禽致病性大肠杆菌IMT5155疑似毒力基因的鉴定及分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
禽致病性大肠杆菌(avian pathogenic Escherichia coli, APEC)能引起禽类的心包炎、肝周炎、腹膜炎、败血症等,近年来,该病脑膜炎型日益增多,出现神经症状的比例越来越多。APEC血清型多样,其中O血清型176种,K型103种,H型83种,病原菌存在地区及品种差异;加之APEC耐药性严重,难以完全控制或根除,给畜牧业带来严重危害。APEC不仅危害禽体健康,同时影响了产蛋量下降和肉用禽的上市时间,显著增加饲养成本,对养禽业造成的损失不容忽视,对食品安全构成极大威胁。另外APEC也是一种人畜共患病病原体,因此对该病原的研究在养禽业和人类公共卫生上均有重大意义。
     针对大肠杆菌的致病机理已经有比较多的研究,但是还有许多致病机理尚不明晰,为了进一步深入了解禽致病性大肠杆菌的致病机理,本试验采用抑制性差减杂交(suppression subtractive hybridization, SSH)的方法对禽致病性大肠杆菌IMT5155菌株和人尿源性大肠杆菌CFT073差异基因序列进行了研究,并通过Southern blot方法进行了筛选,通过测序分析发现了28个可能的新毒力基因片段,并对这些基因在国内外不同致病型大肠杆菌中的分布进行了流行病学调查。然后通过对新的疑似毒力基因的进一步克隆表达分析其免疫原性,为亚单位疫苗的研发提供依据。
     为了获得禽致病性大肠杆菌IMT5155新的毒力基因,采用抑制性差减杂交的方法将禽致病性大肠杆菌IMT5155和人尿源性大肠杆菌CFT073进行差减分析。首先,提取两株细菌基因组DNA, Rsal酶切回收。酶切的IMT5155(Tester)基因组分别连接两个不同的接头,经过两轮杂交后,PCR扩增IMT5155特有基因序列,扩增产物连接TOPO TA载体转化大肠杆菌。挑取转化克隆,PCR分析其中96个为阳性克隆。这些阳性克隆经Southern blot进一步分析,将96个阳性克隆的PCR产物变性固定于尼龙膜,分别与地高辛标记的CFT073及无毒大肠杆菌MG1655酶切基因组DNA杂交。杂交无条带者即为阳性克隆,结果获得了34个IMT5155特异目的基因片段。然后将获得的基因片段进行测序并上传NCBI,经过比对分析,发现这些片段编码了多种蛋白,如唾液酸酶及唾液酸合成相关蛋白、DNA转移蛋白、EntS/YbdA转运系统相关蛋白、自分泌黏附素、IV型分泌系统相关蛋白、糖基转移酶以及一些未知功能的蛋白等,根据比对结果可知一些蛋白在大肠杆菌的致病过程中起着重要的作用。这一发现将有助于开展禽致病性大肠杆菌新的毒力基因的致病机理研究。
     通过对所获得的28个疑似毒力基因的分析,选择了自分泌黏附素、唾液酸酶及唾液酸合成相关蛋白、DNA转移蛋白、EntS/YbdA转运系统相关蛋白和糖基转移酶等12个具有代表性的疑似毒力基因片段设计引物,采用PCR和Dot blot方法检测这些疑似毒力片段在222株不同来源大肠杆菌中的分布。结果表明,SSH筛选到的疑似毒力基因在禽致病性大肠杆菌中广泛分布,在猪源大肠杆菌中极少分布。值得注意的是疑似毒力基因片段D1、E9和F11在新生儿脑膜炎大肠杆菌中分布率较高,暗示这些基因在新生儿脑膜炎的致病过程中可能存在相关性。B11片段在APEC中分布率较高,为进一步研究该片段所在的基因功能提供了线索。
     根据NCBI BLAST比对及F11片段的测序结果,分析F11片段所在的ORF编码的氨基酸特性,去除跨膜区,设计表达引物,将F11片段克隆连接至表达载体pET-28a(+)中,重组质粒通过PCR鉴定和测序正确后,将重组质粒转化进表达宿主菌BL21(DE3)中,在37℃1.0mMIPTG诱导下该片段获得良好表达,进一步通过SDS-PAGE分析表明融合蛋白位于茵体超声裂解后的包涵体中。Western blot分析显示,该表达蛋白能与IMT5155全菌制备的兔抗血清发生特异性反应,表明其具有一定的免疫反应性,有可能对动物具有保护性。
Avian colibacillosis caused by avian pathogenic Escherichia coli (APEC) manifested as pericarditis, parahepatitis, peritonitis, septicemia and so on, meningitis are continuously increasing in present. For the various serotypes of APEC,176O antigens,103K antigens,83H antigens, and antibotic resistance of bacteria, the difference of areas and species, it is difficult to eradicated for animal husbandry to serious harm, and is also a zoonotic pathogens.
     The mechanisms involved in the pathogenesis are not completely understood. To identify putative new virulence genes of avian pathogenic Escherichia coli (APEC) strain, suppression subtractive hybridization (SSH) was performed between an APEC strain IMT5155and the human uropathogenic E. coli (UPEC) strain CFT073which was proved non-pathogenic to chicken. The tester (IMT5155) and driver (CFT073) genomic DNAs were digested with RsaI. The tester DNA was then subdivided into two portions, each of which was ligated with a different adaptor provided. Two hybridizations were performed. The, entire population of molecules was then subjected to PCR to amplify the tester-specific sequences. The PCR amplification product was cloned into TOPO TA vetor and transformed into E. coli TOP10competent cells.96subtractive clones were picked and further analyzed using the Southern blot assay with digoxigenin-labeled genomic DNA of the strain CFT073and the non-pathogenic E. coli strain K-12/MG1655.34DNA fragments were negative for the probe of CFT073and MG1655, which were sequenced. These sequence were analysed on NCBI, it indicated that6fragments present in the genome of CFT073and K-12/MG1655. Thereafter,28fragments were found present only in the genome of the APEC strain IMT5155and not in the genomes of the other two strains. These DNA fragments, containing putative virulence genes, encoded different proteins that homology to proteins involved in various aspects of cellular surface structure, molecular synthesis, energy metabolism regulation, immune, transport systems, conjugal transfer protein and others of unknown function.
     According to the published genomic sequence in the NCBI,12pairs of PCR primers for IMT5155specific DNA fragments were designed and used for detection of the distribution of these fragments in222E.coli strains from different sources, regions, groups and times. The results showed that these12DNA fragments were widely distributed in different type of E.coli strains, yet were absent among the UPEC CFT073and avirulent strain MG1655. Moreover, fragments D1, E9and F11were more linked to NMEC, which imply that these genes might be virulence factors in the NMEC. However, the prevalences of other fragments such as B11in the APEC were higher than other E. coli.
     Putative virulence factor F11was amplified from genomic DNA of APEC IMT5155by polymerase chain rection (PCR), then the amplified fragment was cloned into pMD18T vector for sequence. The resulted plasmid pMD18T-F11was digested with BamHl and Xhol, then the772bp of the F11product was cloned into the expression plasmid vector pET-28a(+) in the proper orientation into the site between BamHI and HindⅢ of pET-28a (+) via restriction endonuclease BamHI and XhoI. The recombinant was transformed into the BL21(DE3) and induced to express by1.0mM IPTG at37℃.The expression product was identified by SDS-PAGE and a band with33kDa as expected was obtained. Western blot revealed that the recombinant protein was reactive with rabbit serum against APEC IMT5155, suggesting that the protein is immunogenic.
引文
[1]Kaper, J.B., J.P. Nataro, and H.L. Mobley, Pathogenic Escherichia coli. Nat Rev Microbiol,2004. 2(2):p.123-40.
    [2]Bhavsar, A.P., J.A. Guttman, and B.B. Finlay, Manipulation of host-cell pathways by bacterial pathogens. Nature,2007.449(7164):p.827-34.
    [3]Orndorff, P.E. and C.A. Bloch, The role of type 1 pili in the pathogenesis of Escherichia coli infections:a short review and some new ideas. Microb Pathog,1990.9(2):p.75-9.
    [4]Lund, B., et al., Uropathogenic Escherichia coli can express serologically identical pili of different receptor binding specificities. Mol Microbiol,1988.2(2):p.255-63.
    [5]Russo, T.A., et al., IroN functions as a siderophore receptor and is a urovirulence factor in an extraintestinal pathogenic isolate of Escherichia coli. Infect Immun,2002.70(12):p.7156-60.
    [6]Wayne, R., K. Frick, and J.B. Neilands, Siderophore protection against colicins M, B,V, and la in Escherichia coli. J Bacteriol,1976.126(1):p.7-12.
    [7]Schuller, S., et al., Shiga toxin binding in normal and inflamed human intestinal mucosa. Microbes Infect,2007.9(1):p.35-9.
    [8]Romer, W., et al., Shiga toxin induces tubular membrane invaginations for its uptake into cells. Nature,2007.450(7170):p.670-5.
    [9]Kurmanova, A., et al., Structural requirements for furin-induced cleavage and activation of Shiga toxin. Biochem Biophys Res Commun,2007.357(1):p.144-9.
    [10]Buchrieser, C., et al., The 102-kilobase pgm locus of Yersinia pestis:sequence analysis and comparison of selected regions among different Yersinia pestis and Yersinia pseudotuberculosis strains. Infect Immun,1999.67(9):p.4851-61.
    [11]Xicohtencatl-Cortes, J., et al., The type 4 pili of enter ohemorrhagic Escherichia coli O157:H7 are multipurpose structures with pathogenic attributes. J Bacteriol,2009.191(1):p.411-21.
    [12]Dozois, C.M., et al., Relationship between the Tsh autotransporter and pathogenicity of avian Escherichia coli and localization and analysis of the Tsh genetic region. Infect Immun,2000. 68(7):p.4145-54.
    [13]Kostakioti, M. and C. Stathopoulos, Functional analysis of the Tsh autotransporter from an avian pathogenic Escherichia coli strain. Infect Immun,2004.72(10):p.5548-54.
    [14]Otto, E., et al., TSH receptor in endocrine autoimmunity. Clin Exp Rheumatol,1996.14 Suppl 15: p. S77-84.
    [15]Otto, B.R., et al., Escherichia coli hemoglobin protease autotransporter contributes to synergistic abscess formation and heme-dependent growth of Bacteroides fragilis. Infect Immun,2002.70(1): p.5-10.
    [16]Frankel, G. and A.D. Phillips, Attaching effacing Escherichia coli and paradigms of Tir-triggered actin polymerization:getting off the pedestal. Cell Microbiol,2008.10(3):p.549-56.
    [17]Hughes, D.T. and V. Sperandio, Inter-kingdom signalling:communication between bacteria and their hosts. Nat Rev Microbiol,2008.6(2):p.111-20.
    [18]Foley, S.L., et al., Iss from a virulent avian Escherichia coli. Avian Dis,2000.44(1):p.185-91.
    [19]Fabian, T.C., et al., Reduced tumor necrosis factor production in endotoxin-spiked whole blood after trauma:experimental results and clinical correlation. Surgery,1995.118(1):p.63-72.
    [20]Mellata, M., et al., Role of virulence factors in resistance of avian pathogenic Escherichia coli to serum and in pathogenicity. Infect Immun,2003.71(1):p.536-40.
    [21]Kim, M., et al., Bacteria hijack integrin-linked kinase to stabilize focal adhesions and block cell detachment. Nature,2009.
    [22]Ozanne, G., L.G. Mathieu, and J.P. Baril, Production of colicin V in vitro and in vivo and observations on its effects in experimental animals. Infect Immun,1977.17(3):p.497-503.
    [23]Salvadori, M.R., et al., Vacuolating cytotoxin produced by avian pathogenic Escherichia coli. Avian Dis,2001.45(1):p.43-51.
    [24]Welch, R.A., et al., Extensive mosaic structure revealed by the complete genome sequence of uropathogenic Escherichia coli. Proc Natl Acad Sci USA,2002.99(26):p.17020-4.
    [25]Germon, P., et al., ibeA, a virulence factor of avian pathogenic Escherichia coli. Microbiology, 2005.151(Pt 4):p.1179-86.
    [26]Cortes, M.A., et al., Inactivation of ibeA and ibeT results in decreased expression of type 1 fimbriae in extraintestinal pathogenic Escherichia coli strain BEN2908. Infect Immun,2008. 76(9):p.4129-36.
    [27]McDaniel, T.K., et al., A genetic locus of enterocyte effacement conserved among diverse enter obacterial pathogens. Proc Natl Acad Sci USA,1995.92(5):p.1664-8.
    [28]Deng, W., et al., Dissecting virulence:systematic and functional analyses of a pathogenicity island. Proc Natl Acad Sci USA,2004.101(10):p.3597-602.
    [29]Hyland, R.M., et al., The bundlin pilin protein of enteropathogenic Escherichia coli is an N-acetyllactosamine-specific lectin. Cell Microbiol,2008.10(1):p.177-87.
    [30]Saldana, Z., et al., The Escherichia coli common pilus and the bundle forming pilus act in concert during the formation of localized adherence by enteropathogenic E. coli. J Bacteriol,2009. 191(11):p.3451-61.
    [31]Swimm, A.I. and D. Kalman, Cytosolic extract induces Tir translocation and pedestals in EPEC-infected red blood cells. PLoS Pathog,2008.4(1):p. e4.
    [32]Kenny, B., et al., Enteropathogenic E. coli (EPEC) transfers its receptor for intimate adherence into mammalian cells. Cell,1997.91(4):p.511-20.
    [33]Swimm, A., et al., Enteropathogenic Escherichia coli use redundant tyrosine kinases to form actin pedestals. Mol Biol Cell,2004.15(8):p.3520-9.
    [34]Phillips, N., R.D. Hayward, and V. Koronakis, Phosphorylation of the enteropathogenic E. coli receptor by the Src-family kinase c-Fyn triggers actin pedestal formation. Nat Cell Biol,2004. 6(7):p.618-25.
    [35]Gruenheid, S., et al., Enteropathogenic E. coli Tir binds Nck to initiate actin pedestal formation in host cells. Nat Cell Biol,2001.3(9):p.856-9.
    [36]Campellone, K.G., et al., A tyrosine-phosphorylated 12-amino-acid sequence of enteropathogenic Escherichia coli Tir binds the host adaptor protein Nck and is required for Nck localization to actin pedestals. Mol Microbiol,2002.43(5):p.1227-41.
    [37]Bommarius, B., et al., Enteropathogenic Escherichia coli Tir is an SH2/3 ligand that recruits and activates tyrosine kinases required for pedestal formation. Mol Microbiol,2007.63(6):p. 1748-68.
    [38]Lommel, S., et al., Enterohaemorrhagic and enteropathogenic Escherichia coli use different mechanisms for actin pedestal formation that converge on N-WASP. Cell Microbiol,2004.6(3):p. 243-54.
    [39]Kalman, D., et al., Enteropathogenic E. coli acts through WASP and Arp2/3 complex to form actin pedestals. Nat Cell Biol,1999.1(6):p.389-91.
    [40]Schuller, S., et al., Tir phosphorylation and Nck/N-WASP recruitment by enteropathogenic and enterohaemorrhagic Escherichia coli during ex vivo colonization of human intestinal mucosa is different to cell culture models. Cell Microbiol,2007.9(5):p.1352-64.
    [41]Huang, Z., et al., Structural insights into host GTPase isoform selection by a family of bacterial GEF mimics. Nat Struct Mol Biol,2009.16(8):p.853-60.
    [42]Alto, N.M., et al., Identification of a bacterial type Ⅲ effector family with G protein mimicry functions. Cell,2006.124(1):p.133-45.
    [43]Ma, C., et al., Citrobacter rodentium infection causes both mitochondrial dysfunction and intestinal epithelial barrier disruption in vivo:role of mitochondrial associated protein (Map). Cell Microbiol,2006.8(10):p.1669-86.
    [44]Nougayrede, J.P. and M.S. Donnenberg, Enteropathogenic Escherichia coli EspF is targeted to mitochondria and is required to initiate the mitochondrial death pathway. Cell Microbiol,2004. 6(11):p.1097-111.
    [45]Guttman, J.A., et al., Attaching and effacing pathogen-induced tight junction disruption in vivo. Cell Microbiol,2006.8(4):p.634-45.
    [46]Alto, N.M., et al., The type III effector EspF coordinates membrane trafficking by the spatiotemporal activation of two eukaryotic signaling pathways. J Cell Biol,2007.178(7):p. 1265-78.
    [47]lizumi, Y., et al., The enteropathogenic E. coli effector EspB facilitates microvillus effacing and antiphagocytosis by inhibiting myosin function. Cell Host Microbe,2007.2(6):p.383-92.
    [48]Kim, J., et al., The bacterial virulence factor NleA inhibits cellular protein secretion by disrupting mammalian COPⅡfunction: Cell Host Microbe,2007.2(3):p.160-71.
    [49]Thanabalasuriar, A., et al., The bacterial virulence factor NleA is required for the disruption of intestinal tight junctions by enteropathogenic Escherichia coli. Cell Microbiol,2010.12(1):p. 31-41.
    [50]Marches, O., et al., EspJ of enteropathogenic and enterohaemorrhagic Escherichia coli inhibits opsono-phagocytosis. Cell Microbiol,2008.10(5):p.1104-15.
    [51]Samba-Louaka, A., et al., Bacterial cyclomodulin Cif blocks the host cell cycle by stabilizing the cyclin-dependent kinase inhibitors p21 and p27. Cell Microbiol,2008.10(12):p.2496-508.
    [52]Samba-Louaka, A., et al., The enteropathogenic Escherichia coli effector Cif induces delayed apoptosis in epithelial cells. Infect Immun,2009.77(12):p.5471-7.
    [53]Dean, P. and B. Kenny, The effector repertoire of enteropathogenic E. coli:ganging up on the host cell. Curr Opin Microbiol,2009.12(1):p.101-9.
    [54]Toshima, H., et al., Enhancement of Shiga toxin production in enterohemorrhagic Escherichia coli serotype O157:H7 by DNase colicins. Appl Environ Microbiol,2007.73(23):p.7582-8.
    [55]Nataro, J.P. and J.B. Kaper, Diarrheagenic Escherichia coli. Clin Microbiol Rev,1998.11(1):p. 142-201.
    [56]Pruimboom-Brees, I.M., et al., Cattle lack vascular receptors for Escherichia coli 0157:H7 Shiga toxins. Proc Natl Acad Sci USA,2000.97(19):p.10325-9.
    [57]Low, A.S., et al., Analysis of fimbrial gene clusters and their expression in enterohaemorrhagic Escherichia coli O157:H7. Environ Microbiol,2006.8(6):p.1033-47.
    [58]Erdem, A.L., et al., Host protein binding and adhesive properties of H6 and H7 flagella of attaching and effacing Escherichia coli. J Bacteriol,2007.189(20):p.7426-35.
    [59]Rendon, M.A., et al., Commensal and pathogenic Escherichia coli use a common pilus adherence factor for epithelial cell colonization. Proc Natl Acad Sci USA,2007.104(25):p.10637-42.
    [60]Robinson, C.M., et al., Shiga toxin of enterohemorrhagic Escherichia coli type O157.H7 promotes intestinal colonization. Proc Natl Acad Sci USA,2006.103(25):p.9667-72.
    [61]Stradal, T.E., et al., Regulation of actin dynamics by WASP and WAVE family proteins. Trends Cell Biol,2004.14(6):p.303-11.
    [62]Tobe, T., et al., An extensive repertoire of type III secretion effectors in Escherichia coli 0157 and the role of lambdoid phages in their dissemination. Proc Natl Acad Sci USA,2006.103(40): p.14941-6.
    [63]DeVinney, R., et al., Enterohemorrhagic Escherichia coli O157:H7 produces Tir, which is translocated to the host cell membrane but is not tyrosine phosphorylated. Infect Immun,1999. 67(5):p.2389-98.
    [64]Campellone, K.G., D. Robbins, and J.M. Leong, EspFU is a translocated EHEC effector that interacts with Tir and N-WASP and promotes Nck-independent actin assembly. Dev Cell,2004. 7(2):p.217-28.
    [65]Garmendia, J., et al., TccP is an enterohaemorrhagic Escherichia coli O157.H7 type Ⅲ effector protein that couples Tir to the actin-cytoskeleton. Cell Microbiol,2004.6(12):p.1167-83.
    [66]Weiss, S.M., et al., IRSp53 links the enterohemorrhagic E. coli effectors Tir and EspFU for actin pedestal formation. Cell Host Microbe,2009.5(3):p.244-58.
    [67]Vingadassalom, D., et al., Insulin receptor tyrosine kinase substrate links the E. coli O157:H7 actin assembly effectors Tir and EspF(U) during pedestal formation. Proc Natl Acad Sci USA, 2009.106(16):p.6754-9.
    [68]Peraa, N.T., et al., Molecular evolution of a pathogenicity island from enterohemorrhagic Escherichia coli O157.H7. Infect Immun,1998.66(8):p.3810-7.
    [69]Cheng, H.C., et al., Structural mechanism of WASP activation by the enterohaemorrhagic E. coli effector EspF(U). Nature,2008.454(7207):p.1009-13.
    [70]Sallee, N.A., et al., The pathogen protein EspF(U) hijacks actin polymerization using mimicry and multivalency. Nature,2008.454(7207):p.1005-8.
    [71]Buck, M., W. Xu, and M.K. Rosen, A two-state allosteric model for autoinhibition rationalizes WASP signal integration and targeting. J Mol Biol,2004.338(2):p.271-85.
    [72]Pantaloni, D., et al., The Arp2/3 complex branches filament barbed ends:functional antagonism with capping proteins. Nat Cell Biol,2000.2(7):p.385-91.
    [73]Turner, S.M., et al., Weapons of mass destruction:virulence factors of the global killer enterotoxigenic Escherichia coli. FEMS Microbiol Lett,2006.263(1):p.10-20.
    [74]Roy, K., et al., Enterotoxigenic Escherichia coli EtpA mediates adhesion between flagella and host cells. Nature,2009.457(7229):p.594-8.
    [75]Dorsey, F.C., J.F. Fischer, and J.M. Fleckenstein, Directed delivery of heat-labile enterotoxin by enterotoxigenic Escherichia coli. Cell Microbiol,2006.8(9):p.1516-27.
    [76]Johnson, A.M., et al., Heat-labile enterotoxin promotes Escherichia coli adherence to intestinal epithelial cells. J Bacteriol,2009.191(1):p.178-86.
    [77]Kesty, N.C., et al., Enterotoxigenic Escherichia coli vesicles target toxin delivery into mammalian cells. EMBO J,2004.23(23):p.4538-49.
    [78]Chakraborty, K., et al., Bacterial exotoxins downregulate cathelicidin (hCAP-18/LL-37) and human beta-defensin 1 (HBD-1) expression in the intestinal epithelial cells. Cell Microbiol,2008. 10(12):p.2520-37.
    [79]Ogawa, M., et al., The versatility of Shigella effectors. Nat Rev Microbiol,2008.6(1):p.11-6.
    [80]Schroeder, G.N. and H. Hilbi, Molecular pathogenesis of Shigella spp.:controlling host cell signaling, invasion, and death by type III secretion. Clin Microbiol Rev,2008.21(1):p.134-56.
    [81]Mounier, J., et al., The IpaC carboxyterminal effector domain mediates Src-dependent actin polymerization during Shigella invasion of epithelial cells. PLoS Pathog,2009.5(1):p. e1000271.
    [82]Handa, Y., et al., Shigella IpgBl promotes bacterial entry through the ELMO-Dock180 machinery. Nat Cell Biol,2007.9(1):p.121-8.
    [83]Iwai, H., et al., A bacterial effector targets Mad2L2, an APC inhibitor, to modulate host cell cycling. Cell,2007.130(4):p.611-23.
    [84]Kim, M., et al., Bacteria hijack integrin-linked kinase to stabilize focal adhesions and block cell detachment. Nature,2009.459(7246):p.578-82.
    [85]Pendaries, C, et al, PtdIns5P activates the host cell PI3-kinase/Akt pathway during Shigella flexneri infection. EMBO J,2006.25(5):p.1024-34.
    [86]Kim, D.W., et al., The Shigella flexneri effector OspG interferes with innate immune responses by targeting ubiquitin-conjugating enzymes. Proc Natl Acad Sci USA,2005.102(39):p.14046-51.
    [87]Arbibe, L., et al., An injected bacterial effector targets chromatin access for transcription factor NF-kappaB to alter transcription of host genes involved in immune responses. Nat Immunol, 2007.8(1):p.47-56.
    [88]Okuda, J., et al., Shigella effector IpaH9.8 binds to a splicing factor U2AF(35) to modulate host immune responses. Biochem Biophys Res Commun,2005.333(2):p.531-9.
    [89]Zurawski, D.V., et al., Shigella flexneri type Ⅲ secretion system effectors OspB and OspF target the nucleus to downregulate the host inflammatory response via interactions with retinoblastoma protein. Mol Microbiol,2009.71(2):p.350-68.
    [90]Egile, C., et al., Activation of the CDC42 effector N-WASP by the Shigella flexneri IcsA protein promotes actin nucleation by Arp2/3 complex and bacterial actin-based motility.J Cell Biol, 1999.146(6):p.1319-32.
    [91]Yoshida, S., et al., Microtubule-severing activity of Shigella is pivotal for intercellular spreading. Science,2006.314(5801):p.985-9.
    [92]Ogawa, M., et al., Escape of intracellular Shigella from autophagy. Science,2005.307(5710):p. 727-31.
    [93]Steiner, T.S., et al., Enteroaggregative Escherichia coli expresses a novel flagellin that causes IL-8 release from intestinal epithelial cells. J Clin Invest,2000.105(12):p.1769-77.
    [94]Harrington, S.M., et al., Aggregative adherence fimbriae contribute to the inflammatory response of epithelial cells infected with enteroaggregative Escherichia coli. Cell Microbiol,2005.7(11):p. 1565-78.
    [95]Harrington, S.M., E.G. Dudley, and J.P. Nataro, Pathogenesis of enteroaggregative Escherichia coli infection. FEMS Microbiol Lett,2006.254(1):p.12-8.
    [96]Boisen, N., et al., New adhesin of enteroaggregative Escherichia coli related to the Afa/Dr/AAF family. Infect Immun,2008.76(7):p.3281-92.
    [97]Farfan, M.J., K.G. Inman, and J.P. Nataro, The major pilin subunit of the AAF/II fimbriae from enteroaggregative Escherichia coli mediates binding to extracellular matrix proteins. Infect Immun,2008.76(10):p.4378-84.
    [98]Velarde, J.J., et al., Solution structure of the novel dispersin protein of enteroaggregative Escherichia coli. Mol Microbiol,2007.66(5):p.1123-35.
    [99]Sheikh, J., et al., Roles for Fis and YafK in biofilm formation by enteroaggregative Escherichia coli. Mol Microbiol,2001.41(5):p.983-97.
    [100]Gutierrez-Jimenez, J., I. Arciniega, and F. Navarro-Garcia, The serine protease motif of Pic mediates a dose-dependent mucolytic activity after binding to sugar constituents of the mucin substrate. Microb Pathog,2008.45(2):p.115-23.
    [101]Aschtgen, M.S., et al., SciN is an outer membrane lipoprotein required for type VI secretion in enteroaggregative Escherichia coli. J Bacteriol,2008.190(22):p.7523-31.
    [102]Navarro-Garcia, F., et al., Pet, a non-AB toxin, is transported and translocated into epithelial cells by a retrograde trafficking pathway. Infect Immun,2007.75(5):p.2101-9.
    [103]Navarro-Garcia, F., et al., Intoxication of epithelial cells by plasmid-encoded toxin requires clathrin-mediated endocytosis. Microbiology,2007.153(Pt 9):p.2828-38.
    [104]Servin, A.L., Pathogenesis of Afa/Dr diffusely adhering Escherichia coli. Clin Microbiol Rev, 2005.18(2):p.264-92.
    [105]Betis, F., et al., Afa/Dr diffusely adhering Escherichia coli infection in T84 cell monolayers induces increased neutrophil transepithelial migration, which in turn promotes cytokine-dependent upregulation of decay-accelerating factor (CD55), the receptor for Afa/Dr adhesins. Infect Immun,2003.71(4):p.1774-83.
    [106]Brest, P., et al., Increased rate of apoptosis and diminished phagocytic ability of human neutrophils infected with Afa/Dr diffusely adhering Escherichia coli strains. Infect Immun,2004. 72(10):p.5741-9.
    [107]Berger, C.N., et al., Differential recognition of members of the carcinoembryonic antigen family by Afa/Dr adhesins of diffusely adhering Escherichia coli (Afa/Dr DAEC). Mol Microbiol,2004. 52(4):p.963-83.
    [108]Korotkova, N., et al., Binding of Dr adhesins of Escherichia coli to carcinoembryonic antigen triggers receptor dissociation. Mol Microbiol,2008.67(2):p.420-34.
    [109]Guignot, J., et al., Human decay-accelerating factor and CEACAM receptor-mediated internalization and intracellular lifestyle of Afa/Dr diffusely adhering Escherichia coli in epithelial cells. Infect Immun,2009.77(1):p.517-31.
    [110]Guignot, J., et al., The secreted autotransporter toxin, Sat, functions as a virulence factor in Afa/Dr diffusely adhering Escherichia coli by promoting lesions in tight junction of polarized epithelial cells. Cell Microbiol,2007.9(1):p.204-21.
    [111]Alteri, C.J., S.N. Smith, and H.L. Mobley, Fitness of Escherichia coli during urinary tract infection requires gluconeogenesis and the TCA cycle. PLoS Pathog,2009.5(5):p. e1000448.
    [112]Wiles, T.J., R.R. Kulesus, and M.A. Mulvey, Origins and virulence mechanisms of uropathogenic Escherichia coli. Exp Mol Pathol,2008.85(1):p.11-9.
    [113]Thumbikat, P., et al., Bacteria-induced uroplakin signaling mediates bladder response to infection. PLoS Pathog,2009.5(5):p. e1000415.
    [114]Eto, D.S., et al., Integrin-mediated host cell invasion by type 1-piliated uropathogenic Escherichia coli. PLoS Pathog,2007.3(7):p. e100.
    [115]Dhakal, B.K. and M.A. Mulvey, Uropathogenic Escherichia coli invades host cells via an HDAC6-modulated microtubule-dependent pathway. J Biol Chem,2009.284(1):p.446-54.
    [116]Anderson, G.G., et al., Intracellular bacterial biofilm-like pods in urinary tract infections. Science,2003.301(5629):p.105-7.
    [117]Justice, S.S., et al., Differentiation and developmental pathways of uropathogenic Escherichia coli in urinary tract pathogenesis. Proc Natl Acad Sci USA,2004.101(5):p.1333-8.
    [118]Wiles, T.J., et al., Inactivation of host Akt/protein kinase B signaling by bacterial pore-forming toxins. Mol Biol Cell,2008.19(4):p.1427-38.
    [119]Eto, D.S., J.L. Sundsbak, and M.A. Mulvey, Actin-gated intracellular growth and resurgence of uropathogenic Escherichia coli. Cell Microbiol,2006.8(4):p.704-17.
    [120]Mulvey, M.A., J.D. Schilling, and S.J. Hultgren, Establishment of a persistent Escherichia coli reservoir during the acute phase of a bladder infection. Infect Immun,2001.69(7):p.4572-9.
    [121]Mysorekar, I.U., et al., Bone morphogenetic protein 4 signaling regulates epithelial renewal in the urinary tract in response to uropathogenic infection. Cell Host Microbe,2009.5(5):p. 463-75.
    [122]Mysorekar, I.U. and S.J. Hultgren, Mechanisms of uropathogenic Escherichia coli persistence and eradication from the urinary tract. Proc Natl Acad Sci USA,2006.103(38):p.14170-5.
    [123]Lane, M.C., A.N. Simms, and H.L. Mobley, complex interplay between type 1 fimbrial expression and flagellum-mediated motility of uropathogenic Escherichia coli. J Bacteriol,2007. 189(15):p.5523-33.
    [124]Lane, M.C., et al., Expression of flagella is coincident with uropathogenic Escherichia coli ascension to the upper urinary tract. Proc Natl Acad Sci USA,2007.104(42):p.16669-74.
    [125]Zhou, X., et al., Flagellin of enteropathogenic Escherichia coli stimulates interleukin-8 production in T84 cells. Infect Immun,2003.71(4):p.2120-9.
    [126]Finlay, B.B. and P. Cossart, Exploitation of mammalian host cell functions by bacterial pathogens. Science,1997.276(5313):p.718-25.
    [127]Korotkova, N., et al., Escherichia coli DraE adhesin-associated bacterial internalization by epithelial cells is promoted independently by decay-accelerating factor and carcinoembryonic antigen-related cell adhesion molecule binding and does not require the DraD invasin. Infect Immun,2008.76(9):p.3869-80.
    [128]Wooster, D.G., et al., Logarithmic phase Escherichia coli K1 efficiently avoids serum killing by promoting C4bp-mediated C3b and C4b degradation. Immunology,2006.117(4):p.482-93.
    [129]Sukumaran, S.K., S.K. Selvaraj, and N.V. Prasadarao, Inhibition of apoptosis by Escherichia coli K1 is accompanied by increased expression of BclXL and blockade of mitochondrial cytochrome c release in macrophages. Infect Immun,2004.72(10):p.6012-22.
    [130]Selvaraj, S.K. and N.V. Prasadarao, Escherichia coli K1 inhibits proinflammatory cytokine induction in monocytes by preventing NF-kappaB activation. J Leukoc Biol,2005.78(2):p. 544-54.
    [131]Mittal, R. and N.V. Prasadarao, Outer membrane protein A expression in Escherichia coli K1 is required to prevent the maturation of myeloid dendritic cells and the induction of IL-10 and TGF-beta. J Immunol,2008.181(4):p.2672-82.
    [132]Deszo, E.L., et al., Escherichia coli K1 polysialic acid O-acetyltransferase gene, neuO, and the mechanism of capsule form variation involving a mobile contingency locus. Proc Natl Acad Sci U S A,2005.102(15):p.5564-9.
    [133]Prasadarao, N.V., Identification of Escherichia coli outer membrane protein A receptor on human brain microvascular endothelial cells. Infect Immun,2002.70(8):p.4556-63.
    [134]Khan, N.A., et al., FimH-mediated Escherichia coli K1 invasion of human brain microvascular endothelial cells. Cell Microbiol,2007.9(1):p.169-78.
    [135]Kim, K.S., Mechanisms of microbial traversal of the blood-brain barrier. Nat Rev Microbiol, 2008.6(8):p.625-34.
    [136]Kim, K.J., J.W. Chung, and K.S. Kim,67-kDa laminin receptor promotes internalization of cytotoxic necrotizing factor 1-expressing Escherichia coli K1 into human brain microvascular endothelial cells. J Biol Chem,2005.280(2):p.1360-8.
    [137]Essler, M., et al., Cytotoxic necrotizing factor 1 of Escherichia coli stimulates Rho/Rho-kinase-dependent myosin light-chain phosphorylation without inactivating myosin light-chain phosphatase in endothelial cells. Infect Immun,2003.71(9):p.5188-93.
    [138]Maruvada, R., Y. Argon, and N.V. Prasadarao, Escherichia coli interaction with human brain microvascular endothelial cells induces signal transducer and activator of transcription 3 association with the C-terminal domain of Ec-gp96, the outer membrane protein A receptor for invasion. Cell Microbiol,2008.10(11):p.2326-38.
    [139]Kim, K.J., et al., The Kl capsule modulates trafficking of E. coli-containing vacuoles and enhances intracellular bacterial survival in human brain microvascular endothelial cells. Cell Microbiol,2003.5(4):p.245-52.
    [140]Dho-Moulin, M. and J.M. Fairbrother, Avian pathogenic Escherichia coli (APEC). Vet Res, 1999.30(2-3):p.299-316.
    [141]Ewers, C., T. Janssen, and L.H. Wieler, [Avian pathogenic Escherichia coli (APEC)]. Berl Munch Tierarztl Wochenschr,2003.116(9-10):p.381-95.
    [142]Dozois, C.M., et al., pap-and pil-related DNA sequences and other virulence determinants associated with Escherichia coli isolated from septicemic chickens and turkeys. Infect Immun, 1992.60(7):p.2648-56.
    [143]Dozois, C.M., S.A. Pourbakhsh, and J.M. Fairbrother, Expression of P and type 1 (Fl) fimbriae in pathogenic Escherichia coli from poultry. Vet Microbiol,1995.45(4):p.297-309.
    [144]Dozois, C.M., et al., Bacterial colonization and in vivo expression of F1 (type 1) fimbrial antigens in chickens experimentally infected with pathogenic Escherichia coli. Avian Dis,1994. 38(2):p.231-9.
    [145]Gyimah, J.E. and B. Panigrahy, Immunogenicity of an Escherichia coli (serotype 01) pili vaccine in chickens. Avian Dis,1985.29(4):p.1078-83.
    [146]Arp, L.H., I.M. Robinson, and A.E. Jensen, Pathology of liver granulomas in turkeys. Vet Pathol, 1983.20(1):p.80-9.
    [147]La Ragione, R.M., A.R. Sayers, and M.J. Woodward, The role of fimbriae and flagella in the colonization, invasion and persistence of Escherichia coli O78.K80 in the day-old-chick model. Epidemiol Infect,2000.124(3):p.351-63.
    [148]Linggood, M.A., et al., Incidence of the aerobactin iron uptake system among Escherichia coli isolates from infections of farm animals. J Gen Microbiol,1987.133(4):p.835-42.
    [149]Emery, D.A., et al., Virulence factors of Escherichia coli associated with colisepticemia in chickens and turkeys. Avian Dis,1992.36(3):p.504-11.
    [150]Lafont, J.P., et al., Presence and expression of aerobactin genes in virulent avian strains of Escherichia coli. Infect Immun,1987.55(1):p.193-7.
    [151]Moll, A., P.A. Manning, and K.N. Timmis, Plasmid-determined resistance to serum bactericidal activity:a major outer membrane protein, the traT gene product, is responsible for plasmid-specified serum resistance in Escherichia coli. Infect Immun,1980.28(2):p.359-67.
    [152]Ngeleka, M., et al., Escherichia coli cellulitis in broiler chickens:clonal relationships among strains and analysis of virulence-associated factors of isolates from diseased birds. Infect Immun, 1996.64(8):p.3118-26.
    [153]Weebadda, W.K., et al., Avian air sac and plasma proteins that bind surface polysaccharides of Escherichia coli O2. Comp Biochem Physiol B Biochem Mol Biol,2001.130(3):p.299-312.
    [154]Mellata, M., et al., Role of avian pathogenic Escherichia coli virulence factors in bacterial interaction with chicken heterophils and macrophages. Infect Immun,2003.71(1):p.494-503.
    [155]Joiner, K.A., Complement evasion by bacteria and parasites. Annu Rev Microbiol,1988.42:p. 201-30.
    [156]Ramirez Santoyo, R.M., A. Moreno Sala, and Y. Almanza Marquez, [Avian Escherichia coli virulence factors associated with coli septicemia in broiler chickens]. Rev Argent Microbiol, 2001.33(1):p.52-7.
    [157]高崧,刘秀梵,张如宽,等.我国部分地区禽源性大肠杆菌的外膜蛋白型[J].微生物学报,1999,39(3):226-233。
    [1]Akopyants, N.S., et al., PCR-based subtractive hybridization and differences in gene content among strains of Helicobacter pylori. Proc Natl Acad Sci USA,1998.95(22):p.13108-13.
    [2]Dobrindt, U., (Patho-)Genomics of Escherichia coli. Int J Med Microbiol,2005.295(6-7):p. 357-71.
    [3]Alm, R.A., et al., Genomic-sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori. Nature,1999.397(6715):p.176-80.
    [4]Subramanian, G., E.V. Koonin, and L. Aravind, Comparative genome analysis of the pathogenic spirochetes Borrelia burgdorferi and Treponema pallidum. Infect Immun,2000.68(3):p.1633-48.
    [5]Liang, P. and A.B. Pardee, Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science,1992.257(5072):p.967-71.
    [6]Hubank, M. and D.G. Schatz, Identifying differences in mRNA expression by representational difference analysis of cDNA. Nucleic Acids Res,1994.22(25):p.5640-8.
    [7]Velculescu, V.E., et al., Serial analysis of gene expression. Science,1995.270(5235):p.484-7.
    [8]Ivanova, N.B. and A.V. Belyavsky, Identification of differentially expressed genes by restriction endonuclease-based gene expression fingerprinting. Nucleic Acids Res,1995.23(15):p.2954-8.
    [9]Prashar, Y. and S.M. Weissman, Analysis of differential gene expression by display of 3'end restriction fragments of cDNAs. Proc Natl Acad Sci USA,1996.93(2):p.659-63.
    [10]Kato, K., Adaptor-tagged competitive PCR:a novel method for measuring relative gene expression. Nucleic Acids Res,1997.25(22):p.4694-6.
    [11]Diatchenko, L., et al., Suppression subtractive hybridization:a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc Natl Acad Sci USA, 1996.93(12):p.6025-30.
    [12]Stocki, S.L., et al., Identification of genomic differences between Escherichia coli strains pathogenic for poultry and E. coli K-12 MG1655 using suppression subtractive hybridization analysis. Microb Pathog,2002.33(6):p.289-98.
    [13]Sorsa, L.J., S. Dufke, and S. Schubert, Identification of novel virulence-associated loci in uropathogenic Escherichia coli by suppression subtractive hybridization. FEMS Microbiol Lett, 2004.230(2):p.203-8.
    [14]Brown, N.F., A.E. Lew, and I.R. Beacham, Identification of new transposable genetic elements in Burkholderia pseudomallei using subtractive hybridisation. FEMS Microbiol Lett,2000.183(1):p. 73-9.
    [15]Radnedge, L., et al., Genome differences that distinguish Bacillus anthracis from Bacillus cereus and Bacillus thuringiensis. Appl Environ Microbiol,2003.69(5):p.2755-64.
    [16]Agron, P.G., et al., Identification by subtractive hybridization of sequences specific for Salmonella enterica serovar enteritidis. Appl Environ Microbiol,2001.67(11):p.4984-91.
    [17]Mavrodi, D.V., et al., Identification of differences in genome content among phID-positive Pseudomonas fluorescens strains by using PCR-based subtractive hybridization. Appl Environ Microbiol,2002.68(10):p.5170-6.
    [18]田云,F.M.A.,陆承平,猪链球菌2型的可能毒力基因的发现.微生物学报,2004.44(5):p.613-616.
    [19]Jiang, H., H.J. Fan, and C.P. Lu, Identification and distribution of putative virulent genes in strains of Streptococcus suis serotype 2. Vet Microbiol,2009.133(4):p.309-16.
    [20]Zhang, Y.L., C.T. Ong, and K.Y. Leung, Molecular analysis of genetic differences between virulent and avirulent strains of Aeromonas hydrophila isolated from diseased fish. Microbiology, 2000.146 (Pt 4):p.999-1009.
    [21]Janke, B., J. Hacker, and G. Blum-Oehler, Genetic characterization of the uropathogenic E. coli strain 536--a subtractive hybridization analysis. Adv Exp Med Biol,2000.485:p.53-6.
    [22]Mahairas, G.G., et al., Molecular analysis of genetic differences between Mycobacterium bovis BCG and virulent M. bovis. J Bacteriol,1996.178(5):p.1274-82.
    [23]Sawada, K., et al., Identification by subtractive hybridization of a novel insertion sequence specific for virulent strains of Porphyromonas gingivalis. Infect Immun,1999.67(11):p.5621-5.
    [24]鲍朗,胡昌华,李学敏,利用抑制消减杂交技术研究钩端螺旋体致病相关基因.中华微生物学和免疫杂志,2001.21(5):p.574.
    [25]Emmerth, M., et al., Genomic subtraction identifies Salmonella typhimurium prophages, F-related plasmid sequences, and a novel fimbrial operon, stf, which are absent in Salmonella typhi. J Bacteriol,1999.181(18):p.5652-61.
    [26]Creelan, J.L., et al., Characterisation of strain-specific sequences from an abortifacient strain of ovine Chlamydia psittaci using subtraction hybridisation. FEMS Microbiol Lett,1999.171(1):p. 17-25.
    [27]Klitgaard Nielsen, K. and P. Ahrens, Putative in vitro expressed gene fragments unique to Mycobacterium avium subspecies paratuberculosis. FEMS Microbiol Lett,2002.214(2):p. 199-203.
    [28]Bogush, M.L., et al., Identification and localization of differences between Escherichia coli and Salmonella typhimurium genomes by suppressive subtractive hybridization. Mol Gen Genet,1999. 262(4-5):p.721-9.
    [29]Parsons, Y.N., et al., Use of subtractive hybridization to identify a diagnostic probe for a cystic fibrosis epidemic strain of Pseudomonas aeruginosa. J Clin Microbiol,2002.40(12):p.4607-11.
    [30]el-Adhami, W.A., P.R. Stewart, and K.I. Matthaei, The isolation and cloning of chromosomal DNA specific for a clonal population of Staphylococcus aureus by subtractive hybridisation. J Med Microbiol,1997.46(12):p.987-97.
    [31]Bohnsack, J.F., et al., Long-range mapping of the Streptococcus agalactiae phylogenetic lineage restriction digest pattern type III-3 reveals clustering of virulence genes. Infect Immun,2002. 70(1):p.134-9.
    [32]Walker, J.C. and N.K. Verma, Identification of a putative pathogenicity island in Shigella flexneri using subtractive hybridisation of the S. flexneri and Escherichia coli genomes. FEMS Microbiol Lett,2002.213(2):p.257-64.
    [33]Klee, S.R., et al., Molecular and biological analysis of eight genetic islands that distinguish Neisseria meningitidis from the closely related pathogen Neisseria gonorrhoeae. Infect Immun, 2000.68(4):p.2082-95.
    [34]Dasgupta, N., et al., Characterization of a two-component system, devR-devS, of Mycobacterium tuberculosis. Tuber Lung Dis,2000.80(3):p.141-59.
    [35]Miller, F.R., et al., Differential display, subtractive hybridization, and application of methodology to search for point mutations to identify genetic defects responsible for progression in MCF10AT model of human breast disease. Electrophoresis,1999.20(2):p.256-60.
    [36]Hebrok, M., S.K. Kim, and D.A. Melton, Screening for novel pancreatic genes expressed during embryogenesis. Diabetes,1999.48(8):p.1550-6.
    [37]Murphy, M., et al., Suppression subtractive hybridization identifies high glucose levels as a stimulus for expression of connective tissue growth factor and other genes in human mesangial cells. J Biol Chem,1999.274(9):p.5830-4.
    [38]Wang, X., et al., Molecular cloning and expression of the rat monocyte chemotactic protein-3 gene:a possible role in stroke. Brain Res Mol Brain Res,1999.71(2):p.304-12.
    [39]Matsuyama, T., et al., Maize genes specifically expressed in the outermost cells of root cap. Plant Cell Physiol,1999.40(5):p.469-76.
    [40]Heine, H., et al., Bacterial lipopolysaccharide induces expression of the stress response genes hop and H411. J Biol Chem,1999.274(30):p.21049-55.
    [41]Plum, G. and J.E. Clark-Curtiss, Induction of Mycobacterium avium gene expression following phagocytosis by human macrophages. Infect Immun,1994.62(2):p.476-83.
    [42]李乐群,韩文玲,李怡凡,利用SSH技术研究小鼠淋巴组织中与束缚应激相关的基因.科学通报,1999.44(9):p.941.
    [43]林丽珠,喻红,应明耀,小鼠BRI3基因的克隆及基诱导细胞死亡的作用.科学通报,2001:p.1546.
    [44]王华,高杰英,周洁,利用抑制性消减杂交技术研究与Ty21a免疫相关的基因.分子与细胞免疫学,2002.18(8):p.521-523.
    [45]赵惠芳,丁德荣,马中华,用抑制性差减杂交技术分离烯丙噻唑诱导水稻特异表达的基因.复旦学报,2004.43(2):p.225-230.
    [1]Kaper, J.B., J.P. Nataro, and H.L. Mobley, Pathogenic Escherichia coli. Nat Rev Microbiol,2004. 2(2):p.123-40.
    [2]Ewers, C., T. Janssen, and L.H. Wieler, [Avian pathogenic Escherichia coli (APEC)]. Berl Munch Tierarztl Wochenschr,2003.116(9-10):p.381-95.
    [3]Dho-Moulin, M. and J.M. Fairbrother, Avian pathogenic Escherichia coli (APEC). Vet Res,1999. 30(2-3):p.299-316.
    [4]Johnson, J.R. and T.A. Russo, Extraintestinal pathogenic Escherichia coli:"the other bad E coli". J Lab Clin Med,2002.139(3):p.155-62.
    [5]Ron, E.Z., Host specificity of septicemic Escherichia coli:human and avian pathogens. Curr Opin Microbiol,2006.9(1):p.28-32.
    [6]Ewers, C., et al., Avian pathogenic, uropathogenic, and newborn meningitis-causing Escherichia coli:how closely related are they? Int J Med Microbiol,2007.297(3):p.163-76.
    [7]Ewers, C., et al., Molecular epidemiology of avian pathogenic Escherichia coli (APEC) isolated from colisepticemia in poultry. Vet Microbiol,2004.104(1-2):p.91-101.
    [8]Tivendale, K.A., et al., Association of iss and iucA, but not tsh, with plasmid-mediated virulence of avian pathogenic Escherichia coli. Infect Immun,2004.72(11):p.6554-60.
    [9]Ewers, C., et al., Rapid detection of virulence-associated genes in avian pathogenic Escherichia coli by multiplex polymerase chain reaction. Avian Dis,2005.49(2):p.269-73.
    [10]Dobrindt, U., (Patho-)Genomics of Escherichia coli. Int J Med Microbiol,2005.295(6-7):p. 357-71.
    [11]Germon, P., et al., ibeA, a virulence factor of avian pathogenic Escherichia coli. Microbiology, 2005.151(Pt4):p.1179-86.
    [12]Li, G., et al., Identification of genes required for avian Escherichia coli septicemia by signature-tagged mutagenesis. Infect Immun,2005.73(5):p.2818-27.
    [13]Strauss, E.J. and S. Falkow, Microbial pathogenesis:genomics and beyond. Science,1997. 276(5313):p.707-12.
    [14]Jacob-Dubuisson, F., R. Antoine, and C. Locht, Autotransporter proteins, evolution and redefining protein secretion:response. Trends Microbiol,2000.8(12):p.533-4.
    [15]Kostakioti, M. and C. Stathopoulos, Functional analysis of the Tsh autotransporter from an avian pathogenic Escherichia coli strain. Infect Immun,2004.72(10):p.5548-54.
    [16]Huang, S.H., et al., A novel genetic island of meningitic Escherichia coli K1 containing the ibeA invasion gene (GimA):functional annotation and carbon-source-regulated invasion of human brain microvascular endothelial cells. Funct Integr Genomics,2001.1(5):p.312-22.
    [17]Lamarche, M.G., et al., Inactivation of the pst system reduces the virulence of an avian pathogenic Escherichia coli 078 strain. Infect Immun,2005.73(7):p.4138-45.
    [18]Chouikha, I., et al., A selC-associated genomic island of the extraintestinal avian pathogenic Escherichia coli strain BEN2908 is involved in carbohydrate uptake and virulence. J Bacteriol, 2006.188(3):p.977-87.
    [19]Stathopoulos, C., D.L. Provence, and R. Curtiss,3rd, Characterization of the avian pathogenic Escherichia coli hemagglutinin Tsh, a member of the immunoglobulin A protease-type family of autotransporters. Infect Immun,1999.67(2):p.772-81.
    [20]Dho-Moulin, M., et al., Surface antigens from Escherichia coli 02 and 078 strains of avian origin. Infect Immun,1990.58(3):p.740-5.
    [21]Allan, B.J., J.V. van den Hurk, and A.A. Potter, Characterization of Escherichia coli isolated from cases of avian colibacillosis. Can J Vet Res,1993.57(3):p.146-51.
    [22]Dozois, C.M., et al., pap-and pil-related DNA sequences and other virulence determinants associated with Escherichia coli isolated from septicemic chickens and turkeys. Infect Immun, 1992.60(7):p.2648-56.
    [23]Foley, S.L., et al., Iss from a virulent avian Escherichia coli. Avian Dis,2000.44(1):p.185-91.
    [24]Lafont, J.P., et al., Presence and expression of aerobactin genes in virulent avian strains of Escherichia coli. Infect Immun,1987.55(1):p.193-7.
    [25]Carbonetti, N.H., et al., Aerobactin-mediated iron uptake by Escherichia coli isolates from human extraintestinal infections. Infect Immun,1986.51(3):p.966-8.
    [26]Antao, E.M., et al., The chicken as a natural model for extraintestinal infections caused by avian pathogenic Escherichia coli (APEC). Microb Pathog,2008.45(5-6):p.361-9.
    [27]Clermont, O., S. Bonacorsi, and E. Bingen, Rapid and simple determination of the Escherichia coli phylogenetic group. Appl Environ Microbiol,2000.66(10):p.4555-8.
    [28]Welch, R.A., et al., Extensive mosaic structure revealed by the complete genome sequence of uropathogenic Escherichia coli. Proc Natl Acad Sci USA,2002.99(26):p.17020-4.
    [29]Rodriguez-Siek, K.E., et al., Characterizing the APEC pathotype. Vet Res,2005.36(2):p.241-56.
    [30]Diatchenko, L., et al., Suppression subtractive hybridization:a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc Natl Acad Sci USA, 1996.93(12):p.6025-30.
    [31]Radnedge, L., et al., Identification of nucleotide sequences for the specific and rapid detection of Yersinia pestis. Appl Environ Microbiol,2001.67(8):p.3759-62.
    [32]Walker, J.C. and N.K. Verma, Identification of a putative pathogenicity island in Shigella flexneri using subtractive hybridisation of the S. flexneri and Escherichia coli genomes. FEMS Microbiol Lett,2002.213(2):p.257-64.
    [33]Sawada, K., et al., Identification by subtractive hybridization of a novel insertion sequence specific for virulent strains of Porphyromonas gingivalis. Infect Immun,1999.67(11):p.5621-5.
    [34]Fitzgerald, J.R., et al., Characterization of a putative pathogenicity island from bovine Staphylococcus aureus encoding multiple superantigens. J Bacteriol,2001.183(1):p.63-70.
    [35]Parsons, Y.N., et al., Use of subtractive hybridization to identify a diagnostic probe for a cystic fibrosis epidemic strain of Pseudomonas aeruginosa. J Clin Microbiol,2002.40(12):p.4607-11.
    [36]Schouler, C., et al., Genomic subtraction for the identification of putative new virulence factors of an avian pathogenic Escherichia coli strain of O2 serogroup. Microbiology,2004.150(Pt 9):p. 2973-84.
    [37]Janke, B., et al., A subtractive hybridisation analysis of genomic differences between the uropathogenic E. coli strain 536 and the E. coli K-12 strain MG1655. FEMS Microbiol Lett,2001. 199(1):p.61-6.
    [38]Stocki, S.L., et al., Identification of genomic differences between Escherichia coli strains pathogenic for poultry and E. coli K-12 MG1655 using suppression subtractive hybridization analysis. Microb Pathog,2002.33(6):p.289-98.
    [39]Johnson, T.J., et al., Location of increased serum survival gene and selected virulence traits on a conjugative R plasmid in an avian Escherichia coli isolate. Avian Dis,2002.46(2):p.342-52.
    [40]Gibbs, P.S., et al., Prediction of chicken embryo lethality with the avian Escherichia coli traits complement resistance, colicin V production, and presence of the increased serum survival gene cluster (iss). Avian Dis,2003.47(2):p.370-9.
    [41]Weiserova, M. and J. Ryu, Characterization of a restriction modification system from the commensal Escherichia coli strain AO 34/86 (O83:K24:H31). BMC Microbiol,2008.8:p.106.
    [42]Titheradge, A.J., et al., Families of restriction enzymes:an analysis prompted by molecular and genetic data for type ID restriction and modification systems. Nucleic Acids Res,2001.29(20):p. 4195-205.
    [43]Steenbergen, S.M., T.J. Wrona, and E.R. Vimr, Functional analysis of the sialyltransferase complexes in Escherichia coli K1 and K92. J Bacteriol,1992.174(4):p.1099-108.
    [44]Christie, P.J. and J.P. Vogel, Bacterial type IV secretion:conjugation systems adapted to deliver effector molecules to host cells. Trends Microbiol,2000.8(8):p.354-60.
    [45]Itzhak Ofek, N.S.a.S.N.A., Bacterial Adhesion. Prokaryotes,2006.2:p.16-31.
    [46]Henderson, I.R. and J.P. Nataro, Virulence functions of autotransporter proteins. Infect Immun, 2001.69(3):p.1231-43.
    [47]Henderson, I.R., et al., Type V protein secretion pathway:the autotransporter story. Microbiol Mol Biol Rev,2004.68(4):p.692-744.
    [48]Mogensen, J.E., et al., Misfolding of a bacterial autotransporter. Protein Sci,2005.14(11):p. 2814-27.
    [49]Charbonneau, M.E. and M. Mourez, The Escherichia coli AIDA-I autotransporter undergoes cytoplasmic glycosylation independently of export. Res Microbiol,2008.159(7-8):p.537-44.
    [50]Berthiaume, F., N. Rutherford, and M. Mourez, Mutations affecting the biogenesis of the AIDA-I autotransporter. Res Microbiol,2007.158(4):p.348-54.
    [51]Charbonneau, M.E., J. Janvore, and M. Mourez, Autoprocessing of the Escherichia coli AIDA-I autotransporter:a new mechanism involving acidic residues in the junction region. J Biol Chem, 2009.284(25):p.17340-51.
    [52]Dai, J., et al., Suppression subtractive hybridization identifies an autotransporter adhesin gene of E. coli IMT5155 specifically associated with avian pathogenic Escherichia coli (APEC). BMC Microbiol,2010.10:p.236.
    [53]Wirth, T., et al., Sex and virulence in Escherichia coli:an evolutionary perspective. Mol Microbiol,2006.60(5):p.1136-51.
    [54]Smith, H.W. and M.B. Huggins, The association of the O18, K1 and H7 antigens and the ColV plasmid of a strain of Escherichia coli with its virulence and immunogenicity. J Gen Microbiol, 1980.121(2):p.387-400.
    [55]Johnson, T.J., et al., DNA sequence of a Co1V plasmid and prevalence of selected plasmid-encoded virulence genes among avian Escherichia coli strains. J Bacteriol,2006.188(2): p.745-58.
    [56]Ginns, C.A., et al., Colonization of the respiratory tract by a virulent strain of avian Escherichia coli requires carriage of a conjugative plasmid. Infect Immun,2000.68(3):p.1535-41.
    [1]Ewers, C., et al., Molecular epidemiology of avian pathogenic Escherichia coli (APEC) isolated from colisepticemia in poultry. Vet Microbiol,2004.104(1-2):p.91-101.
    [2]Ewers, C.,T. Janssen, and L.H. Wieler, [Avian pathogenic Escherichia coli (APEC)]. Berl Munch Tierarztl Wochenschr,2003.116(9-10):p.381-95.
    [3]Ewers, C., et al., Avian pathogenic, uropathogenic, and newborn meningitis-causing Escherichia coli:how closely related are they? Int J Med Microbiol,2007.297(3):p.163-76.
    [4]Li, G., et al., Identification of genes required for avian Escherichia coli septicemia by signature-tagged mutagenesis. Infect Immun,2005.73(5):p.2818-27.
    [5]Antao, E.M., et al., The chicken as a natural model for extraintestinal infections caused by avian pathogenic Escherichia coli (APEC). Microb Pathog,2008.45(5-6):p.361-9.
    [6]Antao, E.M., et al., Signature-tagged mutagenesis in a chicken infection model leads to the identification of a novel avian pathogenic Escherichia coli fimbrial adhesin. PLoS One,2009. 4(11):p. e7796.
    [7]Ewers, C., et al., Rapid detection of virulence-associated genes in avian pathogenic Escherichia coli by multiplex polymerase chain reaction. Avian Dis,2005.49(2):p.269-73.
    [8]Welch, R.A., et al., Extensive mosaic structure revealed by the complete genome sequence of uropathogenic Escherichia coli. Proc Natl Acad Sci USA,2002.99(26):p.17020-4.
    [9]Clermont, O., S. Bonacorsi, and E. Bingen, Rapid and simple determination of the Escherichia coli phylogenetic group. Appl Environ Microbiol,2000.66(10):p.4555-8.
    [10]Dai, J., et al., Suppression subtractive hybridization identifies an autotransporter adhesin gene of E. coli IMT5155 specifically associated with avian pathogenic Escherichia coli (APEC). BMC Microbiol,2010.10:p.236.
    [11]Ginns, C.A., et al., Colonization of the respiratory tract by a virulent strain of avian Escherichia coli requires carriage of a conjugative plasmid. Infect Immun,2000.68(3):p.1535-41.
    [12]Smith, H.W. and M.B. Huggins, The association of the 018, K1 and H7 antigens and the ColV plasmid of a strain of Escherichia coli with its virulence and immunogenicity. J Gen Microbiol, 1980.121(2):p.387-400.
    [13]Christie, P.J. and J.P. Vogel, Bacterial type IV secretion:conjugation systems adapted to deliver effector molecules to host cells. Trends Microbiol,2000.8(8):p.354-60.
    [14]Weiserova, M. and J. Ryu, Characterization of a restriction modification system from the commensal Escherichia coli strain AO 34/86 (O83:K24:H31). BMC Microbiol,2008.8:p.106.
    [15]Itzhak Ofek, N.S.a.S.N.A., Bacterial Adhesion. Prokaryotes,2006.2:p.16-31.
    [16]Skyberg, J.A., et al., Acquisition of avian pathogenic Escherichia coli plasmids by a commensal E. coli isolate enhances its abilities to kill chicken embryos, grow in human urine, and colonize the murine kidney. Infect Immun,2006.74(11):p.6287-92.
    [17]Henderson, I.R., R. Cappello, and J.P. Nataro, Autotransporter proteins, evolution and redefining protein secretion. Trends Microbiol,2000.8(12):p.529-32.
    [18]Diatchenko, L., et al., Suppression subtractive hybridization:a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc Natl Acad Sci USA, 1996.93(12):p.6025-30.
    [19]Dobrindt, U., (Patho-)Genomics of Escherichia coli. Int J Med Microbiol,2005.295(6-7):p. 357-71.
    [20]Nataro, J.P. and J.B. Kaper, Diarrheagenic Escherichia coli. Clin Microbiol Rev,1998.11(1):p. 142-201.
    [21]Oelschlaeger, T.A., U. Dobrindt, and J. Hacker, Virulence factors of uropathogens. Curr Opin Urol,2002.12(1):p.33-8.
    [22]Amabile de Campos, T., et al., Adhesion properties, fimbrial expression and PCR detection of adhesin-related genes of avian Escherichia coli strains. Vet Microbiol,2005.106(3-4):p.275-85.
    [23]Kaper, J.B., J.P. Nataro, and H.L. Mobley, Pathogenic Escherichia coli. Nat Rev Microbiol,2004. 2(2):p.123-40.
    [24]Rodriguez-Siek, K.E., et al., Characterizing the APEC pathotype. Vet Res,2005.36(2):p.241-56.
    [1]Rodriguez-Siek, K.E., et al., Characterizing the APEC pathotype. Vet Res,2005.36(2):p.241-56.
    [2]Kaper, J.B., J.P. Nataro, and H.L. Mobley, Pathogenic Escherichia coli. Nat Rev Microbiol,2004. 2(2):p.123-40.
    [3]Ewers, C., T. Janssen, and L.H. Wieler, [Avian pathogenic Escherichia coli (APEC)]. Berl Munch Tierarztl Wochenschr,2003.116(9-10):p.381-95.
    [4]Johnson, J.R. and T.A. Russo, Extraintestinal pathogenic Escherichia coli:"the other bad E coli". J Lab Clin Med,2002.139(3):p.155-62.
    [5]Dho-Moulin, M. and J.M. Fairbrother, Avian pathogenic Escherichia coli (APEC). Vet Res,1999. 30(2-3):p.299-316.
    [6]Blanco, J.E., et al., Serotypes of Escherichia coli isolated from septicaemic chickens in Galicia (northwest Spain). Vet Microbiol,1998.61(3):p.229-35.
    [7]Allan, B.J., J.V. van den Hurk, and A.A. Potter, Characterization of Escherichia coli isolated from cases of avian colibacillosis. Can J Vet Res,1993.57(3):p.146-51.
    [8]Dozois, C.M., et al., pap-and pil-related DNA sequences and other virulence determinants associated with Escherichia coli isolated from septicemic chickens and turkeys. Infect Immun, 1992.60(7):p.2648-56.
    [9]Dho-Moulin, M., et al., Surface antigens from Escherichia coli O2 and 078 strains of avian origin. Infect Immun,1990.58(3):p.740-5.
    [10]Naveh, M.W., et al., Adherence pili in avian strains of Escherichia coli:effect on pathogenicity. Avian Dis,1984.28(3):p.651-61.
    [11]Pourbakhsh, S.A., et al., Virulence mechanisms of avian fimbriated Escherichia coli in experimentally inoculated chickens. Vet Microbiol,1997.58(2-4):p.195-213.
    [12]Stathopoulos, C., D.L. Provence, and R. Curtiss,3rd, Characterization of the avian pathogenic Escherichia coli hemagglutinin Tsh, a member of the immunoglobulin A protease-type family of autotransporters. Infect Immun,1999.67(2):p.772-81.
    [13]Provence, D.L. and R. Curtiss,3rd, Isolation and characterization of a gene involved in hemagglutination by an avian pathogenic Escherichia coli strain. Infect Immun,1994.62(4):p. 1369-80.
    [14]Lafont, J.P., et al., Presence and expression of aerobactin genes in virulent avian strains of Escherichia coli. Infect Immun,1987.55(1):p.193-7.
    [15]Foley, S.L., et al., Iss from a virulent avian Escherichia coli. Avian Dis,2000.44(1):p.185-91.
    [16]Blanco, J.E., et al., Production of toxins (enterotoxins, verotoxins, and necrotoxins) and colicins by Escherichia coli strains isolated from septicemic and healthy chickens:relationship with in vivo pathogenicity. J Clin Microbiol,1997.35(11):p.2953-7.
    [17]Chouikha, I., et al., A selC-associated genomic island of the extraintestinal avian pathogenic Escherichia coli strain BEN2908 is involved in carbohydrate uptake and virulence. J Bacteriol, 2006.188(3):p.977-87.
    [18]Germon, P., et al., ibeA, a virulence factor of avian pathogenic Escherichia coli. Microbiology, 2005.151(Pt4):p.1179-86.
    [19]Huang, S.H., et al., A novel genetic island of meningitic Escherichia coli K1 containing the ibeA invasion gene (GimA):functional annotation and carbon-source-regulated invasion of human brain micro vascular endothelial cells. Funct Integr Genomics,2001.1(5):p.312-22.
    [20]Homeier, T., et al., The GimA locus of extraintestinal pathogenic E. coli:does reductive evolution correlate with habitat and pathotype? PLoS One,2010.5(5):p. e10877.
    [21]Vidotto, M.C., et al., Prevalence of ibeA gene in avian pathogenic Escherichia coli (APEC). Vet Microbiol,2007.119(1):p.88-9.
    [22]Lamarche, M.G., et al., Inactivation of the pst system reduces the virulence of an avian pathogenic Escherichia coli 078 strain. Infect Immun,2005.73(7):p.4138-45.
    [23]Mellata, M., et al., Role of avian pathogenic Escherichia coli virulence factors in bacterial interaction with chicken heterophils and macrophages. Infect Immun,2003.71(1):p.494-503.
    [24]Antao, E.M., et al., The chicken as a natural model for extraintestinal infections caused by avian pathogenic Escherichia coli (APEC). Microb Pathog,2008.45(5-6):p.361-9.
    [25]Ewers, C., et al., Rapid detection of virulence-associated genes in avian pathogenic Escherichia coli by multiplex polymerase chain reaction. Avian Dis,2005.49(2):p.269-73.
    [26]Welch, R.A., et al., Extensive mosaic structure revealed by the complete genome sequence of uropathogenic Escherichia coli. Proc Natl Acad Sci USA,2002.99(26):p.17020-4.
    [27]Dai, J., et al., Suppression subtractive hybridization identifies an autotransporter adhesin gene of E. coli IMT5155 specifically associated with avian pathogenic Escherichia coli (APEC). BMC Microbiol,2010.10:p.236.
    [28]Diatchenko, L., et al., Suppression subtractive hybridization:a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc Natl Acad Sci USA, 1996.93(12):p.6025-30.
    [29]Li, G., et al., Identification of genes required for avian Escherichia coli septicemia by signature-tagged mutagenesis. Infect Immun,2005.73(5):p.2818-27.
    [30]Antao, E.M., et al., Signature-tagged mutagenesis in a chicken infection model leads to the identification of a novel avian pathogenic Escherichia coli fimbrial adhesin. PLoS One,2009. 4(11):p. e7796.
    [31]马新蕾,王少辉,刘永杰,戴建君.禽致病性大肠杆菌IMT5155株毒力相关基因片段E9的表达及生物学特性分析.畜牧与兽医,2010.42(2):p.20-24.
    [32]Johnson, T.J., et al., The genome sequence of avian pathogenic Escherichia coli strain O1:K1:H7 shares strong similarities with human extraintestinal pathogenic E. coli genomes. J Bacteriol,2007. 189(8):p.3228-36.
    [33]Moulin-Schouleur, M., et al., Common virulence factors and genetic relationships between 018:K1:H7 Escherichia coli isolates of human and avian origin. J Clin Microbiol,2006.44(10):p. 3484-92.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700