黑藻生物吸附剂吸附水体中重金属离子的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着全球生态环境的恶化,各国日益重视对水体中各种污染物的治理。生物吸附技术是环境领域近年来迅速发展起来的处理工业污染废水的新技术,它以各种生物(菌类或藻类)吸附废水中的重金属离子,与传统的离子交换法和沉淀法相比,生物吸附法具有投资少,效率高,消耗少,并能有效的处理低浓度重金属离子废水等优点,是治理重金属污染水质的新途径。
     藻类细胞壁中的多聚糖可提供吸附重金属的位点,廉价而资源丰富的藻类对多种重金属表现出很强的吸附能力。本文选用廉价易得的黑藻作为生物吸附剂,通过分批实验,研究了黑藻对水体中重金属离子Pb2+、Cd2+、Zn2+、Cu2+和Ni2+的吸附影响因子、吸附热力学、吸附动力学及吸附机理,吸附平衡用Langmiur、 Freundlich和D-R等温吸附模型进行拟合。
     通过吸附影响因子实验发现,黑藻吸附Pb2+的最佳pH值为4.0,黑藻吸附Cd2+、Zn2+、Cu2+和Ni2+的最佳pH值为5.0。黑藻用量的最佳值为0.1g·(50mL)-1(2g/L),此时黑藻对Pb2+、Cd2+、Zn2+、Cu2+和Ni2+具有较高的吸附效率和吸附量。黑藻对Pb2+、Cd2+、Zn2+、Cu2+和Ni2+的吸附都为快速吸附过程,其中黑藻对Zn2+的吸附20min即基本达到平衡;黑藻对Pb2+、 Cu2+、Ni2+的吸附,在前30min随着时间的增加,吸附量很快增加,30min后吸附量基本稳定;黑藻对Cd2+的吸附,前60min内的吸附量为吸附总量的95%;实验中黑藻对Pb2+、Zn2+、Cu2+和Ni2+的吸附时间为60min,对Cd2+的吸附时间为120min。黑藻对Pb2+、Cd2+Zn2+、Cu2+和Ni2+的吸附都随着温度的升高而稍有降低。
     实验结果表明,黑藻对Pb2+、Cd2+、Zn2+、Cu2+和Ni2+的吸附都符合Langmiur、 Freundlich和D-R等温吸附模型,其吸附能力依次为:Pb2+>Cd2+>Zn2+>Cu2+>Ni2+。黑藻吸附Pb2+、Cd2+、Zn2+、Cu2+和Ni2+的吸附自由能大小依次为Pb2+>Cd2+>Zn2+、Cu2+、Ni2,且都大于8kJ/mol,表明吸附过程为化学吸附。根据吸附热力学参数可知,黑藻吸附重金属离子过程自发进行程度依次为:Pb2+>Cd2+>Zn2+>Cu2+>Ni2+,且吸附过程都为放热过程。
     黑藻对Pb2+、Cd2+、Zn2+、Cu2+和Ni2+的吸附动力学过程符合Pseudo二级动力学方程,由动力学常数k:可知,黑藻吸附重金属离子的吸附速率依次为:Zn2+、Ni2+>Pb2+、Cu2+>Cd2+
     通过ICP-AES比较黑藻吸附Pb2+、Cd2+、Zn2+、Cu2+和Ni2+前后的黑藻中主要元素浓度的变化,发现吸附后Pb、Cd、Zn、Cu、Ni增加,而K、Na、Mg减少,由此可知,在吸附过程中,发生了阳离子交换。通过SEM-EDX对黑藻吸附Pb2+、Cd2+、Zn2+、Cu2+和Ni2+前后进行能谱分析可知,在黑藻吸附Pb2+、Cd2+、Zn2+、Cu2+和Ni2+的生物吸附过程中,发生了阳离子交换吸附。比较黑藻吸附Pb2+、Cd2+、Zn2+、Cu2+和Ni2+前后的傅立叶红外变换光谱图,发现峰形基本不变,但羟基中C-O伸缩振动峰和硫酸基特征峰的波数向低波数明显移动,表明硫酸基和C-O参与了吸附过程。解吸实验表明,用EDTA可以对重金属离子进行回收。
     实验表明黑藻是一种高效、经济适用的生物吸附材料,可用来吸附水体中的Pb2+、Cd2+、Zn2+、Cu2+和Ni2+。
As more and more attention is paid to environment, it is important to remove pollutants in aqueous solution. Biosorption is a process that utilizes inexpensive active/dead biomass to sequester heavy metals and is particularly useful for the removal of contaminants from industrial effluents. Compared with conventional methods such as ion exchange and precipitation with lime, the biosorption process offers the advantages of low operating cost, minimization of the volume of chemical and biological sludge to be disposed of, high efficiency in detoxifying very dilute effluents. These advantages have served as the primary incentives for developing full-scale biosorption processes to clean up heavy-metal pollution.
     Polysaccharides of algal cell wall can provide sites to adsorb heavy metal. Cheap and rich source algaes showed strong adsorptivity to heavy metals. In this study, biosorption of Pb2+, Cd2+, Zn2+, Cu2+and Ni2+by Hydrilla verticillata were investigated as a function of environment effects, biosorption thermodynamics, biosorption kinetics and biosorption mechanism. Adsorption equilibriums were described by Langmuir, Freundlich and Dubinin-Radushkevich (D-R) isotherm model.
     The environment effects results were as follows:Maximum biosorption capacities were obtained at pH4.0for Pb2+, Maximum biosorption capacities were obtained at pH5.0for Cd2+、Zn2+、Cu2+and Ni2+. The higher biosorption efficiency and biosorption capacities were obtained at biosorbent dosage2g/L for Pb2+, Cd2+Zn2+, Cu2+and Ni2+. The biosorption of Pb2+, Cd2+, Zn2+, Cu2+and Ni2+by Hydrilla verticillata were rapid biosorption processes. The biosorption of Zn2+by Hydrilla verticillata attained equilibrium after20min. The Pb2+、Cu2+and Ni2+biosorption capacities onto Hydrilla verticillata increased by increasing contact time up to30min, the biosorption capacities obtained steady value after30min. The biosorption capacity was maximum capacity's95%within60min. The biosorption capacities of Pb2+、Cd2+、Zn2+、Cu2+and Ni2+by Hydrilla verticillata decreased with the rise in temperature. The results indicated that these biosorption processes wer exothermic in nature.
     The Sorption isotherms of Pb2+, Cd2+, Zn2+, Cu2+and Ni2+followed well Langmiur, Freundlich and D-R equation. The biosorption efficiency in the order of Pb2+> Cd2+> Zn2+> Cu2+> Ni2+. The mean free energy of adsorption E(kJ/mol) in the order of Pb2+> Cd2+> Zn2+, Cu2+, Ni2+. The mean free energy of adsorption E>8kJ/mol for all biosorption processes, it indicated that the biosorption of Pb2+, Cd2+, Zn2+, Cu2+and Ni2+by Hydrilla verticillata may be carried out via chemical ion-exchange mechanism. The negative ΔG0values showed that the biosorption of Pb2+, Cd2+, Zn2+, Cu2+and Ni2+by Hydrilla verticillata were feasible and spontaneous. The negative ΔH0values depicted exothermic nature of the adsorption. The negative ΔS0values revealed that the orderliness of the adsorbed system were higher than that in the solution phase before adsorption. The biosorption kinetics followed the pseudo-second order model.
     In order to investigate the mechanisms of heavy metal biosorption by Hydrilla verticillata, the amounts of metal ions of biosorbent before and after biosorption were measured by using Inductively Coupled plasma (ICP) Atomic Emission Spectrometer. The results showed the amounts of biosorbed Pb2+, Cd2+, Zn2+, Cu2+and Ni2+on Hydrilla verticillata increased as well as light metal ions (K+、Mg2+and Na+) decreased on Hydrilla verticillata during biosorption experiment. It indicated that ions exchange mechanism would be involved. Fresh and the Pb2+, Cd2+, Zn2+, Cu2+and Ni2+loaded Hydrilla verticillata were analyzed by SEM equipped with EDX. The results showed that a remarkable amount of Pb2+, Cd2+, Zn2+, Cu2+and Ni2+were adsorbed by Hydrilla verticillata. To compare the change of Hydrilla verticillata's Fourier transform infrared spectrum before and after biosorption, the peaks of C-O group and Sulfate group were shifted towards low wave numbers. It showed that the sulfate group and C-O group involved in the biosorption process. Desorption experiments showed that heavy metal ions can be recovered by EDTA.
     The study indicated that Hydrilla verticillata may be used as an inexpensive, effective and easily obtained biosorbent for the removal of Pb2+, Cd2+, Zn2+, Cu2+and Ni2+.
引文
[1]绿色和平组织.中国水污染状况.http://www.lhyk.org.cn/default.aspx, (2009-11-13)
    [2]沈宏,周培疆.环境有机污染物对藻类生长作用的研究进展.水生生物学报,2002,26(5):529-534
    [3]Kim D S. The removal by crab shell of mixed heavy metal ions in aqueous solution. Bioresource Technology,2003,87:355-357
    [4]陈敏.日用改良硫化物法从含重金属废水中回收有价物.山东冶金,2003,(S1):2
    [5]王军,吴文远.荧光及氧化铂中杂质的控制.包头钢铁学院学报,2002,21(4):84-85
    [6]冯雷,邢丽贞.杨慧春等.FeS处理电镀含铬废水的研究.工业安全与环保,2008,34(2):18-20
    [7]张希蘅.废水治理工程.北京:冶金工业出版社,1984,156
    [8]Helena M, Juan A Vilchez, Joaquim C, et al. Mathematical modeling of accidental gas release. Journal of Hazardous Materials,1998, (59):121-133
    [9]陈红,叶兆杰,方士.不同状态Mn02对废水中As3+的吸附性能研究.中国环境科学,1998,18(2):126-130
    [10]Perez P, Tohji O, Kaznyuki U, et al. Theory and pratice of the removal of heavy-metal ions by their p recipitation as ferrite-type compounds from aqueous solution at ambient temperature. International Materials Reviews,2001,17 (2): 137-179
    [11]Yu Z, Wudnech A. Modeling of electrodialysis of metal ions removal from pulp and paper mill process stream. Chem Eng Sci,2000,55 (20):4629-4641
    [12]Kim S, Moon S H, Kim K W, et al. Pilot scale study on the exsitu electrokinetic removalofheavyfrom municipal wastewater sludges. Water Research,2002,36: 4765-4774
    [13]腾云超.接枝羧基纤维素在重金属废水治理中的应用研究.森林工程,2001,17(3):34-35
    [14]李倩倩,李义久,相波.高分子螯合剂在重金属废水处理中的应用.工业水处理,2004,24(7):5-8
    [15]李江,甄宝勤.吸附法处理重金属废水的研究进展.应用化工,2005,34(10):591-594
    [16]周勤俭,李先柏,杨静.大洋多金属结核吸附重金属离子研究.湿法冶金,1999,69(1):51-53
    [17]Devi N B, Nathsarma K C, Chakravortty V. Extraction and separation of Mn2+ an d Zn2+ from sulphate solution by sodium salt of Cyanex272. Hydromemllurgy, 1997,(45):169-179
    [18]Richel W A, Boyle R J. Solvent extraction with organophe sphinea commercial & potential applications. Separation Science and Technology,1995,30(12): 2585-2592
    [19]Nagaosa Y, Yao B H. Extraction equilibria of some transition metalions by di-(2-ethylhexyl)-phosphinic acid. Talanta,1997,44:327-337
    [20]姚美莲,王金良.113P萃取处理含铬废水的研究.环境科学,1980,(2):55-57
    [21]Gkyuchoukov. Extraction of metals with fatty acids. Chem Eng Commun,1982, 17:219-221
    [22]Chaudhari S, Tare V. Analysis and evaluation of heavy metal uptake and release by inso-luble starch xanthate inaqueous environment. Wat Sci Tech,1996,34(10): 161-168
    [23]郭嘉,陈延林.新型离子交换纤维的应用研究及展望.高科技纤维与应用,2005,30(6):35-38
    [24]吴开芬,李书申.聚醚砜超滤膜的研究.环境化学,1993,12(6):449-455
    [25]Siewert C, Richter H, Piorra A, et al. Development of ceramic NF membranes. Advance Science Technology,1999,16:457-464
    [26]Schaep J, Woundecasteele C, Peeters B, etal. Characteristics and retention properties of a mesoprous γ-Al2O3 memnbrane for NF. Journal of Membrane Science,1999,163(2):229-237
    [27]Hamza, May Britt H. Membranes in Chemical Processing. Separation and Purification Methods,1998,27(1):51-68
    [28]Choong J, Kwang H P. Adsorption and desorption characteristics of mercury(II) ions using aminated chitosan bead. Water Research,2005,39:3938-3944
    [29]Agarwal G S, Hitendra Kumar Bhuptawat, Sanjeev Chaudhari. Biosorption of aqueous chromium(VI) by Tamarindus indica seeds. Bioresource Technology, 2006,97:949-956
    [30]吴晓林,王磊,高燕等.吸附-降解组合生物系统处理含铜离子城市污水.环境科学,2005,26(2):131-136
    [31]Tsezos A, Volesky B. The mechanism of uranium biosoption by Rhizopus arrhizus. Biotech Bioeng,1982,24:335-340
    [32]王雅静,戴惠新.生物吸附法分离废水中重金属离子的研究进展.冶金分析,2006,26(1):40-45
    [33]Karunasager D, Arunachalam J, et al. Biosorption of inorganic and methyl mercury by a biosorbent from Aspergillus niger. World Journal of Microbiology and biotechnology,2003,19(3):291-295
    [34]李志勇,郭祀远,李琳.多糖在藻类富集微量元素中的作用机理.生命的化学,1998,18(1):17-19
    [35]Zhang X Z, Luo S G, Yang Q, et al. Accumulation of uranium at low concentration by the green alga Scenedesmus obliquus 34. Journal of Applisd phycology,1997,9:65-71
    [36]Omar H H. Adsorption of zinc ions by Scenedemus obliquus and S. quadricauda and its effect on growth and metabolism. Biologia Plantarum,2002,45(2): 261-266
    [37]Antonio C A da Costa, Francisca P de Franca. The behavior of the microalgae Tetraselis chuii in cadmium-contaminated solutions. Aquaculture International, 1998,6:57-66
    [38]Schiewer S. Modelling complexation and electrostatic attraction in heavy metal biosorption by Sargassum biomass. Jourmal of Applied Phycology,1999,11: 79-87
    [39]Esteves A J P, Valdman E, Leite S G F. Repeated removal of cadmium and zinc from industrial effluent by waste biomass Sargassum sp. Biotechnology Letters, 2000,22:499-502
    [40]Feng D, Aldrich C. Adosorption of heavy metals by biomaterial derived from the marine alga Ecklonia maxima. Hydromrtallurgy,2004,73:1-10
    [41]Vijayaraghavan K, Jegan J, Palanivelu K, et al. Batch and column removal of copper from aqueous solution using a brown marine alga Turbinaria ornate. Chemical Engineering Journal,2005,106:177-184
    [42]Hamdy A A. Biosorption of heavy metals by marine algae. Current Microbiology, 2000,41:232-238
    [43]尹平河,赵玲,YU Qrming等.海藻生物吸附水中铅和镉的研究.海洋环境科学,2000,19(3):11-15
    [44]徐惠娟,廖生赘,龙敏南等.啤酒酵母生物吸附镉的研究.工业微生物,2004,34(2):10-14
    [45]宋安东,吴坤,陈红歌等.酿酒酵母220菌株对铅的生物吸附研究.微生物学通报,2004,31(3):6-10
    [46]陈翠雪,李清彪,邓旭等.黄孢展齿革菌菌丝球同时吸附铅镉离子的动力学.离子交换与吸附,2003,19(2):133-138
    [47]叶锦韶,尹华,彭辉等.掷孢酵母对含铬废水的生物吸附.暨南大学学报(自然科学版),2005,26(3):401-405
    [48]Donghee P, Yeoung Y, Ji Hye Jo, et al. Mechanism of hexavalent chromium removal by dead fungal biomass of Aspergillus niger. Water Research,2005,39: 533-540
    [49]汤岳琴,牛慧,林军等.产黄青霉菌对铅的吸附机理研究—参与铅生物吸附的化学物质及功能团的确定.四川大学学报(工程科学版),2001,33(3):50-54
    [50]黄民生,施华丽,郑乐平.曲霉对水中重金属的吸附去除.上海环境科学,2002,21(2):89-92
    [51]韩润平,蒋海涛.酵母菌对Cr(Ⅵ)的生物吸附作用.环境保护科学,2001,27(104):28-33
    [52]Liu N, Luo S Z. Biosorption of americium-241 by Saccharomyces cerecisiae. Journal of Radioanalytical and Nuclear Chemistry,2002,252(1):187-191
    [53]胡勇有,刘铁梅.烟束曲霉HLS-6的筛选及其对Cr(VI)的吸附特性.华南理工大学学报(自然科学版),2005,33(9):73-76
    [54]董新娇,潘瑞通,林宣兴.无花果曲霉对铅的吸附研究.四川环境,2002,21(1):12-15
    [55]Kuber C, Bhainsa Stanaislaus, F D Souza. Biosorption of uranium(VI) by Aspergillus fumigatus. Biorechnology Techniques,1999,13:695-699
    [56]Ruchi G, Saxena R K, Rani G. Fermentation waste of Aspergillus terreus:a potential copper biosorption. World Journal of Microbiology & Biotechnology, 2002,18:397-401
    [57]Aloysius R, Karim M I A, Ar A B, et al. The mechanism of cadmium removal from aqueous solution by non-metabolizing free and immobilized live biomass of Rhizopus oligosporus. World Journal of Microbiology & Biotechnology,1999,15: 571-578
    [58]Dhami P S, Kannan R. Biosorption of americium using biomasses of various Rhizopus species. Biotechnology Letters,2002,24:885-889
    [59]Adela K, Aleksander P. Comparison of Rhizopus nigicans in a pelleted growth from with some other types of waste microbial biomass as biosorbents for metal-ions. World Journal of Microbiology & Biotechnology,2001,17:677-685
    [60]汤岳琴,牛慧,林军等.产黄青酶废菌体对铅的吸附机理的研究(Ⅱ).四川大学学报,2001,33(4):45-49
    [61]Ayten Ozturk, Tuba Artan, Ahmet Ayar. Biosorption of nickel(Ⅱ) and copper(II) ions from aqueous solution by Streptomyces coelicolor A3(2). Colloids and Surfaces B:Biointerfaces,2004,34:105-111
    [62]吴涓,李清彪.白腐真菌吸附铅的研究.微生物学报,1999,39(1):87-90
    [63]Ligy P, Leela I, Venkobachar C. Site of copper on Bacillus polymyxa. Water, Air and Soil Pollution,2000,119:11-21
    [64]Akira N, Masahide Y, Hidekatsu Y, et al. Copper biosorption by chemically treated Mcrococcus luteus cells. World Journal of Microbiology & Biotechnology, 2001,17:343-347
    [65]Guangyu, Thiruvenkatachari Viraraghavan. Heavy-metals removal from aqueous solution by fungus Mucor rouxii. Water Research,2003,37:4486-4496
    [66]潘建华,刘瑞霞.蜡状芽孢杆菌Bacillus cereus吸附铅的研究.坏境科学,2004,25(2):166-169
    [67]Salehizadeh H, Shojaosadati S A. Removal of metal ions from aqueous solution by polysaccharide produced from Bacillus firmus. Water Research,2003,37: 4231-4235
    [68]Abskharon R N N, Hassan S H A, Gad El-Rab S M F, et al. Heavy metal resistant of E. coli isolated from wastewater sites in Assiut City, Egypt. Bull Environ Contam Toxicol,2008,81:309-315
    [69]Arundhati P, Georges W, Paul A K. Nickel tolerance and accumulation by bacteria from rhizosphere of nickel hyperaccumulators in serpentine soil ecosystem of Andaman, India. Plant Soil,2007,293:37-48
    [70]刘月英,傅锦坤,李仁忠等.细菌吸附Pb离子的研究.微生物学报,2000,20(5):535-539
    [71]王磊,范立梅,周琪等.不同生长期的Pseudomonas putida5-x细胞对工业废水中Cu2+的吸附.环境科学学报,2001,21(2):208-212
    [72]Tamer A, Sibel T. Biosorption performance of Botrytis cinerea fungal by-products for removal of Cd(II) and Cu(II) ions from aqueous solutions. Minerals Engineering,2005,18:1099-1109
    [73]El-Helos E R, Sabry S A, Amer R M. Cadmium biosorption by a cadmium resistant strain of Bacillus thuringiensis:regulation and optimization of cell surface affinity for metal cations. Bio Metals,2000,13:273-280
    [74]Sibel T, Ismail K, Tamer A. Chromium(VI) biosorption charcteristics of Neurospora crassa fungal biomass. Minerals Engineering,2005,18:681-689
    [75]Asuncion L, Nuria L, Suasana Metal. Nickel biosorption by free and immobilized cells of Pseudomonas fluorescens 4F39:A comparative study. Water, Air and Soil pollution,2002,135:157-172
    [76]Chen X C, Wang Y P, Lin Q, et al. Biosorption of copper(Ⅱ) and zinc(Ⅱ) from aqueous solution by Pseudomonas putida CZ1. Colloids and Surfaces B: Biointerfaces,2005,46:101-107
    [77]韩润平,石杰,鲍改玲.酵母菌对铅离子的生物吸附研究.河南科学,2000,18(1):52-55
    [78]王竟,陶颖,周集体等.细菌胞外高聚物对水中六价铬的生物吸附特性.水处理技术,2001,27(3):145-147
    [79]Ginisty P, Guezennec J. Biosorption of cobalt by Pseudomonas halodenitrificans: influence of cell wall treatment by alkali and alkaline-earth metals and ion-exchange mechanisms. Biotechnology Letters,1998,20(11):1035-1039
    [80]Savvaidis L. Recovery of gold from thiourea solutions using microorganisms. Bio Metal,1998,11:145-151
    [81]Augusto da Costa A C, Francisca P de Franca. Cadmium uptake by Spirulina maxima:toxicity and mechanism. World Journal of Microbiology & Biotechnology,1998,14:579-581
    [82]Prasad B B, Pandey U C. Separation and preconcentration of copper and cadmiumions from multi elemental solutions using Nostoc muscorum-based biosorbents. World Journal of Microbiology & Biotechnology,2000,16:819-827
    [83]胡罡,张利,童明容等.龟裂链霉菌对废水中Pb2+的吸附作用.南开大学学报(自然科学),2000,33(2):29-31
    [84]Victor M I, Donna P, Michelle T. Removal and recovery of metals from a coal pile runoff. Environmental Monitoring and Assessment,2003,84:35-44
    [85]Wang J, Zhan X, Ding D, et al. Bioadsorption of lead(Ⅱ) from aqueous solution by fungal biomass of Aspergillus niger. Journal of Biotechnology,2001,87: 273-277
    [86]M Yakup Arica, Gulay Bayramoglu, Meltem Yilmaz, et al. Biosorption of Hg2+ Cd2+, and Zn2+by Ca-alginate and immobilized wood-rotting fungus Funalia trogii. Journal of Hazardous Materials B,2004,109:191-199
    [87]李明春,姜恒,侯文强等.酵母菌对重金属离子吸附的研究.菌物学报,1998,4:26-29
    [88]李英敏,杨海波,刘艳等.小球藻吸附水中Pb2+影响因素的初步研究.生物技术,2002,(1):16-18
    [89]朱一民,周东琴,魏德州Norcardia amarae菌体对水相中Pb2+的吸附特性. 东北大学学报(自然科学版),2003,24(10):212-216
    [90]Wang X S, Tang Y P, Tao S R. Removal of Cr (VI) from aqueous solutions by the nonliving biomass of Alligator weed:kinetics and equilibrium. Adsorption,2008, 14:823-830
    [91]Huang H, Cheng G, Chen L, et al. Lead(II) removal from aqueous solution by spent Agaricus bisporus:determination of optimum process condition using Taguchi method. Water Air Soil Pollution,2009,203:53-63
    [92]Yao L, Ye Z, Wang Z, et al. Characteristics of Pb2+biosorption with aerobic granular biomass. Chinese Science Bulletin,2008,53(6):948-953
    [93]Tamer A, Sibel T, Ahmet C. Study on the Characterization of lead(II) biosorption by fungus Aspergillus parasiticus. Applied Biochemistry and Biotechnology, 2007,136:389-406
    [94]Antunes A P M, Watkins G M, Duncan J R. Batch studies on the removal of gold from aqueous solution by Azollafiliculoides. Biotechnology Letters,2001,23: 249-251
    [95]Liu N, Luo S Z. Biosorption of americium-241 by Saccharomyces cerevisiae. Journal of Radioanalytical and Nuclear Chemistry,2002,252(1):187-191
    [96]Omar H H. Adsorption of zinc ions by Scenedesmus obliquus and Scenedesmus quadricauda and its effect on growth and metabolism. Biologia Plantarum,2002, 45(2):261-266
    [97]Antonio C A de Costa, Francisca P de Franqa. The behavior of the microalgae Tetraselmis chuff in cadmium-contaminated solutions. Aquaculture International, 1998,6:57-66
    [98]王磊,范立梅,周琪等.不同生长期的Pseudomonas putida5-χ细胞对工业废水中Cu2+的吸附.环境科学学报,2001,21(2):208-212
    [99]Zhang X Z, Luo S G, Yang Q et al. Accumulation of uranium at low concentration by the green alga Scenedesmus obliquus 34. Journal of Applied phycology,1997,9:65-71
    [100]Nakajima A, Yasuda M. Copper biosorption by chemically treated Micrococcus luteus cells. World Journal of Microbiology & Biotechnology,2001,17: 343-347
    [101]Subhashree P, Rai L C. Biotechnological potential of Microcystis sp. in Cu, Zn and Cd biosorption from single and multi-metallic systems. Metals,2001,14: 67-74
    [102]徐容,汤岳琴,王建华等.固定化产黄青霉废菌体吸附铅与脱附平衡.环境 科学,1998,19(4):72-75
    [103]吴涓,李清彪.黄孢原毛平革菌吸附铅离子机理的研究.环境科学学报,2001,21(3):291-295
    [104]杨远友,张太明,刘宁等.黑曲霉孢子和菌丝吸附241Am的研究.四川大学学报(自然科学版),2002,39(2):331-336
    [105]Bhainsa K C, D'Souza S F. Biosorption of uranium(VI) by Aspergillus fumigatus. Biotechnology Techniques,1999,13:695-699
    [106]Kishore K K, Meng X, Chrietodoulatos C, et al. Biosorption mechanism of nine different heavy metals onto biomatrix from rice husk. J Hazard Mater,2008,153: 1222-1234
    [107]Zhou D, Zhang L, Guo S. Mechanisms of lead biosorption on cellulose/chitin beads. Water Research,2005,39:3755-3762
    [108]Kratochvil D, Fourest E, Volesky B. Biosorption of copper by Sargassum fluitans biomass in fixed-bed column. Biotechnology Letters,1995,17(7): 777-782
    [109]Guibal E, Touraud E, Roussy J. Chitosan Interactions with Metal Ions and Dyes: Dissolved-state vs Solid-state Application. World Journal of Microbiology & Biotechnology,2005,21(6-7):913-920
    [110]汤岳琴,牛慧,林军等.产黄青酶废菌体对铅的吸附机理的研究(Ⅰ).四川大学学报,2001,33(3):50-54
    [111]Alhakawati M S, Banks C J. Removal of copper from aqueous solution by Ascophyllum nodosum immobilised in hydrophilic polyurethane foam. Journal of Environmental Management,2004,72:195-204
    [112]Miretzky P, Saralegui A, Fernandez Cirelli A. Simultaneous heavy metal removal mechanism by dead macrophytes. Chemosphere,2006,62:247-254
    [113]Volesky B, May-Phillips H A. Biosorption of heavy metals by Saccharomyces cerevisiae. Applied Microbiology and Biotechnology,1995,42(5):797-806
    [114]Blackwell K J, Tobin J M, Avery S V. Manganese toxicity towards Saccharomyces cerevisiae:Dependence on intracellular and extracellular magnesium concentrations. Applied Microbiology and Biotechnology,1998, 49(6):751-757
    [115]Lin C Y, Chen C C. Toxicity-resistance of sludge biogranules to heavy metals. Biotechnology Letters,1997,19(6):557-560
    [116]Davis T A, Lanes F, Volesky B, et al.1H-NMR study of Na aldanite extracted from Sargassum sp. in relation to metal biosorption. Appl Biochem Biothechnol, 2003,110(2):75-90
    [117]Yun Y S, Volesky B E. Modeling of lithium interference in cadmium biosorption. Environ Sci Technol,2003,37(16):3601-3608
    [118]Raize O, Argaman Y, Yannai S. Mechanisms of biosorption of different heavy metals by brown marine macroalgae. Biotechnology and Bioengineering,2004, 87(4):451-458
    [119]Sheng P X, Ting Y P, Chen J P, et al. Sorption of lead, copper, cadmium, zinc and nickel by marine algal biomass:Characterization of biosorptive capacity and investigation of mechanisms. J Colloid Interface Sci,2004,275(1):131-141
    [120]李建宏,曾昭琪.极大螺旋藻富集重金属机理的研究.海洋与湖沼,1998,29(3):274-279
    [121]倪丙杰,徐得潜,刘绍根.污泥性质的重要影响物质-胞外聚合物(EPS)环境科学与技术,2006,29(3):108-110
    [122]蒋巍,刘艳杰,钟方丽.生物膜胞外聚合物在废水处理中的应用.天津化工,2001,6:36-37
    [123]赵玲,尹平河,Y Q Ming等.海洋赤潮生物原甲藻对重金属的富集机理.环境科学,2001,22(4):42-45
    [124]Jorge L G, Torresdey, Dennis W D, et al. Effect of chemical modification of algal carboxyl groups on metal ion binding. Environ Sci Technol,1990,24(9): 1372-1378
    [125]Chojnacka K, Chojnacki A, Gorecka H. Biosorption of Cr3+, Cd2+and Cu2+ions by blue-green algae Spirulina sp:kinetics, equilibrium and the mechanism of the process. Chemosphere,2005,59(1):75-84
    [126]Tien C J. Biosorption of metal ions by freshwater algae with different characteristics. Process Biochemistry,2002,38:605-613
    [127]Hiren D, Chetan S, Arabinda R, etal. Bioaccumulation of heavy metals by green algae. Curr Microbiol,2008,56:246-255
    [128]Maria G N M, Vivian G D, Cesar A M A, et al. Bioadsorption and ion exchange of Cr3+and Pb2+solutions with algae. Adsorption,2009,15:75-80
    [129]Deng L P, Zhu X B, Wang X T, et al. Biosorption of copper(II) from aqueous solutions by green alga Cladophora fascicularis. Biodegradation,2007,18: 393-402
    [130]Sheng P X, Ting Y P, Chen J P, et al. Sorption of lead, copper, cadmium, zinc, and nickel by marine algal biomass characterization of biosorptive capacity and investigation of mechanisms. J Colloid Interface Sci,2004,275:131-141
    [131]Jose A M P, Rafael G R, Teresa Q, et al. Biosorption of heavy metals by the exopolysaccharide produced by Paenibacillus jamilae. World Journal of Microbiology and Biotechnology,2008,24(11):2699-2704
    [132]Crist R H. Interaction of metals and protons with algae III:Marine algae, with emphasis on lead and aluminum. Environ Sci Technol,2002,36:496-502
    [133]Andrade A D, Rollemberg MCE, Nobrega J A. Proton and metal binding capacity of the green freshwater alga Chaetophora elegans. Process Biochem, 2005,40(5):1931-1936
    [134]Herrero R, Cordero B, Lodeiro P, et al. Interactions of cadmium(II) and protons with dead biomass of marine algae Fucus sp. Marine Chemistry,2006,99: 106-116
    [135]Deng L P, Su Y Y, Su H, et al. Biosorption of copper(II) and lead(II) from aqueous solutions by nonliving green algae Cladophora f ascicularis: Equilibrium, kinetics and environmental effects. Adsorption,2006,12:267-277
    [136]Sar P, Kazy S K, Asthara R K. Metal adsorption and desorption by lyophilized Pseudomonas aeruginosa. Int Biodeter & Biodegr,1999,44:101-110
    [137]Hiren D, Arabinda R, Kothar I L. Biosorption of cadmium by live and dead Spirulina:IR spectroscopic, kinetics, and SEM studies. Current Microbiology, 2007,54(3):213-218
    [138]Choong J, Young J Y, Wolfgang H H. Environmental effects and desorption characteristics on heavy metal removal using carboxylated alginic acid. Bioresource Technology,2005,96:15-19
    [139]Cruz C C, Costa A C, Henriques C A, et al. Biosorption of cadmium by algal biomass:adsorption and desorption charateristics. Wat Sci Technol,1997,35(7): 115-122
    [140]Gong R, Ding Y, Liu H, et al. Lead biosorption and desorption by intact and pretreated Spirulina maxima biomass. Chemosphere,2005,58(1):125-130
    [141]Jana K, Edita V. Comparison of differences between copper bioaccumulation and biosorption. Environ Intern,2005,31(2):227-232
    [142]Ofer R, Yerachmiel A, Shmuel Y. Marine macroalgae as biosorbents for cadmium and nickel in water. Water Environ Res,2003,75(3):246-253
    [143]Volesky B, Weber J, Park J M. Continuous-flow metal biosorption in a regenerable Sargassum column. Water Res,2003,37(2):297-306
    [144]Chu K H, Hashim M A, Phang S M, et al. Biosorption of cadmium by algal biomass:adsorption and desorption charateristics. Water Sci Technol,1997, 35(7):115-122
    [145]林荣根,黄朋林,周俊良.两种褐藻对铜和镉的吸附和洗脱研究.海洋环境科学,1999,18(4):8-13
    [146]Jalali R, Ghafourian H, Asef Y, et al. Removal and recovery of lead using nonliving biomass of marine algae. J Hazard Mater,2002,92(3):253-262
    [147]Lee D C, Park C J, Yang J E, et al. Screening of hexavalent chromium biosorbent for marine algae. Appl Microbiol Biotechnol,2000,54(3):445-448
    [148]Asma S, Muhammad I. Immobilization of blue green microalgae on loofa sponge to biosorb cadmium in repeated shake flask batch and continuous flow fixed bed column reactor system. World Journal of Microbiology & Biotechnology,2006,22:775-782
    [149]Zhang Y, Fan C H, Qing J, et al. Biosorption of Pb2+ by Saccharomyces cerevisiae in static and dynamic adsorption tests. Bull Environ Contam Toxicol, 2009,83:708-712
    [150]Aksu Z, Acikel U. A single bioseparation process for simultaneous removal of copper(II) and chromium(VI) by using C. vulgaris. Process Biochemistry,1999, 34:589-599
    [151]Ng J, Cheung W, Mckay G. Equilibrium studies for the sorption of lead from effluents using chitosan. Chemosphere,2003,52:1021-1030
    [152]Chiou M, Li H. Equilibrium and kinetic modeling of adsorption of reactive dye on cross-linked chitosan beads. Journal of Hazardous Materials,2002,93, 233-248
    [153]Shawabkeh R A, Al-Khashman O A, H S Al-Omari, et al. Cobalt and zinc removal from aqueous solution by chemically treated bentonite. Environmentalist,2007,27:357-363
    [154]Butler J A V, Ockrent C. Studies in electrocapillanty:Part. Physical Chemistry, 1930,34:2541-2559
    [155]Fritz W, Schuender E U. Simultaneous adsorption equilibria of organic solution in dilute aqueous solution on activated carbon. Chemical Engineer Science,1974, 29:1279-1288
    [156]Chong K H, Volesky B. Description of two metal biosorption equilibria by Langmuir-type model. Biotechnol Bioeng,1995,47:451-460
    [157]AI-Ashen S, Duvnjuk Z. Binary metal sorption by pine bark:study of equilibria and mechanism. Separation Science and Technology,1998,33(9):1303-1329
    [158]Mckay G, Al Dun B. Prediction of multicomponent adsorption equilibrium data using empirical correlations. Chem Eng,1989,41:9-23
    [159]Aksu Z, Acikel U, Kutsal T. Investigation of simulataneous biosorption of copper(II) and chromium(VI) on dried Chlorella vulgarin from binary metal mixture:application of multicomponent adsorption isotherm. Separation Science and Technology,1999,34(3):501-524
    [160]文明,盛哲,林亲众.蛋白质新资源—黑藻的研究Ⅰ:黑藻生物学特性及营养成分的分析.湖南农学院学报,1994,20(5):457-463
    [161]高光.伊乐藻,轮叶黑藻净化养鱼污水效果试验.湖泊科学,1996,8(2):184-188
    [162]宋福,陈艳卿,乔建荣等.常见沉水植物对草海水体(含底泥)总氮去除速率的研究.环境科学研究,1997,10(4):47-50
    [163]肖瑜,王艳丽,高士祥等.太湖生态修复植物黑藻的化学成分研究.天然产物研究与开发,2007,19:71-73
    [164]Ho Y S. Effect of pH on lead removal from water using tree fern as the sorbent. Bioresource Technology,2005,96:1292-1296
    [165]Cesar R T, Marco A Z A. Adsorption of heavy metals using rice milling by-products:Characterisation and application for removal of metals from aqueous effluents. Chemosphere,2004,54:987-995
    [166]程国斌,张延红,马伟等.沸石吸附钾离子的热力学研究.离子交换与吸附,2005,21(5):385-390
    [167]Ahmet C, Tamer A, Sibel T, et al. Adsorption of Pb(II) by industrial strain of Saccharomyces cerevisiae immobilized on the biomatrix of cone biomass of Pinus nigra:Equalized and mechanism analysis. Chemical Engineering Journal, 2007,131:293-300
    [168]Chang J, Law R, Chang C. Biosorption of lead, copper and cadmium by biomass of Pseudomona aeruginosa PU21. Water Research,1997,31:1651-1658
    [169]Martinez M, Miralles N, Hidalgo S, et al. Removal of lead (Ⅱ) and cadmium (Ⅱ) from aqueous solutions using grape stalk waste. Journal of Hazardous Materials, 2006,133 (1-3):203-211
    [170]Han R, Zhang J, Zou W, et al. Equilibrium biosorption isotherm for lead ion on chaff. Journal of Hazardous Materials,2005,125:266-271
    [171]Pavasant P, Apiratikul R, Sungkhum V, et al. Biosorption of Cu2+, Cd2+, Pb2+ and Zn2+using dried marine green macroalga Caulerpa lentillifera. Bioresource Technology,2006,97 (18):2321-2329
    [172]Liu Y, Chang X, Guo Y, et al. Biosorption and preconcentration of lead and cadmium on waste Chinese herb Pang Da Hai. Journal of Hazardous Materials, 2006,135 (1-3):389-394
    [173]Angove M J, Johson B B, Wells J D. Adsorption of cadmium(II) on kaolinite. Colloid Surf. A Phys. Eng. Aspects,1997,126:137-147
    [174]Ho Y S, Huang C T, Huang H W. Equilibrium sorption isotherm for metal ions on tree fern. Process Biochem,2002,37:1421-1430
    [175]Ozer D, Asksu Z, Kutsal T, et al. Adsorption isotherms of lead(II) and chromium(VI) on Cladophora crispat. Environ Technol,1994,15(5):439-448
    [176]Romero-Gonzalez J, Peralta-Videa J R, Rodr-Guez E, et al. Determination of thermodynamic parameters of Cr(VI) adsorption from aqueous solution onto Agave lechuguilla biomass. Chem Thermodynamics,2005,37:343-347
    [177]Martins B L, Cruz C V, Luna A S, et al. Sorption and desorption of Pb2+ ions by dead Sargassum sp. biomass. Biochem Eng J,2006,27:310-314
    [178]Arica M Y, Kacar Y, Genc O. Entrapment of white-rot fungus Trametes versicolor in Ca-alginate beads:preparation and biosorption kinetic analysis for cadmium removal from an aqueous solution. Bioresour Technol,2001,80: 121-129
    [179]Vasudevan P, Padmavathy V, Dhingra S C. Kinetics of biosorption of cadmium on Baker's yeast. Bioresor Technol,2003,89:281-287
    [180]Bux F, Atkinson B, Kasan H C. Zinc biosorption by waste activated and digested sludge. Wat Sci Tech,1999,39 (10-11):127-130
    [181]Kargi F, Cikla S. Biosorption of zinc(Ⅱ) ions onto powdered waste sludge (PWS):Kinetics and isotherms. Enzyme and Microbial Technol,2006,38:705-710

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700