation on Ru/SiO2 [J]. J. Catal., 1997,169(1):157-165.
    [79]伏义路,李锡青,徐小云.镍基催化剂上变换-甲烷化反应机理的研究[J].催化学报,1985,6(4):306-311.
    [80]ARAKI M, PONEC V. Methanation of Carbon Monoxide on Nickel and Nickel-Copper Alloys [J]. J. catal., 1976, 44(3):439-448.
    [81]HAPPEL J, SUZUKI I, KOKAYEFF P. Multiple Isotope Tracing of Methanation over Nickel Catalyst [J]. J. Catal.,1980,65(1):59-77.
    [82]POLIZZOTTI R S, SCHWARZ J A. Hydrogenation of CO to Methane:Kinetic Studies on Polycrystalline Nickel Foils [J]. J. Catal.,1982, 77(1):1-15.
    [83]GOODMAN D W, KELLEY R D, MADEY T E. Kinetics of the Hydrogenation of CO over a Single Crystal Nickel Catalyst [J]. J. Catal., 1980,63(1):226-234.
    [84]罗久里,郭迎朝.在“J101”及"77-65"上CO和C02的化学吸附与甲烷化反应机理的初步探讨[J].石油炼制,1980,7:50-54.
    [85]曹鹏.Fe/CeO2催化剂的制备及其水煤气变换反应性能研究[D].天津:天津大学硕士学位论文,2009.
    [86]SRINIVASAN R, HSING I M, BERGER P E, et al. Micromachined Reactors for Catalytic Partial Oxidation Reactions [J]. AIChE J.,1997, 43(11):3059-3069.
    [87]吴国友,程璇,余煜玺,等.常压干燥制备二氧化硅气凝胶[J].化学进展,2010,22(10):1892-1900.
    [88]陈彤,祝良芳,付真金,等Ce-Ni/Al2O3催化剂的制备及其结构性能的研究[J].天然气化工,2003,28(5):24-27.
    [89]黄海燕,沈志虹.焙烧温度对Ni/γ-Al2O3催化剂性能的影响[J].石油大学学报(自然科学版),1999,23(6):67-69.
    [90]王莉萍.焦炉煤气钌甲烷化催化剂的制备及研究[D].太原:太原理工大学硕士学位论文,2010.
    [91]胡常伟,陈豫,田安民,等.C02与CO在Ni/Al2O3催化剂上的吸附行为[J].天然气化工,1995,20(4):10-12.
    [92]CHARY K V R, RAO P V R, RAO V V. Catalytic Functionalities of Nickel Supported on Different Polymorphs of Alumina [J]. Catal. Commun.,2008, 9(5):886-893.
    [93]ZHANG L Z, WANG X Q, TAN B, et al. Effect of Preparation Method on Structural Characteristics and Propane Steam Reforming Performance of Ni-Al2O3 Catalysts [J]. J. Mol. Catal. A:Chem.,2009,297(1):26-34.
    [94]LI H T, XU Y L, GAO C G, et al. Structural and Textural Evolution of Ni/γ-Al2O3 Catalyst under Hydrothermal Conditions [J]. Catal. Today, 2010,158(3-4):475-480.
    [95]高晓庆,王永钊,赵永祥,等.Mn助剂对Ni/γ-Al2O3催化剂C02甲烷化性能的影响[J].分子催化,2011,25(1):49-54.
    [96]魏树权,李丽波,商永臣,等.沉淀型Ni-La2O3/ZrO2催化剂上CO2甲烷化性能的研究[J].天然气化工,2004,29(5):10-13.
    [97]黄欢Ni(Co)/SiO2复合气凝胶催化剂的制备及性能研究[D].长沙:中南大学硕士学位论文,2011.
    [98]TOHJI K, UDAGAWH Y, TANABE S, et al. Catalyst Preparation Procedure Probed by EXAFS Spectroscopy. 1. Nickel on Silica [J]. J. Am. Chem. Soc., 1984, 106(3): 612-617.
    [99]辛勤,罗孟飞.现代催化研究方法[M].北京:科学出版社,2009.
    [100]VELU S, GANGWAL S K. Synthesis of Alumina Supported Nickel Nanoparticle Catalysts and Evaluation of Nickel Metal Dispersions by Temperature Programmed Desorption [J]. Solid State Ionics, 2006, 177(7-8):803-811.
    [101]CVETANOVIC R J, AMENOMIYA Y. Application of a Temperature-Programmed Desorption Technique to Catalyst Studies [J]. Adv. Catal., 1967,17:103-149.
    [102]CVETANOVIC R J, AMENOMIYA Y. A Temperature Programmed Desorption Technique for Investigation of Practical Catalysts Catalysis Reviews [J]. Science and Engineering, 1972, 6(1):21-48.
    [103]ZAGLI A E, FALCONER J L, KEENAN C A. Methanation on Supported Nickel Catalysts Using Temperature Programmed Heating [J]. J. Catal,1979, 56(3):453-467.
    [104]MCCARTY J G, WISE H. Hydrogenation of Surface Carbon on Alumina-supported Nickel [J]. J. Catal., 1979,57(3):406-416.
    [105]ZDANSKY E O, NILSSON A, MARTENSSON N. CO-induced Reversible Surface to Bulk Transformation of Carbidic Carbon on Ni(100) [J]. Surf. Sci., 1994, 310(1-3): 583-588.
    [106]FROSETH V, HOLMEN A. CO Hydrogenation on Co/γ-Al2O3 and CoRe/γ-Al2O3 Studied by SSITKA [J]. Top. Catal., 2007,45(1-4):45-50.
    [107]李丽波,徐国林.二氧化碳甲烷化催化剂制备方法的研究[J].哈尔滨师范大学自然科学学报,2003,19(3):53-56.
    [108]张少星.Ni/CeO2逆水煤气变换反应催化剂的合成与表征[D].呼和浩特:内蒙古工业大学硕士学位论文,2007.
    [109]郑荣兵.合成气甲烷化催化剂的制备及催化性能研究[D].乌鲁木齐:新疆大学硕士学位论文,2011.
    [110]潘大任.煤气化反应动力学及反应器[J].广东化工,1982,8(1):59-63.
    [111]蔺华林,李克健,赵利军.煤制天然气高温甲烷化催化剂研究进展[J].化工进展,2011,30(8):1739-1743.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700