方钢管混凝土组合异形柱结构力学性能与工程应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
方钢管混凝土组合异形柱是一种新型的柱结构形式,该柱能够包裹在墙体内部,增加使用面积,能够发挥钢管混凝土结构与异形柱结构的优势。为了降低用钢量并匹配建筑平面布置,经常使用L形柱。针对此方钢管混凝土组合异形柱,本文进行了体系的构造形式研究、构件轴压、构件压弯、构件抗震性能的有限元分析与试验研究、设计方法及工程应用研究。
     提出了直接连接和间接连接的螺栓连接方钢管混凝土组合异形柱、开孔钢板连接形式的方钢管混凝土组合异形柱,并比较了静力性能,发现在现有技术条件下,焊接开孔钢板连接形式的方钢管混凝土组合异形柱为最优形式,提出了方钢管混凝土组合异形柱外肋环板节点构造形式和计算方法。
     进行了2根组合异形柱的轴压试验和有限元模拟,其中一根为填充混凝土试件,一根为空钢管试件,通过试验与有限元分析,发现:填充混凝土后极限承载力提高21%,刚度提高,延性有所下降;开孔钢板和加劲肋作为连接形式能够很好的保证单肢柱协同工作;填充混凝土的试件连接板可以简化为横向和斜向缀条进行计算;试验结果与有限元分析结果吻合很好。
     进行了2种加载角度的方钢管混凝土组合异形柱压弯试验与有限元模拟,得到以下结论:两个试件分别发生了绕单轴的单向压弯和绕弱轴的双向压弯,而且双向压弯的变形与应力状态均绕着对称轴对称分布;两个试件的极限承载能力基本相同,单向压弯试件刚度较大,原因是由于试件的破坏是由于单肢柱顶的局部屈曲引起,极限承载力由单肢极限承载力控制;连接板可以简化为横向和斜向缀条受力;试验结果与有限元分析结果基本吻合。
     进行了3个方钢管混凝土组合异形柱拟静力试验和有限元模拟,试验参数为轴压比和单肢长细比,得到以下结论:方钢管混凝土组合异形柱滞回曲线饱满,具有较好的延性和耗能能力;随着轴压比的增加刚度增加,但是承载力、延性和耗能能力降低,随着长细比的降低刚度和承载力增加,但是延性和耗能能力降低;连接板可以简化为横向和斜向缀条受力;试验结果与有限元分析结果基本吻合。
     利用MIDAS软件,提出了方钢管混凝土组合异形柱-H型钢梁结构体系的设计方法和细部构造,进行了结构体系的受力性能分析,发现方钢管混凝土组合异形柱结构体系用于低层时优于单柱体系,具有较好的抗震性能,能够抵御罕遇地震。
Among CFT members, concrete-filled square tubes (CFST) are more and morepopular nowadays. The special-shape CFST (SCFST) columns are composed ofseveral concrete-filled square tubular columns connected by connection plates. TheSCFST columns are suitable for the construction of residential buildings by utilizingthe advantages of both special-shaped sections and concrete-filled square tubularcolumns. In order to reduce structural self-weight, L-shaped section is a prior optionfor designers. In this paper, the construction, axial loaded behavior, eccentriccompression loaded behavior, and the seismic behavior of SCFST column has beenstudied.
     Two kinds of bolt connection modes and one kind of welding connection mode ofthe SCFST column were presented in this paper. The static performance of these kindsof constructions was compared using ANSYS software. According to the analysis, theplate welding construction was considered as the best than the other constructions.Additionally, the construction of vertical stiffener joints of SCFST column was alsopresented.
     In order to study the axial loading behavior of SCFST columns, one specimenwith concrete and one without concrete were compared in the test. The experimentalresults were compared with the results from finite element analysis. The experimentalresults and the comparisons indicated as follows: The plate welding construction wasvery reasonable, the collaboration of each mono column could be guaranteed by theconnection plate, and the infilled concrete improved the behavior of the SCFSTcolumn. The connection plate could be simplified to lateral and declinate lacing bar.
     The eccentric compression loaded behavior of SCFST columns was also studiedthrough test, in which two specimens were tested under one-way or two-way eccentriccompression loaded. The experimental results were compared with the results fromfinite element analysis. The experimental results and the comparisons indicated asfollows: The effect of the eccentric compression loaded angle on the behavior ofcolumn was very small. The connection plate could be simplified to lateral anddeclinate lacing bar.
     Additionally, this paper experimentally investigated the behavior of SCFSTcolumn subjected to a constant axial load and a cyclically varying flexural load. Theeffects of both the axial compression ratio and the length to width ratio on the behavior (stiffness, strength, ductility, and energy dissipation) of SCFST columnswere studied. The experimental results were compared with the results from finiteelement analysis.The experimental results and the comparisons indicated as follows:The seimic behavior and energy dissipation of the SCFST column was very good. Theconnection plate could be simplified to lateral and declinate lacing bar.
     The failure mode and bearing capacity obtained by finite element analysis agreedwith those obtained by test. So the finite element analysis was an effective way tosimulate the behavior of SCFST columns.
     Finally, based on the MIDAS software, the design method of SCFST structure waspresented and the behavior of the structure was also studied. The detailedconstructions were presented. The analysis results indicate that the SCFST structuremeet the seismic demand and the performance of it is better than CFT in rarely metearthquake.
引文
[1]李黎明,矩形钢管混凝土柱力学性能研究:[博士学位论文],天津;天津大学,2007
    [2]程晓东,叶贵如,程莉莎,等.方钢管混凝土偏压柱非线性屈曲承载力的有限元分析[J].土木工程学报,2003,36(12):31-38
    [3]凌道盛,张金江,徐兴,等.虚拟层合单元法及其在桥梁工程中的应用[J].土木工程学报,1998,31(4):22-29
    [4]王文达,韩林海.钢管混凝土框架结构力学性能非线性有限元分析[J].建筑结构学报,2008,29(6):75-83
    [5]荣斌,方钢管混凝土组合异形柱的理论分析与试验研究:[博士学位论文],天津;天津大学,2008
    [6]韩林海.钢管混凝土结构-理论与实践[M].北京:科学出版社,2004.
    [7]李学平.矩形钢管混凝土柱的静、动力性能研究[D].上海:同济大学,2004.
    [8]陈洪涛.各种截面钢管混凝土轴压短柱基本性能连续性的理论研究[D].哈尔滨:哈尔滨工业大学,2001.
    [9] Hajjar J F, Gourley B C. Representation of concrete-filledsteel tube cross-sectionstrength [J]. Journal of Structural Engineering, ASCE,1996,122(11):327―1336.
    [10] Liu Dalin, Gho Wiemin. Axial load behavior ofhigh-strength rectangularconcrete-filled steel tubular stubcolumns [J]. Thin-Walled Structures,2005,43(8):1131―1142.
    [11] Lin-Hai Han, Zhong Tao, Wei Liu. Effects of Sustained Load on Concrete-FilledHollow Structural Steel Columns [J]. Journal of structural engineering,2004,130(9):1392-1404.
    [12] C. S. Huang, Y.-K. Yeh, G.-Y. Liu, H.-T. Hu, K. C. Tsai, Y. T. Weng, S. H. Wang,M.-H. Wu. Axial Load Behavior of Stiffened Concrete-Filled Steel Columns [J].Journal of structural engineering,2002,128(9):1222-1230.
    [13] Stephen P. Schneider. Axially loaded concrete-filled steel tubes [J]. Journal ofStructural Engineering,1998,124(10):1125-1138.
    [14] Kenji Sakino, Hiroyuki Nakahara, Shosuke Morino, and Isao Nishiyama.Behavior of Centrally Loaded Concrete-Filled Steel-Tube Short Columns[J].Journal of structural engineering,130(2):180-188.
    [15] Lanhui Guo, Sumei Zhang, Wha-Jung Kim, Gianluca Ranzi. Behavior of squarehollow steel tubes and steel tubes filled with concrete [J]. Thin walled structures,2007,45(12):961-973.
    [16] Lin-Hai Han, Wei Liu, You-Fu Yang. Behaviour of concrete-filled steel tubularstub columns subjected to axially local compression [J]. Journal ofconstructional steel research,2008,64(4):377-387.
    [17]顾威,赵颖华,贾永新. CFRP钢管混凝土长柱承载力的研究[J].工程力学,2008,25(7):147-152.
    [18] Zhong Tao, Lin-Hai Han, Zhi-Bin Wang. Experimental behaviour of stiffenedconcrete-filled thin-walled hollow steel structural (HSS) stub columns [J].Journal of Constructional Steel Research,2005,61(7):962-983.
    [19] Lin-Hai Han, Guo-Huang Yao. Experimental behaviour of thin-walled hollowstructural steel (HSS) columns filled with self-consolidating concrete (SCC)[J].Thin walled structures,2004,42(12):1357-1377.
    [20] Ben Young, Ehab Ellobody. Experimental investigation of concrete-filledcold-formed high strength stainless steel tube columns [J]. Journal ofConstructional Steel Research,2006,62(5):484-492.
    [21] M.A. Dabaon, M.H. El-Boghdadi, M.F. Hassanein. Experimental investigationon concrete-filled stainless steel stiffened tubular stub columns[J]. EngineeringStructures,2009,31(2):300-307.
    [22] Zhong Tao, Lin-Hai Han, Dong-Ye Wang. Strength and ductility of stiffenedthin-walled hollow steel structural stub columns filled with concrete [J]. Thinwalled structures,2008,46(10):1113-1128.
    [23] Hanbin Ge, Tsutomu Usami. Strength of Concrete-Filled Thin-Walled Steel BoxColumns_Experiment [J]. Journal of Structural Engineering,1992,118(11):3036-3054.
    [24] Dennis Lama, Leroy Gardner. Structural design of stainless steel concrete filledcolumns [J]. Journal of Constructional Steel Research,2008,64(11):1275-1282.
    [25] H. Yang, D. Lam, L. Gardner. Testing and analysis of concrete-filled ellipticalhollow sections [J]. Engineering Structures,2008,30(1):3771-3781.
    [26] Lin-Hai Hana, Guo-Huang Yao, Xiao-Ling Zhao. Tests and calculations forhollow structural steel (HSS) stub columns filled with self-consolidatingconcrete (SCC)[J]. Journal of Constructional Steel Research,2005,61(9):1241-1269.
    [27] Manojkumar V. Chitawadagi, Mattur C. Narasimhan, S.M. Kulkarni. Axialcapacity of rectangular concrete-filled steel tube columns–DOE approach [J].Construction and Building Materials,2010,24(4):585-595.
    [28] Manojkumar V. Chitawadagi, Mattur C. Narasimhan, S.M. Kulkarni. Axialstrength of circular concrete-filled steel tube columns DOE approach [J]. Journalof Constructional Steel Research,2010,66(10):1248-1260.
    [29] Jiepeng Liu, Sumei Zhang, Xiaodong Zhang, Lanhui Guo. Behavior and strengthof circular tube confined reinforced-concrete (CTRC) columns [J]. Journal ofConstructional Steel Research,2009,65(7):1447-1458.
    [30] Brian Uy, Zhong Tao, Lin-Hai Han. Behaviour of short and slenderconcrete-filled stainless steel tubular columns [J]. Journal of Constructional SteelResearch,2011,67(3):360-378.
    [31] Xiao-Ling Zhao, Le-Wei Tong, Xing-Yi Wang. CFDST stub columns subjectedto large deformation axial loading [J]. Engineering Structures,2010,32(3):692-703.
    [32] J.Y. Richard Liew, D.X. Xiong. Effect of preload on the axial capacity ofconcrete-filled composite columns [J]. Journal of Constructional Steel Research,2009,65(3):709-722.
    [33] Clotilda Petru, Hanizah Abdul Hamid, Azmi Ibrahim, Gerard Parke.Experimental behaviour of concrete filled thin walled steel tubes with tabstiffeners [J]. Journal of Constructional Steel Research,2010,66(7):915-922.
    [34] Ju Chen, Wei-liangJin. Experimental investigation of thin-walled complexsection concrete-filled steel stub columns [J]. Thin-Walled Structures,2010,48(9):718-724.
    [35] Meichun Zhu, Jianxin Liu, Qingxiang Wang, Xiufeng Feng. Experimentalresearch on square steel tubular columns filled with steel-reinforcedself-consolidating high-strength concrete under axial load [J]. EngineeringStructures,2010,32(8):2278-2286.
    [36] You-Fu Yang, Lin-Hai Han. Experiments on rectangular concrete-filled steeltubes loaded axially on a partially stressed cross-sectional area [J]. Journal ofConstructional Steel Research,2009,65(8-9):1617-1630.
    [37] Y. M. Hu, T. Yu, J. G. Teng. FRP-Confined Circular Concrete-Filled Thin SteelTubes under Axial Compression [J]. Journal of composites for construction,2011,15(5):850-860.
    [38] Walter Luiz Andrade de Oliveira, Silvana De Nardin, Ana Lúcia H. de Cresce ElDebs, Mounir Khalil El Debs. Influence of concrete strength and length/diameteron the axial capacity of CFT columns [J]. Journal of Constructional SteelResearch,2009,65(12):2103-2110.
    [39] Kian Karimi, Michael J. Tait, Wael W. El-Dakhakhni. Testing and modeling of anovel FRP-encased steel–concrete composite column [J]. Composite Structures,2011,93(5):1463-1473.
    [40] Lin-Hai Han, Qing-Xin Ren, Wei Li. Tests on stub stainlesssteel–concrete–carbon steel double-skin tubular (DST) columns [J]. Journal ofConstructional Steel Research,2011,67(3):437-452.
    [41] Yuyin Wang, Yue Geng, Gianluca Ranzi, Sumei Zhang. Time-dependentbehaviour of expansive concrete-filled steel tubular columns [J]. Journal ofConstructional Steel Research,2011,67(3):471-483.
    [42]郭兰慧,张素梅,刘界鹏.不同加载模式下方钢管混凝土力学性能试验研究与理论分析[J].工程力学,2008,25(9):143-148.
    [43]黄福云,陈宝春.初应力对钢管混凝土哑铃形轴压短柱受力性能影响的试验研究[J].福州大学学报,2006,34(2):240-244.
    [44]龙跃凌,蔡健.带约束拉杆L形钢管混凝土短柱轴压性能的试验研究[J].华南理工该大学学报,2206,34(11):87-92.
    [45]陈宝春,盛叶.钢管混凝土哑铃形轴压长柱极限承载力研究[J].工程力学,2008,25(4):121-133.
    [46] Toshiaki Fujimoto, Akiyoshi Mukai, Isao Nishiyama, et al. Behavior ofEccentrically Loaded Concrete-Filled Steel Tubular Columns [J]. Journal ofStructural Engineering,2004,130(2):203-212
    [47] Seong-Hui Lee, Brian Uy, Sun-Hee Kim, et al. Behavior of high-strengthcircular concrete-filled steel tubular (CFST) column under eccentric loading [J].Journal of Constructional Steel Research,2011,67(1):1-13
    [48] Brian Uy, Zhong Tao, Lin-Hai Han. Behaviour of short and slenderconcrete-filled stainless steel tubular columns [J]. Journal of Constructional SteelResearch,2011,67(3):360-378
    [49] Amit H. Varma, James M. Ricles, Richard Sause, et al. Experimental Behaviorof High Strength Square Concrete-Filled Steel Tube Beam-Columns [J]. Journalof Structural Engineering,2002,128(3):309-318
    [50]陈宝春,王来永,欧智菁,等.钢管混凝土偏心受压应力—应变试验研究.工程力学,2003,20(6):154-159
    [51]何振强,蔡健.带约束拉杆方形钢管混凝土偏压短柱的试验研究.华南理工大学学报,2006,34(2):107-111
    [52] KNOWLES Robert B, PARK Robert. Strength of concrete-filled steel tubularcolumns[J]. Journal of the Structural Division,1969,95(ST12):2565-2587
    [53] ZHANG Weizi, SHAROOZ Bahram M. Strength of short and longconcrete-filled tubular columns[J]. ACI Structural Journal,1999,96(2):230-238.
    [54] BRIDGE R Q. Concrete-filled steel tubular column[J]. Civil EngineeringTransactions,1976,CE18(2):127-133.
    [55]左明生,李四平,王菁.方钢管混凝土偏压柱的试验研究[J].郑州工业学院学报,1992,13(3).
    [56]陶忠,韦灼彬,韩林海.方钢管混凝土压弯构件力学性能分析及承载力研究[J].工业建筑,1998,28(10):10-14.
    [57]张素梅,郭兰慧,王玉银.方钢管高强混凝土偏压构件的试验研究与理论分析[J].建筑结构学报,2004,25(1):17-24,70
    [58]谭克锋,蒲心诚.钢管超高强混凝土长柱及偏压柱的性能与极限承载能力的研究.建筑结构学报,2000,21(2):12-19.
    [59]陈宝春,王来永,欧智菁,韩林海.钢管混凝土偏心受压应力—应变试验研究.工程力学,2003.12,vol20(6),154-159
    [60]陈宝春,盛叶.钢管混凝土哑铃形偏压长柱极限承载力研究.工程力学,2008,vol25(12):98-105.
    [61]陈刚花,李斌,方钢管高强混凝土偏压短柱试验研究,西安建筑科技大学学报,vol38(6),2006.12.:873-876
    [62]张素梅,郭兰慧,王玉银,田华.方钢管高强混凝土偏压构件的试验研究与理论分析,建筑结构学报,vol25(1),2004.2:17-24
    [63]陈宝春,肖泽荣,韦建刚.钢管混凝土哑铃形偏压构件试验研究,工程力学,vol22(2),2005.4:89-95
    [64]陈宝春,欧智菁.四肢钢管混凝土格构柱极限承载力试验研究,土木工程学报,2007,vol40(6):32-41
    [65]王连广,赵同峰,安山河.方钢管-钢骨混凝土双向偏压试件试验研究与理论分析.工程力学,2009,vol26(5):137-147
    [66]郑廷银,林沂祥,毛志伟,沈宁,姚楠.蜂窝状钢骨混凝土不对称十字形截面柱正截面承载力试验,南京工业大学学报,2008,vol30(6):102-105
    [67]姜绍飞,牛德生,于清海.高温后矩形钢管混凝土双向压弯构件力学性能试验研究,建筑结构学报,2008,vol29(5):13-19
    [68]程晓东,叶贵如,程莉莎,等.方钢管混凝土偏压柱非线性屈曲承载力的有限元分析.土木工程学报,2003,36(12):31-38
    [69]屠永清,李丛.钢管混凝土柱极限承载力分析的分段合成法.北京航空航天大学学报,2005,31(10):1092-1095
    [70]田华,张素梅,郭兰慧.矩形钢管高强混凝土双向压弯构件截面强度.哈尔滨工业大学学报.2007,39(12):1520-1528
    [71]刘界鹏,张素梅,郭兰慧.考虑扭转的矩形钢管混凝土双向偏压构件静力性能.哈尔滨工业大学学报.2006,38(5):712-714
    [72] Eiichi Inai, Akiyoshi Mukai, Makoto Kai, et al. Behavior of Concrete-FilledSteel Tube Beam Columns [J]. Journal of Structural Engineering,2004,130(2):189-202
    [73] Yaochun Zhang, Chao Xu, Xiaozhe Lu. Experimental study of hystereticbehaviour for concrete-filled square thin-walled steel tubular columns [J].Journal of Constructional Steel Research,2007,63(3):317-325
    [74] Lin-Hai Han, Xiao-Kang Lin. Tests on Cyclic Behavior of Concrete-FilledHollow Structural Steel Columns after Exposure to the ISO-834Standard Fire[J].Journal of Structural Engineering,2004,130(11):1807-1819
    [75] Kyungsoo Chung, Jinan Chung, Sungmo Choi. Prediction of pre-and post-peakbehavior of concrete-filled square steel tube columns under cyclic loads usingfiber element method [J]. Thin-Walled Structures,2007,45(9):747-758
    [76] Amit H. Varma, James M. Ricles, Richard Sause, et al. Seismic Behavior andDesign of High-Strength Square Concrete-Filled Steel Tube Beam Columns [J].Journal of Structural Engineering,2004,130(2):169-179
    [77] Amit H. Varma, James M. Ricles, Richard Sause. Seismic behavior andmodeling of high-strength composite concrete-filled steel tube (CFT)beam–columns[J]. Journal of Constructional Steel Research,2002,58(5-8):725-758
    [78] Jiepeng Liu, Xuhong Zhou, Sumei Zhang. Seismic behaviour of square CFTbeam–columns under biaxial bending moment[J]. Journal of ConstructionalSteel Research,2008,64(12):1473-1482.
    [79]陈宗平,薛建阳,赵鸿铁.型钢混凝土异形柱抗震性能试验研究[J].建筑结构学报,2007,28(3):53-61
    [80]王丹,吕西林. T形、L形钢管混凝土柱抗震性能试验研究[J].建筑结构学报,2005,26(4):39-44
    [81]张爱林,于劲,徐敏,等.低周反复荷载作用下十字形截面钢异形柱抗震性能试验研究[J].建筑结构学报,2010,31(2):11-19
    [82]李学平,吕西林,郭少春.反复荷载下矩形钢管混凝土柱的抗震性能I:试验研究[J].地震工程与工程振动,2005,25(5):95-103
    [83]吕西林,陆伟东.反复荷载作用下方钢管混凝土柱的抗震性能试验研究[J].建筑结构学报,2000,21(2):2-11
    [84]王铁成,郝贵强,赵海龙.反复荷载作用下纤维增强异形柱的抗震性能试验[J].天津大学学报,2010,43(11):957-963
    [85]徐亚丰,赵敬义,张世宪.钢骨-钢管混凝土柱抗震性能试验研究[J].建筑钢结构进展,2009,11(3):4-11
    [86]刘景云,张小冬,刘界鹏.钢管约束钢筋混凝土压弯构件抗震性能与设计方法[J].哈尔滨工业大学学报,2009,41(6):11-15
    [87]曹万林,胡国振,崔立长,等.钢筋混凝土带暗柱异形柱抗震性能试验及分析[J].建筑结构学报,2002,23(1):16-20,26
    [88] Lin-Hai Han, Wen-Da Wang, Xiao-Ling Zhao. Behaviour of steel beam toconcrete-filled SHS column frames: Finite element model and verifications [J].Engineering Structure,2008,30(6):1647-1658.
    [89]何文辉,范云蕾,肖岩.高强螺栓端板连接钢梁-方钢管混凝土框架结构抗震性能研究[J].建筑结构学报,2009,30(4):18-29
    [90]李斌,任利民.矩形钢管混凝土框架结构受力性能试验研究[J].工程力学,2009,26(2):103-107
    [91]赵艳静,钢筋混凝土异形柱结构体系理论与试验研究:[博士学位论文],天津;天津大学,2004
    [92]孙林柱,钢筋混凝土异形柱轴心受压性能的试验研究:[博士学位论文],天津;天津大学,2006
    [93]黄承逵,曲福来,徐士弢.钢筋混凝土不等肢异形柱抗剪承载力研究[J].工程力学,2009,26(5):197-201
    [94]陈宗平,薛建阳,赵鸿铁.型钢混凝土异形柱的受剪机理及承载力影响因素分析.西安建筑科技大学学报,2008,40(4):450-456
    [95]陈宝春,肖泽荣,韦建刚.钢管混凝土哑铃形偏压构件试验研究.工程力学,2005,22(2):89-95
    [96]陈宝春,盛叶.钢管混凝土哑铃形偏压长柱极限承载力研究.工程力学.2008,25(12):98-105
    [97]陈宝春,盛叶,韦建刚.钢管混凝土哑铃型梁受弯试验研究.工程力学,2005,22(4):119-125
    [98]沈祖炎,陈之毅,矩形钢管混凝土结构设计施工中的若干问题[A],第三届海峡两岸及香港钢及金属结构技术研讨会[C],上海,2001:18~28
    [99]黎志军,蔡健,带约束拉杆异形钢管混凝土柱力学性能的试验研究[J],工程力学增刊,2001,124~129
    [100]栗增欣,郭成喜,轴心受压L形柱的有限元非线性分析[J],钢结构,2008,23(5),11~13
    [101]王明贵,张莉若,谭世友,钢异形柱弯扭相关屈曲研究[J],钢结构,2006,21(4),35~37
    [102]陈志华,苗纪奎,赵莉华,等.方钢管混凝土柱-H型钢梁节点研究[J].建筑结构,2007,37(1):50-56.
    [103]陈志华,苗纪奎.方钢管混凝土柱-H型钢梁外肋环板节点研究.工业建筑,2005,35(10):61-63
    [104] Wüst, Jochen1, Wagner. Werner Systematic prediction of yield-lineconfigurations for arbitrary polygonal plates[J]. Engineering Structures,2008,30(7):2081-2093
    [105]苗纪奎,陈志华.方钢管混凝土柱-钢梁节点形式探讨.山东建筑工程学院学报,2005,20(3):64-68
    [106]苗纪奎,方钢管混凝土柱与H钢梁的外肋环板节点研究:[硕士学位论文],天津;天津大学,2004
    [107]李忠献,工程结构试验理论与技术[M],天津:天津大学出版社,2004
    [108]李四平,霍达,偏心受压方钢管混凝土柱极限承载力的计算[J],建筑结构学报,1998,19(1),41-51
    [109]陈志华,刘红波,周婷,等.空间钢结构APDL参数化计算与分析[M].北京:中国水利水电出版社,2009
    [110]于劲,钢异形柱结构体系抗震性能的理论分析与试验研究[D],博士学位论文,北京:北京工业大学,2010
    [111]王来,方钢管混凝土框架抗震性能的试验与理论研究[D],博士学位论文,天津:天津大学,2005
    [112]张新培,钢筋混凝土抗震结构非线性分析[M],北京:科学出版社,2003
    [113]郭继武.建筑抗震设计[M].北京:中国建筑工业出版社.2006.
    [114]白峻昶,靳金平.时程分析用地震波选取的探讨[J].山西建筑,2007,33(3):62-63
    [115]李刚,程耿东.基于性能的结构抗震设计——理论、方法与应用[M].北京:科学出版社.2004
    [116] Krawinkler H, Seneviratna G D P K, Pros and cons of a pushover analysis ofseismic performance evaluation[J], Engineering Structures,1998,20(4-6):452-464
    [117]谢礼立,马玉宏,翟长海.基于性态的抗震设防与设计地震动[M].北京:科学出版社.2009

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700