铜催化酮或酸氧化偶联反应及苯并异吡喃环化反应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氧化偶联反应是指通过氧化剂作用下氧化切断化学键,然后实现官能团化,从而构建新的碳-碳键和碳-杂原子键等化学键的的方法和技术。氧化偶联反应的反应条件为中性,切断的化学键包括碳-氢键以及杂原子-氢键等。其中碳-氢键氧化切断的氧化偶联反应已成为有机化学研究的热点领域。其原因是碳-氢键氧化切断直接官能团可以避免使用预先官能团化的反应物,原子经济性高,对环境友好。因此,通过碳-氢键氧化切断的氧化偶联反应对构建天然产物和先导药物骨架,或对药物先导化合物直接修饰,实现活性化合物的多样性合成以及药物分子的高通量筛选无疑具有重要意义和研究价值。
     铜催化剂是一种价廉易得的催化剂,已广泛应用于有机合成中。使用铜催化剂来催化氧化偶联反应即是有机合成研究热点也是最具挑战性领域之一。在铜催化剂催化氧化偶联反应研究中,如何提高铜催化剂的催化活性成为该研究的关键。
     本论文主要研究了铜催化酮或酸氧化偶联反应及苯并异吡喃环化反应。本论文主要包括如下内容:
     (1)首先对近年来铜催化氧化偶联反应的研究进展进行了详细评述。主要从构建不同化学键方面进行综合评述,包括三方面:(i)铜催化氧化偶联反应构建碳-碳键的研究进展;(ii)铜催化氧化偶联反应构建碳-氮键的研究进展;(iii)铜催化氧化偶联反应构建碳-氧键和其它化学键的研究进展。主要集中对铜催化氧化偶联反应的研究内容和机理进行了描述和探讨。
     (2)发现了一种高效的铜催化酮与TEMPO的α-羟胺化反应,合成出一些天产物和药物的基本骨架部分的2-芳氧基2-(2,2,6,6-四甲基哌啶-1-氧化物)乙酮化合物,产率中等到高。值得指出的是,使用的铜包铁催化剂(Cu/Fe)可以回收重复使用多次,仍具有好的催化活性。该方法是一种新的铜催化酮的α-羟胺化反应。产物,2-芳氧基2-(2,2,6,6-四甲基哌啶-1-氧化物)乙酮化合物,很容易转化为芳基二羰基化合物,该二羰基化合物同样是一种重要的有机合成砌块,例如合成脱氧酮糖酸类化合物。
     (3)以铜为催化剂,在DABCO配体和TBHP氧化剂的协助下,实现了酸与甲酰胺或乙酰胺的氧化酰胺化反应。该反应适合酸的范围广,包括烷基酸、芳基酸、a,β-不饱和酸和氨基酸等。最为重要的是,该方法使用甲酰胺或乙酰胺作为氨基来源,与酸反应合成一系列新的酰胺,为有机合成和工业原料的酰胺的合成提供了一种新途径。
     (4)建立了一种Lewis酸催化的环化反应合成苯并环庚[b]吲哚化合物。该方法是一类构建七元碳环的新策略,反应中使用铜催化剂,两分子的苯并异毗喃为反应底物。还尝试了将产物苯并环庚[b]吲哚化合物应用于荧光材料,发现苯并环庚[b]吲哚化合物可以作为一些金属离子例如汞离子的荧光探针。
     (5)砜官能团是许多有机材料、活性分子和药物的重要骨架,也是有机合成的重要中间体。发现了一种新的简单的反应,即在碱作用下酮与1,2-二苯基砜乙烷的亲核取代反应,合成出1-芳基-4-苯基砜基丁-1-酮化合物。该方法是一类新型的合成官能团化砜化合物反应,使用商业化1,2-二苯基砜乙烷产品替代烯基砜作为砜官能团的来源,从而将羰基化合物底物拓宽到普通酮化合物。
The oxidative coupling reaction includes the oxidative cleavage of chemical bonds by oxidants, followed by functionalization to construct various chemical bonds, such as new carbon-carbon bonds and carbon-heteroatom bonds. The oxidative coupling reactions are generally used to cleave the carbon-carbon bonds and carbon-heteroatom bonds under neutral reaction conditions. Particularly, the oxidative coupling reactions through the carbon-hydrogen bond cleavage are the hot-topic in organic synthesis because they do not need per-functionalization substrates with high atom-economy and benign-environment. For these reasons, the utilizations of the oxidative coupling reactions in the synthesis of natual products and lead drug frameworks are high desirable.
     Copper catalysts, expensive catalysts, are widely used in organic synthesis. Recently, copper-catalyzed oxidative coupling reactions have been one of the the most important and challenging areas in organic synthesis. Among these reactions, the key is how to improve the catalytic activities of copper catalysts.
     The dissertation mainly studies on the copper-catalyzed oxidative coupling reactions of ketones or acids and annulation of isochromenes. The contents of this dissertation are as following:
     (1) Recent progress in the copper-catalyzed oxidative coupling reactions has been described in detail. Three parts on the construction of chemical bonds are discussed in this chapter, including:(i) Advances in the construction of the carbon-carbon bonds by copper-catalyzed oxidative coupling reactions,(ii) advances in the construction of the carbon-nitrogen bonds by copper-catalyzed oxidative coupling reactions, and (iii) advances in the construction of the carbon-oxygen bonds and the other chemical bonds by copper-catalyzed oxidative coupling reactions. We focus on the results and the mechanisms of the copper-catalyzed oxidative coupling reactions.
     (2) An efficient copper-catalyzed α-aminoxylation of ketones with TEMPO was presented for the synthesis of2-aryloxy-1-aryl-2-(2,2,6,6-tetramethylpiperidin-1-yloxy)ethanones, fundamental structural units that are found in natural products and pharmaceutical agents, in moderate to excellent yields. It is noteworthy that the Cu/Fe catalyst can be recovered and reusable several times with highly catalytic activity, and this method is the first example for the Cu-catalyzed oxyamination reaction of ketones with TEMPO. Importantly, the products,2-aryloxy-1-aryl-2-(2,2,6,6-tetramethyl-piperidin-1-yloxy)ethanones, can readily deliver aryl glyoxylates, which play an important role in biological processes as useful intermediates in the synthesis of some natural products, such as the3-deoxy-2-ulosonic acids and their derivatives.
     (3) A new, general copper-catalyzed amidation of acids with formamides or acetamide to selective synthesize new amides with the aid of DAB CO ligand and TBHP oxidation is presented. This method has high compatibility with a wide range of acids, including alkyl acids, aryl acids, α,β-unsaturated acids and amino acids. Importantly, this method allows the use of various formamides and an acetamide as the amine resources for amidation with acids leading to new amide products, which open a new door to use acids for the direct synthesis of amides, a class of fundamental chemicals in organic synthesis and chemical industries.
     (4) A novel Lewis acid-catalyzed annulation reaction has been established for the synthesis of benzocyclohepta[b]indoles. This method represents a new annulation strategy to a seven-membered carbocyclic ring system from two3-(1H-isochromen-1-yl)-1H-indole molecules using Cu(OTf)2catalyst; moreover, the products, benzocyclohepta[b]indoles, can be used as the rapid mercuric ion colorimetric detection reagents.
     (5) Sulfones are important units found in organic materials, bioactive molecules and pharmaceuticals, as well as widely serve as valuable intermediates in synthetic chemistry. A new, simple base-mediated nucleophilic replacement reaction of1,2-bis(phenylsulfonyl)ethane with ketones has been developed for the synthesis of1-aryl-4-(phenylsulfonyl)butan-1-ones. This method represents the first example of preparing new functionalized sulfones using commercial available1,2-bis(phenylsulfonyl)ethane instead of vinyl sulfones as the sulfone resource, and expands the scope to common ketones.
引文
[1]Cross-coupling Reactions:A Practical Guide; Miyaura N., Ed.; Springer:Berlin, 2002.
    [2]de Meijere A., Diederich F. Metal-Catalyzed Cross-Coupling Reactions,2nd ed., Wiley-VCH, Weinheim,2004.
    [3]Negishi E. Handbook of Organopalladium Chemistry for Organic Synthesis, Wiley, NY,2002.
    [4]Frisch A. C., Beller M. Catalysts for Cross-Coupling Reactions with Non-activated Alkyl Halides, Angew. Chem. Int. Ed.2005,44 (5),674-688.
    [5]Buchwald S. L. Cross Coupling, Acc. Chem. Res.2008,41 (11),1439 (metal-catalyzed cross-coupling reactions, special issue).
    [6]Li C.-J. Cross-Dehydrogenative Coupling (CDC):Exploring C-C Bond Formations beyond Functional Group Transformations, Acc. Chem. Res.2009, 42 (2),335-344.
    [7]Mcglacken G. P., Bateman L. M., Bateman L. Recent advances in aryl-aryl bond formation by direct arylation, Chem. Soc. Rev.2009,38 (8),2447-2464.
    [8]Shabashov D. Palladium- and Copper-Catalyzed Arylation of Carbon-Hydrogen Bonds, Acc. Chem. Res.2009,42 (8),1074-1086.
    [9]Ashenhurst J. A. Intermolecular oxidative cross-coupling of arenes, Chem. Soc. Rev.2010,39 (2),540-548.
    [10]Le Bras J. Muzart J. Intermolecular Dehydrogenative Heck Reactions, Chem. Rev.2011, 111(3),1170-1214.
    [11]Liu C., Zhang H., Shi W., et al. Bond Formations between Two Nucleophiles: Transition Metal Catalyzed Oxidative Cross-Coupling Reactions, Chem. Rev. 2011,111 (3),1780-1824.
    [12]Zhang C., Tang C., Jiao N. Recent advances in copper-catalyzed dehydrogenative functionalization via a single electron transfer (SET) process, Chem Soc Rev.2012,41 (9),3464-3484.
    [13]Girard S. A., Knauber T., Li C.-J. The Cross-Dehydrogenative Coupling of Csp3-H Bonds:AVersatile Strategy for C-C Bond Formations, Angew. Chem. Int. Ed.2014,53(1),74-100.
    [14]Li Z., Bohle D. S., Li C.-J. Cu-catalyzed cross-dehydrogenative coupling:a versatile strategy for C-C bond formations via the oxidative activation of sp3 C-H bonds, Proc. Natl. Acad. Sci. U. S. A.2006,103 (24),8928-8933.
    [15]Li Z., Li C.-J. Highly Efficient CuBr-Catalyzed Cross-Dehydrogenative Coupling (CDC) between Tetrahydroisoquinolines and Activated Methylene Compounds, Eur. J. Org. Chem.2005, (15),3173-3176.
    [16]Zeng T., Song G., Moores A., et al. Magnetically recoverable iron nanoparticle catalyzed cross-dehydrogenative coupling (CDC) between two Csp3-H bonds using molecular oxygen, Synlett 2010, (12),2002-2008.
    [17]Basle O., Li C.-J. Copper-catalyzed oxidative alkylation of sp3 C-H bond adjacent to a nitrogen atom using molecular oxygen in water, Green Chem. 2007,9 (10),1047-1050.
    [18]Zhang G., Zhang Y., Wang R. Catalytic Asymmetric Activation of a Csp3-H Bond Adjacent to a Nitrogen Atom:A Versatile Approach to Optically Active α-Alky1 α-Amino Acids and C1-Alkylated Tetrahydroisoquinoline Derivatives, Angew. Chem. Int. Ed.2011,50 (44),10429-10432.
    [19]Culkin D. A., Hartwig J. F. Palladium-Catalyzed a-Arylation of Carbonyl Compounds and Nitriles, Acc. Chem. Res.2003,36 (4),234-245.
    [20]Bellina F., Rossi R. Transition Metal-Catalyzed Direct Arylation of Substrates with Activated sp3-Hybridized C-H Bonds and Some of Their Synthetic Equivalents with Aryl Halides and Pseudohalides, Chem. Rev.2010,110 (2), 1082-1146.
    [21]Denes F., Perez-Luna A., Chemla F. Addition of Metal Enolate Derivatives to Unactivated Carbon-Carbon Multiple Bonds, Chem. Rev.2010,110 (4), 2366-2447.
    [22]Wu J.-C., Song R.-J., Wang Z.-Q., et al. Copper-Catalyzed C-H Oxidation/Cross-Coupling of a-Amino Carbonyl Compounds, Angew. Chem. Int. Ed.2012,51 (14),3453-3457.
    [23]Huo C., Wang C., Wu M., et al. Copper(Ⅰ) Chloride-Catalyzed Aerobic Oxidative Arylation of Glycine Ester and Amide Derivatives, Adv. Synth. Catal. 2014,356 (2-3),411-415.
    [24]Gao X.-W., Meng Q.-Y., Xiang M., et al. Combining Visible Light Catalysis and Transition Metal Catalysis for the Alkylation of Secondary Amines, Adv. Synth. Catal.2013,355 (11-12),2158-2164.
    [25]Wei W.-T., Song R.-J. Li, J.-H. Copper-Catalyzed Oxidative a-Alkylation of α-Amino Carbonyl Compounds with Ethers via Dual C(sp3)-H Oxidative Cross Coupling, Adv. Synth. Catal.2014,356 (8),1703-1707.
    [26]Huang X.-F., Salman M., Huang Z.-Z. Copper-Catalyzed Dehydrogenative Cross-Coupling Reaction between Allylic C-H Bonds and a-C-H Bonds of Ketones or Aldehydes, Chem. Eur. J.2014,20 (22),6618-6621.
    [27]Alamsetti S. K., Poonguzhali E., Ganapathy D., et al. Enantioselective Oxidative Coupling of 2-Naphthol Derivatives by Copper-(R)-1,1'-Binaphthyl-2,2'-diamine-TEMPO Catalyst, Adv. Synth. Catal. 2013,355 (14-15),2803-2808.
    [28]Zou L.-H., Mottweiler J., Priebbenow D. L., et al. Mild Copper-Mediated Direct Oxidative Cross-Coupling of 1,3,4-Oxadiazoles with Polyfluoroarenes by Using Dioxygen as Oxidant, Chem. Eur. J.2013,19 (10),3302-3305.
    [29]Jia X., Zhang S., Wang W., et al. Palladium-Catalyzed Acylation of sp2 C-H bond:Direct Access to Ketones from Aldehydes, Org. Lett.2009,11(14), 3120-3123.
    [30]Tang B.-X., Song R.-J., Wu C.-Y., et al. Copper-Catalyzed Intramolecular C-H Oxidation/Acylation of Formyl-N-arylformamides Leading to Indoline-2,3-diones, J. Am. Chem. Soc.2010,132(8),8900-8902.
    [31]Poulsen T. B., J(?)rgensen K. A. Catalytic asymmetric Friedel-Crafts alkylation reactions-copper showed the way, Chem. Rev.2008,108 (8),2903-2915.
    [32]Shen J., Yang D., Liu Y., et al. Copper-Catalyzed Aerobic Oxidative Coupling of Aromatic Alcohols and Acetonitrile to β-Ketonitriles, Org. Lett.2014,16(2), 350-353.
    [33]Gogoi A., Guin S., Rout S. K., et al. A Copper-Catalyzed Synthesis of 3-Aroylindoles via a sp3 C-H Bond Activation Followed by C-C and C-O Bond Formation, Org. Lett.2013,15 (8),1802-1805.
    [34]Wang Z.-Q., Zhang W.-W., Gong L.-B., et al. Copper-Catalyzed Intramolecular Oxidative 6-exo-trig Cyclization of 1,6-Enynes with H2O and O2, Angew. Chem. Int. Ed.2011,50(38),8968-8973.
    [35]Liu D., Liu C., Li H., et al. Copper-catalysed oxidative C-H/C-H coupling between olefins and simple ethers, Chem. Commun.2014,50 (27),3623-3626.
    [36]Liwosz T. W., Chemler S. R. Copper-Catalyzed Oxidative Heck Reactions between Alkyltrifluoroborates and Vinyl Arenes, Org. Lett.2013,15 (12), 3034-3037.
    [37]Chatani N., Asaumi T., Ikeda T., et al. Carbonylation at sp3 C-H Bonds Adjacent to a Nitrogen Atom in Alkylamines Catalyzed by Rhodium Complexes, J. Am. Chem. Soc.2000,122(51),12882-12883.
    [38]Zhang Y., Fu H., Jiang Y., et al. Copper-catalyzed amidation of sp3C-H bonds adjacent to a nitrogen atom Org. Lett.2007,9 (19),3813-3816.
    [39]Ye X., Xie C., Pan Y., et al. Copper-Catalyzed Synthesis of a-Amino Imides from Tertiary Amines:Ugi-Type Three-Component Assemblies Involving Direct Functionalization of sp3 C-Hs Adjacent to Nitrogen Atoms, Org. Lett. 2010,12 (19),4240-4243.
    [40]Tran L. D., Roane J., Daugulis O. Directed Amination of Non-Acidic Arene C-H Bonds by a Copper-Silver Catalytic System, Angew. Chem. Int. Ed.2013, 52 (23),6043-6046.
    [41]Roane J., Daugulis O. Copper-Catalyzed Etherification of Arene C-H Bonds, Org. Lett.2013,15(22),5842-5845.
    [42]Liwosz T. W., Chemler S. R. Copper-Catalyzed Oxidative Amination and Allylic Amination of Alkenes, Chem. Eur. J.2013,19 (38),12771-12777.
    [43]Wang L., Huang H., Priebbenow D. L., et al. Copper-Catalyzed Oxidative Cross-Couplings of Sulfoximines and Alkynes, Angew. Chem. Int. Ed.2013,52 (12),3478-3480.
    [44]Wang L., Priebbenow D. L., Zou L.-H., et al. The Copper-Catalyzed Oxidative N-Acylation of Sulfoximines, Adv. Synth. Catal.2013,355 (8),1490-1494.
    [45]Kumar G. S., Kumar, R. A., Kumar, P. S., et al. Copper catalyzed oxidative coupling of amines with formamides:a new approach for the synthesis of unsymmetrical urea derivatives, Chem. Commun.,2013,49 (59),6686-6688.
    [46]Cai Z.-J., Wang S.-Y. Ji S.-J. Copper(I) Iodide/Boron Trifluoride Etherate-Cocatalyzed Aerobic Dehydrogenative Reactions Applied in the Synthesis of Substituted Heteroaromatic Imidazo[1,2-a]pyridines, Adv. Synth. Catal.2013,355 (13),2686-2692.
    [47]Monir K., Bagdi A. K., Mishra S., et al. Copper(Ⅱ)-Catalyzed Aerobic Oxidative Coupling between Chalcone and 2-Aminopyridine via C-H Amination:An Expedient Synthesis of 3-Aroylimidazo[1,2-a]pyridines, Adv. Synth. Catal.2014,356 (5),1105-1112.
    [48]Zhao M.-N., Ren Z.-H., Wang Y.-Y., et al. Copper-Promoted Oxidative Coupling of Enamides and Alkynes for the Synthesis of Substituted Pyrroles, Chem. Eur. J.2014,20 (7),1839-1842.
    [49]Liu C.-Y., Li Y., Ding J.-Y., et al. The Development of Copper-Catalyzed Aerobic Oxidative Coupling of H-Tetrazoles with Boronic Acids and an Insight into the Reaction Mechanism, Chem. Eur. J.2014,20 (8),2373-2381.
    [50]Chen X., Zhu C., Cui X., et al. Direct 2-acetoxylation of quinoline N-oxides via copper catalyzed C-H bond activation, Chem. Commun.2013,49 (61), 6900-6902.
    [51]Barve B. D., Wu Y.-C., El-Shazly M., et al. Copper-Catalyzed Oxidative Coupling of Formamides with Salicylaldehydes:Synthesis of Carbamates in the Presence of a Sensitive Aldehyde Group, J. Org. Chem.2014,79 (7), 3206-3214.
    [52]Modak A., Dutta U., Kancherla R., et al. Predictably Selective (sp3)C-O Bond Formation through Copper Catalyzed Dehydrogenative Coupling:Facile Synthesis of Dihydrooxazinone Derivatives, Org. Lett.2014,16(10), 2602-2605.
    [53]Zou L.-H., Priebbenow D. L., Wang L., et al. Copper-Catalyzed Synthesis of a-Thioaryl Carbonyl Compounds Through S-S and C-C Bond Cleavage, Adv. Synth. Catal.2013,355 (13),2558-2563.
    [54]Zhu Y., Shi Y. Facile Cu(I)-Catalyzed Oxidative Coupling of Anilines to Azo Compounds and Hydrazines with Diaziridinone under Mild Conditions, Org. Lett.2013,15(8),1942-1945.
    [55]Jiang B., Ning Y., Fan W., et al. Oxidative Dehydrogenative Couplings of Pyrazol-5-amines Selectively Forming Azopyrroles, J. Org. Chem.2014,79 (9), 4018-4024.
    [56]Breitmaier E. Terpenes:Flavors, Fragrances, Pharmaca, Pheromones, Wiley-VCH, Weinheim, Germany,2007.
    [57]Kirchberg S., Frohlich R., Studer A.1,2,3-Trisubstituted Indanes by Highly Diastereoselective Palladium-Catalyzed Oxyarylation of Indenes with Arylboronic Acids and Nitroxides, Angew. Chem. Int. Ed.2010,49(38),6877.
    [58]Hollingsworth R., Wang G. Toward a Carbohydrate-Based Chemistry:Progress in the Development of General-Purpose Chiral Synthons from Carbohydrates, Chem. Rev.2000,100 (12),4267-4282.
    [59]Martin S. F. Strategies and Tactics for the Synthesis of Oxygenated Natural Products, J. Nat. Prod.1992,55,1718.
    [60]Sciannamea V., Jerome R., Detrembleur C. In-Situ Nitroxide-Mediated Radical Polymerization (NMP) Processes:Their Understanding and Optimization, Chem. Rev.2008,108(3),1104-1126.
    [61]Studer A., Schulte T. Nitroxide-mediated radical processes, Chem. Rec.2005, 5(1),27-35.
    [62]Hawker C. J. In Handbook of Radical Polymerization;Matyj azewski K., Davis T. P., Eds.; Wiley Interscience:Hoboken,2002, pp 463-522.
    [63]Korolev G. V., Marchenko A. P. Living'-chain radical polymerization, Russ. Chem. Rev.2000,69(5),409-434.
    [64]Schoening K.-U., Fischer W., Hauck S., et al. Synthetic Studies on N-Alkoxyamines:A Mild and Broadly Applicable Route Starting from Nitroxide Radicals and Aldehydes, J. Org. Chem.2009,74 (4),1567-1573.
    [65]Pfaendner R. Nitroxyl radicals and nitroxylethers beyond stabilization:Radical generators for efficient polymer modification, C.R. Chimie 2006,9 (11-12), 1338-1344.
    [66]Brown S. P., Brochu M. P., Sinz C. J., et al. The Direct and Enantioselective Organocatalytic α-Oxidation of Aldehydes, J. Am. Chem. Soc.2003,125 (36), 10808-10809.
    [67]Zhong G. A. Facile and Rapid Route to Highly Enantiopure 1,2-Diols by Novel Catalytic Asymmetric α-Aminoxylation of Aldehydes, Angew. Chem. Int. Ed. 2003,42 (35),4247-4250.
    [68]Sibi M. P., Hasagawa M. Organocatalysis in Radical Chemistry. Enantioselective α-Oxyamination of Aldehydes, J. Am. Chem. Soc.2007,129 (14),4124-4125.
    [69]Schoening K.-U., Fischer W., Hauck S., et al. Synthetic Studies on N-Alkoxyamines:A Mild and Broadly Applicable Route Starting from Nitroxide Radicals and Aldehydes, J. Org. Chem.2009,74 (4),1567-1573.
    [70]Amatore M., Beeson T. D., Brown S. P., et al. Enantioselective Linchpin Catalysis by SOMO Catalysis:An Approach to the Asymmetric a-Chlorination of Aldehydes and Terminal Epoxide Formation, Angew. Chem. Int. Ed.2009,48 9280,5121-5124.
    [71]Wilson J. E., Casarez A. D., MacMillan D. W. C. Enantioselective Aldehyde r-Nitroalkylation via Oxidative Organocatalysis, J. Am. Chem. Soc.2009,131 (32),11332-11334.
    [72]Rendler S., MacMillan D. W. C. Enantioselective Polyene Cyclization via Organo-SOMO Catalysis, J. Am. Chem. Soc.2010,132 (14),5027-5029.
    [73]Van Humbeck J. F., Simonovich S. P., Knowles R. R., et al. Concerning the Mechanism of the FeC13-Catalyzed r-Oxyamination of Aldehydes:Evidence for a Non-SOMO Activation Pathway,J. Am. Chem. Soc.2010,132 (29), 10012-10014.
    [74]Simonovich S. P., Van Humbeck J. F., MacMillan D. W. C. A general approach to the enantioselective a-oxidation of aldehydesvia synergistic catalysis, Chem. Sci.2012,3(1),58-61.
    [75]Kano T., Mii H., Maruoka K. Metal-Free Direct Asymmetric Aminoxylation of Aldehydes Catalyzed by a Binaphthyl-Based Chiral Amine, Angew. Chem. Int. Ed.2010,49(37),6638-6641.
    [76]For special review on the use of TEMPO in organic synthesis:(a) Vogler T., Studer A. Efficient Aerobic Oxidative Synthesis of 2-Substituted Benzoxazoles, Benzothiazoles, and Benzimidazoles Catalyzed by 4-Methoxy-TEMPO, Synthesis 2008,1979-1993. (b) Studer A. Tin-free radical chemistry using the persistent radical effect:alkoxyamine isomerization, addition reactions and polymerizations, Chem. Soc. Rev.2004,33 (5),267-273;(c) Tebben L., Studer A. Nitroxide:Anwendungen in der Synthese und in der Polymerchemie, Angew. Chem. Int. Ed.2011,50 (22),5034-5068.
    [77]Song R.-J., Liu Y., Hu R.-X., et al. Oxidative Cleavage of the Carbon Carbon σ-Bond Using Reusable Copper on Iron, Adv. Synth. Catal.2011,353 (9), 1467-1473.
    [78]Nimitz J. S., Mosher H. S. A new synthesis of.alpha.-keto esters and acids, J. Org. Chem.1981,46(1),211-213.
    [79](a) Montalbetti C. A. G. N., Falque V. Amide bond formation and peptide coupling, Tetrahedron 2005,61 (46),10827-10852. (b) Humphrey J. M., Chamberlin A. R. Chemical Synthesis of Natural Product Peptides:Coupling Methods for the Incorporation of Noncoded Amino Acids into Peptides, Chem. Rev.1997,97 (6),2243-2266.
    [80]Malawska B. New anticonvulsant agents, Curr. Top. Med. Chem.2005,5 (1), 69-85.
    [81]Fraxedas J. Molecular Organic Materials:From Molecules to Crystalline Solids, Cambridge University Press, Cambridge,2006.
    [82]Bode J. W. Emerging methods in amide- and peptide-bond formation, Curr. Opin. Drug Discovery Dev.2006,9 (6),765-775.
    [83]Allen J. M., Williams, J. Metal-catalysed approaches to amide bond formation, Chem. Soc. Rev.2011,40 (7),3405-3415.
    [84](a) Sonntag N. O. V. The Reactions of Aliphatic Acid Chlorides, Chem. Rev. 1953,52 (2),237-416. (b) Smith M. B. Compendium of Organic Synthetic Methods; Wiley:New York,2001; Vol.9, pp 100-116. (c) Overman L. E. Allylic and propargylic imidic esters in organic synthesis, Acc. Chem. Res.1980,13 (7), 218-224. (d) Castro A. M. M. Claisen Rearrangement over the Past Nine Decades, Chem. Rev.2004,104 (6),2939-3002. (e) Sewald N., Jakubke H.-D. Peptides:Chemistry and Biology; Wiley-VCH Verlag GmbH:Weinheim, Germany,2002. (f) Gnanaprakasam B., Milstein D. Synthesis of Amides from Esters and Amines with Liberation of H2 under Neutral Conditions, J. Am. Chem. Soc.2011,133 (6),1682-1685. (g) Hosseini-Sarvari M., Sodagar E., Doroodmand M. M. Nano Sulfated Titania as Solid Acid Catalyst in Direct Synthesis of Fatty Acid Amides, J. Org. Chem.2011,76 (8),2853-2859. (h) Chung S., Uccello D. P., Choi H., et al. A Convenient Synthesis of Amino Acid Arylamides Utilizing Methanesulfonyl Chloride and N-Methylimidazole, Synlett 2011,2072-2074. (i) Yang X., Birman V. B. Acyl Transfer Catalysis with 1,2,4-Triazole Anion, Org. Lett.2009,11 (7),1499-1502. (j) Mao L., Wang Z., Li Y., et al. Trimethylaluminium-Facilitated Direct Amidation of Carboxylic Acids, Synlett 2011,129-133. (k) Hosseini-Sarvari M., Sodagar E., Doroodmand M. M. Nano Sulfated Titania as Solid Acid Catalyst in Direct Synthesis of Fatty Acid Amides, J. Org. Chem.2011,76 (8),2853-2859. (1) Coppinger G. M. Preparations of N,N-Dimethylamides, J. Am. Chem. Soc.1954, 76 (5),1372-1373. (m) Balogh-Hergovich E., Kaizer J., Speier G. Kinetics and mechanism of the Cu(I) and Cu(II) flavonolate-catalyzed oxygenation of flavonol. Functional quercetin 2,3-dioxygenase models, J. Mol. Catal. A:Chem. 2000,159 (2),215-224. (n) Balogh-Hergovich E., Kaizer J., Speier G., et al. Preparation and Oxygenation of (Flavonolato)copper Isoindoline Complexes with Relevance to Quercetin Dioxygenase, Inorg. Chem.2000,39 (19), 4224-4229. (o) Kumagai T., Anki T., Ebi T., et al. An effective synthesis of N,N-dimethylamides from carboxylic acids and a new route from N,N-dimethylamides to 1,2-diaryl-1,2-diketones, Tetrahedron 2010,66 (46), 8968-8973.
    [85](a) Hartwig J. F. Discovery and Understanding of Transition-Metal-Catalyzed Aromatic Substitution Reactions, Synlett 2006,1283-1294. (b) Buchwald S. L Muci A. R. Practical Palladium Catalysts for C-N and C-O Bond Formation, Top. Curr. Chem.2002,219,131-209. (c) Buchwald S. L., Mauger C., Mignani G., et al. Industrial-Scale Palladium-Catalyzed Coupling of Aryl Halides and Amines-A Personal Account, Adv. Synth. Catal.2006,348 (1),23-39. (d) Surry D. S., Buchwald S. L. Biaryl Phosphane Ligands in Palladium-Catalyzed Amination, Angew. Chem. Int. Ed.2008,47 (34),6338-6361. (e) Jiang L., Job G. E. Klapars A., et al. Copper-Catalyzed Coupling of Amides and Carbamates with Vinyl Halides, Org. Lett.2003,5 (20),3667-3669. (f) Ikawa T., Barder T. E. Biscoe M. R., et al. Pd-Catalyzed Amidations of Aryl Chlorides Using Monodentate Biaryl Phosphine Ligands:A Kinetic, Computational, and Synthetic, J. Am. Chem. Soc.2007,129 (43),13001-13007. (g) Yin J., Buchwald S. L. Pd-Catalyzed Intermolecular Amidation of Aryl Halides:The Discovery that Xantphos Can Be Trans-Chelating in a Palladium Complex, J. Am. Chem. Soc.2002,124 (21),6043-6048. (h) Racine E., Monnier F., Vors J.-P., et al. A Simple Copper-Catalyzed Synthesis of Tertiary Acyclic Amides, Org. Lett.2011,13 (11),2818-2821. (i) Frederick M. O., Mulder J. A., Tracey M. R., et al. Copper-Catalyzed C-N Bond Formation Involving sp-Hybridized Carbons. A Direct Entry to Chiral Ynamides via N-Alkynylation of Amides. J. Am. Chem. Soc.2003,125 (9),2368-2369. (j) Hu T., Li C. Synthesis of Lactams via Copper-Catalyzed Intramolecular Vinylation of Amides, Org. Lett.2005,7 (10),2035-2038.
    [86]The Ritter reaction:(a) Ritter J. J., Minieri P. P. A New Reaction of Nitriles. I. Amides from Alkenes and Mononitriles, J. Am. Chem. Soc.1948,70 (12), 4045-4048. The Schmidt reaction:(b) Schmidt, R. F. Uber den Imin-Rest, Ber. Dtsch. Chem. Ges.1924,57,704-706. The Beckmann reaction:(c) Beckmann E. Ber. Dtsch. Chem. Ges.1886,89,988. The Ugi reaction:(d) Ugi I. The a-Addition of Immonium Ions and Anions to Isonitriles Accompanied by Secondary Reactions, Angew. Chem., Int. Ed. Engl.1962,1,8. The Wolff reaction. (e) Wolff L. Justus. Liebigs. Ann. Chem.1912,384,25.
    [87]For selected papers, see:(a) Yasui Y., Takemoto Y. Intra- and intermolecular amidation of C-C unsaturated bonds through palladium-catalyzed reactions of carbamoyl derivatives, Chem. Rev.2008,8 (2),386-394. (b) Beccalli E. M., Broggini G., Martinelli M., et al. C-C, C-O, C-N bond formation on sp2 carbon by Pd(Ⅱ)-catalyzed reactions involving oxidant agents, Chem. Rev.2007,107 (11),5318-5365. (c) Brennfuhrer A., Neumann H., Beller M. Palladium-Catalyzed Carbonylation Reactions of Aryl Halides and Related Compounds, Angew. Chem. Int. Ed.2009,48 (23),4114-4133. (d) Schoenberg A., Bartoletti I., Heck R. F. Palladium-catalyzed carboalkoxylation of aryl, benzyl, and vinylic halides, J. Org. Chem.1974,39 (23),3318-3326. (e) Wu X.-F., Neumann H., Beller M. Development of a Second Generation Palladium Catalyst System for Aminocarbonylation of Aryl Halides with CO and Ammonia, Chem. Asian J.2010,5 (10),2168-2172. (f) Martinelli J. R., Clark T. P., Watson D. A., et al. Palladium-Catalyzed Aminocarbonylation of Aryl Chlorides at Atmospheric Pressure:The Dual Role of Sodium Phenoxide, Angew. Chem., Int. Ed.2007,46 (44),8460-8463. (g) Beller M., Cornils B., Frohning C. D., et al. Progress in hydroformylation and carbonylation Review Article, J. Mol. Catal. A:Chem.1995,104 (1),17-85. (h) Yamamoto A., Kayaki Y., Nagayama K., et al. Chemistry of Monoorganopalladium Complexes Relevant to Catalysis, Synlett 2000,925-937. (i) Cho S. H., Yoo E. J., Bae I., et al. Copper-Catalyzed Hydrative Amide Synthesis with Terminal Alkyne, Sulfonyl Azide, and Water, J. Am. Chem. Soc.2005,127 (46),16046-16047. (j) Knapton D. J., Meyer T. Y. The Regio-and Stereoselective One-Pot Catalytic Preparation of β-Selenyl Acrylamides, Org. Lett.2004,6 (5),687-689.
    [88]Carbamoylsilane:(a) Cunico R. F., Pandey R. K. Palladium-Catalyzed Conversion of Benzylic and Allylic Halides into α-Aryl and β,γ-Unsaturated Tertiary Amides by the Use of a Carbamoylsilane, J. Org. Chem.2005,70 (22), 9048-9050. (b) Cunico R. F., Maity B. C. Direct Carbamoylation of Alkenyl Halides, Org. Lett.2003,5 (26),4947-4949. (c) Cunico R. F., Maity B. C. Direct Carbamoylation of Aryl Halides, Org. Lett.2002,4 (24),4357-4359. Carbamoyl-stannanes:(d) Lindsay C. M., Widdowson D. A. Organic synthesis with carbon monoxide:the synthesis of carbamoylstannanes and aromatic carbamoylation, J. Chem. Soc., Perkin Trans.1 1988,569-573. Formylamides: (e) Wan Y., Alterman M., Larhed M., et al. Formamide as a Combined Ammonia Synthon and Carbon Monoxide Source in Fast Palladium-Catalyzed Aminocarbonylations of Aryl Halides, J. Comb. Chem.2003,5 (2),82-84. (f) Muzart J. N,N-Dimethylformamide:much more than a solvent, Tetrahedron 2009,65(40),8313-8323. (g) Wan Y., Alterman M., Larhed M., et al. Dimethylformamide as a Carbon Monoxide Source in Fast Palladium-Catalyzed Aminocarbonylations of Aryl Bromides, J. Org. Chem.2002,67 (17), 6232-6235. (h) Hosoi K., Nozaki K., Hiyama T. Carbon Monoxide Free Aminocarbonylation of Aryl and Alkenyl Iodides Using DMF as an Amide Source, Org. Lett.2002,4 (24),2849-2851. (i) Ju J., Jeong M., Moon J., et al. S. Aminocarbonylation of Aryl Halides Using a Nickel Phosphite Catalytic System, Org. Lett.2007,9 (22),4615-4618. (j) Jo Y., Ju J., Choe J., et al. The Scope and Limitation of Nickel-Catalyzed Aminocarbonylation of Aryl Bromides from Formamide Derivatives, J. Org. Chem.2009,74 (16),6358-6361. (k) Sawant D. N., Wagh Y. S., Bhatte K. D., et al. Palladium-Catalyzed Carbon-Monoxide-Free Aminocarbonylation of Aryl Halides Using N-Substituted Formamides as an Amide Source, J. Org. Chem.2011,76 (13), 5489-5494.
    [89]For selected papers, see:(a) Bon E., Bigg D. C. H., Bertrand, G. Aluminum Chloride-Promoted Transamidation Reactions, J. Org. Chem.1994,59 915), 4035-4036. (b) Lasri J., Gonzalez-Rosende M. E., Sepulveda-Arques J. Unprecedented Intermolecular Transamidation Reaction of N-Carbamoylmethyl-N'-tosylguanidines, Org. Lett.2003,5 (21),3851-3853. (c) Klapars A., Parris S., Anderson K. W., et al. Synthesis of Medium Ring Nitrogen Heterocycles via a Tandem Copper-Catalyzed C-N Bond Formation-Ring-Expansion Process, J. Am. Chem. Soc.2004,126(11), 3529-3533. (d) Eldred S. E., Stone D. A., Gellman S. H., et al. Catalytic Transamidation under Moderate Conditions, J. Am. Chem. Soc.2003,125 (12), 3422-3423. (e) Stephenson N. A., Zhu J., Gellman S. H., et al. Catalytic Transamidation Reactions Compatible with Tertiary Amide Metathesis under Ambient Conditions, J. Am. Chem. Soc.2009,131 (29),10003-10008.(f) Dineen T. A., Zajac M. A., Myers A. G. Efficient Transamidation of Primary Carboxamides by in Situ Activation with N,N-Dialkylformamide Dimethyl Acetals, J. Am. Chem. Soc.2006,128 (50),16406-16409. (g) Zhang M., Imm S., Bahn S., et al. Efficient Copper(Ⅱ)-Catalyzed Transamidation of Non-Activated Primary Carboxamides and Ureas with Amines, Angew. Chem. Int. Ed.2012,51 (16),3905-3909. (h) Nguyen T. B., Sorres J., Tran M. Q., et al. Boric Acid:A Highly Efficient Catalyst for Transamidation of Carboxamides with Amines, Org. Lett.2012,14 (12),3202-3205.
    [90]For pioneering papers, see:(a) Naota T., Murahashi S. Ruthenium-Catalyzed Transformations of Amino Alcohols to Lactams, Synlett 1991, (10) 693-694. (b) Gunanathan C., Ben-David Y., Milstein D. Direct Synthesis of Amides from Alcohols and Amines with Liberation of H2, Science 2007,317 (5839),790-792. (c) Wang Y., Zhu D. P., Tang L., et al. Highly Efficient Amide Synthesis from Alcohols and Amines by Virtue of a Water-Soluble Gold/DNA Catalyst, Angew. Chem. Int. Ed.2011,50 (38),8917-8921; (d) Yoo W.-J., Li C.-J. Highly Efficient Oxidative Amidation of Aldehydes with Amine Hydrochloride Salts, J. Am. Chem. Soc.2006,128 (40),13064-13065. (e) Liu Z., Zhang J., Chen S., et al. Cross Coupling of Acyl and Aminyl Radicals:Direct Synthesis of Amides Catalyzed by Bu4NI with TBHP as an Oxidant, Angew. Chem. Int. Ed.2012,51 (13),3231-3235. (f) Zhang C., Jiao N. Dioxygen Activation under Ambient Conditions:Cu-Catalyzed Oxidative Amidation-Diketonization of Terminal Alkynes Leading to a-Ketoamides, J. Am. Chem. Soc.2010,132 (1),28-29. (g) Zhang C., Xu Z., Zhang L., et al. Copper-Catalyzed Aerobic Oxidative Coupling of Aryl Acetaldehydes with Anilines Leading to a-Ketoamides,Angew. Chem. Int. Ed.2011,50 (47),11088-11092. (h) Zhang C. Zong X., Zhang L., et al. Copper-Catalyzed Aerobic Oxidative Cross-Dehydrogenative Coupling of Amine and α-Carbonyl Aldehyde:A Practical and Efficient Approach to a-Ketoamides with Wide Substrate Scope, Org. Lett.2012,14(13),3280-3283.
    [91]For selected examples, see:(a) Pinto A., Neuville L., Retailleau P., et al. Synthesis of 3-(Diarylmethylenyl)oxindole by a Palladium-Catalyzed Domino Carbopalladation/C-H Activation/C-C Bond-Forming Process, Org. Lett.2006, 8,(21),4927-4930. (b) Tang S., Peng P., Pi S.-F., et al. Sequential Intermolecular Aminopalladation/ortho-Arene C-H Activation Reactions of N-Phenylpropiolamides with Phthalimide, Org. Lett.2008,10,(6),1179-1182. (c) Tang B.-X., Tang D.-J., Tang S., et al. Selective Synthesis of Spiro[4,5]trienyl Acetates via an Intramolecular Electrophilic ipso-Iodocyclization Process, Org. Lett.2008,10,(6),1063-1066.
    [92](a) Ye X., Xie C., Pan Y., et al. Copper-Catalyzed Synthesis of a-Amino Imides from Tertiary Amines:Ugi-Type Three-Component Assemblies Involving Direct Functionalization of sp3 C-Hs Adjacent to Nitrogen Atoms, Org. Lett. 2010,12 (19),4240-4243. (b) Gephart III R. T., Huang D. L., Aguila M. J. B., et al. Catalytic C-H Amination with Aromatic Amines, Angew. Chem. Int. Ed. 2012,51(26),6488-6492.
    [93](a) Graham W., Roberts, J. B. Intravenous colchicine in the management of gouty arthritis, Ann. Rheum. Dis.1953,12 (1),16-9. (b) Cocco G., Chu D. C. C., Pandolfi S. Sterile Osteitis and Suppurative Arthritis Associated with Pannus Responding to Colchicine, Eur. J. Intern. Med.2010,21 (6),503-508. (c) Van Tamelen E. E., Spencer Jr. T. A., Allen Jr. D. S., et al. The Total Synthesis of Colchicine, J. Am. Chem. Soc.1959,81(23),6341-6342. (d) Patil A. D., Freyer A. J., Killmer L., et al. Frondosins, five new sesquiterpene hydroquinone derivatives with novel skeletons from the sponge Dysidea frondosa:Inhibitors of interleukin-8 receptors, Tetrahedron 1997,53 (14),5047-5060. (e) Trost B. M., Hu Y., Horne D. B. Total synthesis of (+)-frondosin A. Application of the Ru-catalyzed [5+2] cycloaddition, J. Am. Chem. Soc.2007,129 (38), 11781-11790. (f) Bollinger P., Cooper P., Gubler H. U., et al. (Benzo[4,5]cyclohepta[1,2-b]thiophen-4-ylidene)acetic Acids:Novel Non-ulcerogenic Antiinflammatory Agents, Helv. Chim. Acta 1990,73 (5), 1197-1204. (g) Schnyder J., Bollinger P., Payne T. Inhibition of interleukin-1 release by IX 207-887, Agents Actions 1990,30 (3-4),350-362. (h) Stratmann K., Moore R. E., Bonjouklian R., et al. Welwitindolinones, Unusual Alkaloids from the Blue-Green Algae Hapalosiphon welwitschii and Westiella intricata. Relationship to Fischerindoles and Hapalinodoles, J. Am. Chem. Soc.1994,116 (22),9935-9942. (i) Avendano C., Menedez J. C. Synthetic Studies on N-Methylwelwitindolinone C Isothiocyanate (Welwistatin) and Related Substructures, Curr. Org. Synth.2004,1,65-82. (j) The Chemistry of Heterocyclic Compounds; Weissberger A., Taylor, E. C. Eds.; Wiley:New York, 1983; 25 (4),232-239. (k) Danieli B., Palmisano G. in The Alkaloids, Brossi, A. Ed.; Academic Press:Orlando, vol.27,1986, pp 1-130. (1) Zhang H., Yue J.-M. Indole Alkaloids from the Whole Plants of Ervatamia officinalis, Helv. Chim. Acta 2005,88(9),2537-2542. (m) Hong B.-C., Jiang Y.-F., Chang Y.-L., et al. Synthesis and Cytotoxicity Studies of Cyclohepta[b]indoles, Benzo[6,7]cyclohepta[1,2-b]indoles, Indeno[1,2-b]indoles, and Benzo[a]carbazoles, J. Chin. Chem. Soc.2006,53(3),647-662. (n) Bourderioux A., Routier S., Beneteau V., et al. Synthesis of benzo analogs of oxoarcyriaflavins and caulersine, Tetrahedron 2007,63 (38),9465-9475. For reviews:(o) Battiste M. A., Pelphrey P. M., Wright D. L. Nitrogen-stabilized Oxyallyl Cation [4+3] Cycloadditions Emplyoying [sic] Chiral Allenamides, Chem. Eur. J.2006,12 (13),3438-3447. (p) Butenschon H. Seven-Membered Rings by Cyclization at Transition Metals:[4+3], [3+2+2], [5+2], Angew. Chem. Int. Ed.2008,47 (29),5287-5290.
    [94]For selected reviews, see:(a) Vollhardt K. P. C. Cobalt-Mediated [2+2+2]-Cycloadditions:A Maturing Synthetic Strategy [New Synthetic Methods, Angew. Chem. Int. Ed. Engl.1984,23 (8),539-556. (b) Katritzky A. R., Dennis N. Cycloaddition reactions of heteroaromatic six-membered rings, Chem. Rev.1989,89 (4),827-861. (c) Advances in Cycloaddition; JAI Press: Greenwich, CT,1988-1999, Vols.1-6. (d) Carruthers W. Cycloaddition Reactions in Organic Synthesis; Tetrahedron Organic Chemistry Series; Pergamon:Elmsford, NY,1990. (e) Lautens M., Klute W., Tam W. Transition Metal-Mediated Cycloaddition Reactions, Chem. Rev.1996,96(1),49-92. (f) Dell C. P. Cycloadditions in synthesis, Contemp. Org. Synth.1997,4 (2), 87-117. (g) Yet L. Chem. Rev. Metal-Mediated Synthesis of Medium-Sized Rings,2000,100 (8),2963-3008. (h) Cycloaddition Reactions in Organic Synthesis; Kobayashi S., J(?)rgensen K. A. Eds.; Wiley-VCH:Weinheim,2002. (i) Battiste M. A., Pelphrey P. M., Wright D. L. The Cycloaddition Strategy for the Synthesis of Natural Products Containing Carbocyclic Seven-Membered Rings, Chem. Eur. J.2006,12 (13),3438-3447. (j) Heller B., Hapke M. The fascinating construction of pyridine ring systems by transition metal-catalysed [2+2+2] cycloaddition reactions, Chem. Soc. Rev.2007,36(7),1085-1094. (k) Lopez F., Mascarenas J. L. Recent developments in gold-catalyzed cycloaddition reactions, Beilstein J. Org. Chem.2011,7,1075-1094. (1) Pellissier H. Recent Developments in the [5+2]Cycloaddition, Adv. Synth. Catal. 2011,353(2-3),189-218.
    [95]For special reviews on the [4+3] cycloaddition, see:(a) Hoffmann H. M. R. The Cycloaddition of Allyl Cations to 1,3-Dienes:General Method for the Synthesis of Seven-Membered Carbocycles. New Synthetic Methods (40), Angew. Chem., Int. Ed. Engl.1984,23 (1),1-19. (b) Rigby J. H., Pigge F. C. Application of Intramolecular Carbenoid Reactions in Organic Synthesis, Org. React.1997,51, 351-478. (c) Harmata M. Exploration of Fundamental and Synthetic Aspects of the Intramolecular 4□+□3 Cycloaddition Reaction, Acc. Chem. Res.2001,34 (7),595-605. (d) Harmata M., Rashatasakhon P. Cycloaddition reactions of vinyl oxocarbenium ions, Tetrahedron,2003,59 (14),2371-2395. (e) Harmata M. The (4+3)-cycloaddition reaction:simple allylic cations as dienophiles, Chem. Commun.2010, (47),8886-8903. (f) Lohse A. G., Hsung R. P. (4+3) Cycloaddition Reactions of Nitrogen-Stabilized Oxyallyl Cations, Chem. Eur. J. 2011,17(14),3812-3833.
    [96]For representative papers, see:(a) Fort A. W. Capture of a Favorskii Intermediate by Furan, J. Am. Chem. Soc.1962,84 (24),4979-4981. (b) Olah G. A., Liang G. Stable carbocations. Cycloheptenyl, cyclooctenyl, and cyclononenyl cations, J. Am. Chem. Soc.1972,949 (18),6434-6441. (c) Hoffmann H. M. R. Syntheses of Seven-and Five-Membered Rings from Allyl Cations, Angew. Chem. Int. Ed. Engl.1973,12 (10),819-835. (d) Fierz G., Chidgey R., Hoffmann H. M. R. A New Tropinone Synthesis, Angew. Chem., Int. Ed. Engl.1974,13 (6),410-411. (e) Hill A. E., Hoffmann H. M. R. One stage synthesis of bicyclo[3.2.2]nona-6,8-dien-3-ones. Silver trifluoroacetate induced reaction of 2-methoxyallyl bromide with arenes, J. Am. Chem. Soc.1974,96 (14),4597-4603. (f) Bingham R. C., Dewar M. J. S., Lo, D. H. Ground states of molecules. XXVII. MINDO/3 calculations for carbon, hydrogen, oxygen, and nitrogen species, J. Am. Chem. Soc.1975,97 (6),1302-1306. (g) Takaya H., Makino S., Hayakawa Y. Noyori, R. Carbon-carbon bond formation promoted by transition metal carbonyls.17. Reactions of polybromo ketones with 1,3-dienes in the presence of iron carbonyls. New 3+4 cyclocoupling reaction forming 4-cycloheptenones, J. Am. Chem. Soc.1978,100 (6),1765-1777. (h) Giguere R. J., Rawson D. I., Hoffmann H. M. R. 9,10-Dihydro-9,10-propanoanthracenes, Synthesis 1978, (2),902-905. (i) Sato T., Watanabe M., Noyori R. Synthesis of pseudouridines modified at the C-5 position, Tetrahedron Lett.1978,19 (45),4403-4406. (j) White J. D., Fukuyama Y. Stereocontrolled synthesis of the Prelog-Djerassi lactone, J. Am. Chem. Soc. 1979,101 (1),226-228. (k) Henning R., Hoffmann H. M. R. A novel approach to complex terpenoid methylenecyclohexanes, Tetrahedron Lett.1982,23 (22), 2305-2308; (1) Mann J., Wilde P. D., Finch M. W. Rearrangements of aryl-8-oxabicyclo[3.2.1]octenones:synthesis of novel biaryls and 1-aryl-3-furylpropanones, J. Chem. Soc., Chem. Commun.1985, (21), 1543-1544. (m) West F. G., Hartke-Karger C., Koch D. J., et al. Intramolecular [4+3]-cycloadditions of photochemically generated oxyallyl zwitterions:a route to functionalized cyclooctanoid skeletons, J. Org. Chem.1993,58 (24), 6795-6803. (n) Harmata M., Elahmad S., Barnes C. L. Intramolecular 4+3 cycloadditions. Model studies toward the synthesis of ingenanes, Tetrahedron Lett.1995,36 (9),1397-1400. (o) Harmata M., Elomari S., Barnes C. L. Intramolecular 4+3 Cycloadditions. Cycloaddition Reactions of Cyclic Alkoxyallylic and Oxyallylic Cations, J. Am. Chem. Soc.1996,118 (12), 2860-2871. (p) Trillo B., Lopez F., Gulias M., et al. Platinum-catalyzed intramolecular [4C+3C] cycloaddition between dienes and allenes, Angew. Chem. Int. Ed.2008,47 (5),951-954. (q) Acharya A., Eickhoff J. A., Jeffrey C. S. Intramolecular Aza-[4+3] Cycloaddition Reactions of a-Halohydroxamates, Synthesis 2013,45 (13),1825-1836. (r) Davies H. M. L., Dai X. Lewis Acid Induced Tandem Diels-Alder Reaction/Ring Expansion as an Equivalent of a [4 +3] Cycloaddition, J. Am. Chem. Soc.2004,126 (9),2692-2693. (s) Reddy R. P., Davies H. M. L. Asymmetric Synthesis of Tropanes by Rhodium-Catalyzed [4+3] Cycloaddition, J. Am. Chem. Soc.2007,129 (34),10312-10313. (t) Lian Y., Miller L. C., Born S., et al. Catalyst-Controlled Formal [4+3] Cycloaddition Applied to the Total Synthesis of (+)-Barekoxide and (-)-Barekol, J. Am. Chem. Soc.2010,132 (35),12422-12425. (u) Lohse A. G., Hsung R. P., Leider M. D., et al. Developing a Diastereoselective Intramolecular [4+3] Cycloaddition of Nitrogen-Stabilized Oxyallyl Cations Derived from N-Sulfonyl-Substituted Allenamides, J. Org. Chem.2011,76 (9), 3246-3257, and references cited therein. (v) Zhang J., Li L., Wang Y., et al. A Novel, Facile Approach to Frondosin B and 5-epi-Liphagal via a New [4+ 3]-Cycloaddition, Org. Lett.2012,14 (17),4528-4530. (w) Han X., Li H. Hughes R. P., et al. Gallium(III)-catalyzed three-component (4+3) cycloaddition reactions, Angew. Chem. Int. Ed.2012,51(41),10390-10393.
    [97]Trost B. M., Yamazaki S. Pd-Catalyzed Cycloaddition of Vinylcyclopentenes with Trimethylenemethane:Substituent Effect on [4+3] vs [3+2] Selectivity, Chem. Lett.1994, (12),2245-2248.
    [98]For selected papers on the synthesis of indole-containing seven-membered rings:(a) Rice L. M., Hertz E., Freed M. E. Antidepressant Agents. Derivatives of 2,3-Polymethyleneindolesl, J. Med. Chem.1964,7 (3),313-319. (b) Perkin W. H., Plant S. G. P. CCCXLII.-Stereoisomerism in polycyclic systems. Part Ⅴ, J. Chem. Soc.1928,2583-2590; (c) Joseph B., Cornec O., Merour J.-Y. Intramolecular Heck reaction:Synthesis of benzo [4,5]cyclohepta[b]indole derivatives, Tetrahedron 1998,54 (27),7765-7776. (d) Kavitha C., Rajendra Prasad K. J. Tetracyclic compounds from indolo [2,3-b] cycloheptan-1-ones. Synthesis of isoxazolo[4',3':6,7] cyclohepta[b]indoles, Heterocycl. Commun. 1999,5 (3),481-488. (e) Kupai K., Banoczi G., Hornyanszky, G., et al. A convenient method for the preparation of cyclohepta[b]indole derivatives, Cent. Eur. J. Chem.2012,10 (1),91-95. (f) Yamuna E., Zeller M., Adero P. O., et al. Synthesis of thieno-and benzocyclohepta [b] indoles:Gewald reaction and regioselective cycloaddition of acetylenic esters, ARKIVOC 2012,326-342. (g) Dange N. S., Hong B.-C., Lee C.-C., et al. One-Pot Asymmetric Synthesis of Seven-Membered Carbocycles Cyclohepta[b]indoles via a Sequential Organocatalytic Michael/Double Friedel-Crafts Alkylation Reaction, Org. Lett. 2013,15 (15),3914-3917. (h) Kusama H., Sogo H., Saito K., et al. Construction of Cyclohepta[b]indoles via Platinum-Catalyzed Intermolecular Formal [4+3]-Cycloaddition Reaction of α,β-Unsaturated Carbene Complex Intermediates with Siloxydienes, Synlett 2013,24 (11),1364-1370. (i) Shu D., Song W., Li X, et al. Rhodium-and Platinum-Catalyzed [4+3] Cycloaddition with Concomitant Indole Annulation:Synthesis of Cyclohepta[b]indoles, Angew. Chem. Int. Ed.2013,52 (11),3237-3240. (j) Tang R.-Y., Guo X.-K., Xiang J.-N., et al. Palladium-Catalyzed Synthesis of 3-Acylated Indoles Involving Oxidative Cross-Coupling of Indoles with a-Amino Carbonyl Compounds, J. Org. Chem. 2013,78 (22),11163-11171.
    [99]Tang R.-Y., Li J.-H. PdC12-Cataylzed Domino Reactions of 2-Alkynylbenzaldehydes with Indoles:Synthesis of Fluorescent 5H-Benzo[b]carbazol-6-yl Ketones, Chem. Eur. J.2010,16 (16),4733-4738.
    [100]For selected papers:(a) Gribble G. W. Recent developments in indole ring synthesis-methodology and applications, J. Chem. Soc. Perkins Trans 1,2000, 1045-1075. (b) Knolker H-J., Reddy K. R. Isolation and Synthesis of Biologically Active Carbazole Alkaloids, Chem. Rev.2002,102 (11), 4303-4428. (c) Kawasaki T., Higuchi K. Simple indole alkaloids and those with a nonrearranged monoterpenoid unit, Nat. Prod. Rep.2005,22 (6),761-793. (d) Bennasar M. L., Vidal B., Bosch J. First total synthesis of the indole alkaloid ervitsine. A straightforward, biomimetic approach, J. Am. Chem. Soc.1993,115 (12),5340-5341. (e) Gribble G. W. Approaches to the Synthesis of the Antitumor Pyridocarbazole Alkaloids, Synlett,1991, (5),289-300. (f) Gribble G. W. In The Alkaloids; Brossi, A., Ed.; Academic Press, Inc.:San Diego,1990; Vol.39, p 239. (g) Pedersen J. M., Bowman W. R., Elsegoog M. R. J., et al. Synthesis of Ellipticine:A Radical Cascade Protocol to Aryl-and Heteroaryl-Annulated[b]carbazoles, J. Org. Chem.2005,70(25),10615-10618. (h) Kuo P. L., Hsu Y. L., Kuo Y. C., et al. The mechanism of ellipticine-induced apoptosis and cell cycle arrest in human breast MCF-7 cancer cells, Cancer Lett.2005,223 (2),293-301. (i) Stiborova M., Breuer A., Aimova D., et al. DNA adduct formation by the anticancer drug ellipticine in rats determined by 32P postlabeling, Int. J. Cancer 2003,107 (6),885-890. (j) Raveh A., Carmeli S. Antimicrobial Ambiguines from the Cyanobacterium Fischerella sp. Collected in Israel, J. Nat. Prod.2007,70 (2),196-201. (k) Mo S., Krunic A., Chlipala G., et al. Antimicrobial Ambiguine Isonitriles from the Cyanobacterium Fischerella ambigua, J. Nat. Prod.2009,72 (5),894-899. (1) Mo S., Krunic A., Santarsiero B. D., Hapalindole-related alkaloids from the cultured cyanobacterium Fischerella ambigua, Phytochemistry 2010,71 (17-18), 2116-2123. (m) Yamuna E., Kumar R. A., Zeller M., et al. Synthesis, antimicrobial, antimycobacterial and structure-activity relationship of substituted pyrazolo-, isoxazolo-, pyrimido- and mercaptopyrimidocyclohepta[b]indoles, Eur. J. Med. Chem.2012,47 (1), 228-238.
    [101]For selected reviews and papers, see:(a) Song Y., Chen Z., Li H. Advances in Coumarin-Derived Fluorescent Chemosensors for Metal Ions, Curr. Org. Chem. 2012,16(22),2690. (b) Chen X., Pradhan T., Wang F., et al. Fluorescent Chemosensors Based on Spiroring-Opening of Xanthenes and Related Derivatives, Chem. Rev.2012,112 (3),1910-1956. (c) Shi B., Zhang P., Wei T., et al. A reversible fluorescent chemosensor for mercury ions based on 1H-imidazo[4,5-b]phenazine derivatives, Tetrahedron 2013,69 (37),7981-7987. (d) Wang H.-F., Wu S.-P. Highly selective fluorescent sensors for mercury(II) ions and their applications in living cell imaging, Tetrahedron 2013,69 (8), 1965-1969.
    [102]For reviews:(a) Nolan E. M., Lippard S. J. Tools and Tactics for the Optical Detection of Mercuric Ion, Chem. Rev.2008,108 (9),3443-3480. (b) Zhang J. F., Kim J. S. Small-Molecule Fluorescent Chemosensors for Hg2+ Ion, Anal. Sci. 2009,25(11),1271-1281. (c) Shi H.-F., Zhao Q., An Z. et al. Fluorescent Probes for Mercury Ion Based on Small Molecules, Progress in Chem.2010,22 (9),1741-1752.
    [103](a) Ettari R., Nizi E., Francesco M. E. D., et al. Development of Peptidomimetics with a Vinyl Sulfone Warhead as Irreversible Falcipain-2 Inhibitors, J. Med. Chem.2008,51(4),988-996. (b) Mahesh U., Liu K. Panicker R. C., et al. Activity-based fingerprinting and inhibitor discovery of cysteine proteases in a microarray, Chem. Commun.2007,15(15),1518-1520. (c) Forristal I. J. The chemistry of α,β-unsaturated sulfoxides and sulfones, Sulfur Chem.2005,26(2),163-185. (d) Wang G., Mahesh U., Chen G. Y. J., et al. Synthetic Efforts toward the C22-C36 Subunit of Halichondrin B Utilizing Local and Imposed Symmetry, Org. Lett.2003,5 (5),737-740. (e) Pfaendler H. R., Weishaupt R., Medicus C. Synthesis and biological activity of novel penem sulfoxides and sulfones, Bioorg. Med. Chem. Lett.1997,7 (17),2217-2222. (f) Wong S. S. Y., Brant M. G., Barr C., et al. Dipolar addition to cyclic vinyl sulfones leading to dual conformation tricycles, Beilstein J. Org. Chem.2013,9, 1419-1925. (g) Huang Z., Schneider K. C., Benner S. A. Building blocks for oligonucleotide analogs with dimethylene sulfide, sulfoxide, and sulfone groups replacing phosphodiester linkages, J. Org. Chem.1991,56(12),3869-3882. (h) Konduru N. K., Dey S., Sajid M., et al. Synthesis and antibacterial and antifungal avaluation of some chalcone based sulfones and bisulfones, Eur. J. Med. Chem.2013,59 (1),23-30.
    [104](a) El-Awa A., Noshi M. N., Jourdin X. M., et al. Evolving Organic Synthesis Fostered by the Pluripotent Phenylsulfone Moiety, Chem. Rev.2009,109 (6), 2315-2349. (b) Meadows D. C., Gervay-Hague J. Vinyl sulfones:synthetic preparations and medicinal chemistry applications, Med. Res. Rev.2006,26 (6), 793-814. (c) Najera C. Yus M. Desulfonylation reactions:Recent developments, Tetrahedron 1999,55 (35),10547-10850. (d) Nielsen M., Jacobsen C. B., Holub N., et al. Asymmetric Organocatalysis with Sulfones, Angew. Chem. Int. Ed. 2010,49 (15),2668-2679. (e) Zhu Q., Lu Y. Chiral Amine-Mediated Asymmetric Conjugate Additions to Vinyl Sulfones, Aust. J. Chem.2009,62, 951-955. (f)Alba A. R., Companyo X., Rios R. Sulfones:new reagents in organocatalysis, Chem. Soc. Rev.2010,39 (6),2018-2033.
    [105](a) Simpkins N. S. The chemistry of vinyl sulphones, Tetrahedron 1990,46 (20),6951-6984. (b)Simpkins N. S. Sulfones in Organic Synthesis; Pergamon Press:Oxford,1993. (c) Fuchs P. L., Braish T. F. Multiply convergent syntheses via conjugate-addition reactions to cycloalkenyl sulfones, Chem. Rev.1986,86 (5),903-917.
    [106](a) Benedetti F., Fabrissin S., Risaliti A. Nucleophilic addition to styryl sulphones. part II. Regio-and stereochemistry of the addition of enamines from 4-substituted cyclohexanones, Tetrahedron.1984,40 (6),977-982. (b) Lucchi O. D., Pasquato, L., Modena G. 1,1-Bis(benzenesulfonyl)ethylene:A synthetic equivalent of ethylene 1,2-dipole, Tetrahedron Lett.1984,25(33),3643-3646. (c) Risaliti A., Fatutta S., Forchiassin M. Vinylamines-Ⅶ:More substituted alkylated enamines from cyclohexanone enamines and phenyl vinyl sulfone, Tetrahedron 1967,23 (3),1451-1459.
    [107](a) Pinheiro S., Guingant A., Desmaele D., et al. Asymmetric Michael addition of chiral enaminoesters to phenyl vinyl sulfone and 1,1-bis(phenylsulfonyl)ethylene, Tetrahedron:Asymmetry 1992,3 (8),1003. (b) Desmaele D., Delarue-Cochin S., Cave C., et al. Asymmetric Michael Reaction Involving Chiral Imines/Secondary Enamines:□ Stereocontrolled Synthesis of 2,2-Disubstituted Tetrahydrothiophen-3-ones, Org. Lett.2004,6(14), 2421-2424.
    [108]Use of phenyl vinyl sulfones as the Michael acceptors:(a) Li H.-M., Song J., Liu X.-F., et al. Catalytic Enantioselective C-C Bond Forming Conjugate Additions with Vinyl Sulfones, J. Am. Chem. Soc.2005,127 (25),8948-8949. (b) d'Angelo J., Revial G. Asymmetric Michael addition of chiral imines to phenylvinylsulfone:Preparation of key chiral building blocks for the synthesis of Aspidosperma and Hunteria alkaloids. Terahedron:Asymmetry 1991,2 (3), 199-202.
    [109]Use of 1,1-bis(benzenesulfonyl)ethylene as the Michael acceptors:(a) Moteki S. A., Xu S., Arimitsu S., et al. Design of Structurally Rigid trans-Diamine-Based Tf-Amide Organocatalysts with a Dihydroanthracene Framework for Asymmetric Conjugate Additions of Heterosubstituted Aldehydes to Vinyl Sulfones, J. Am. Chem. Soc.2010,132 948),17074-17076. (b) Alba A.-N. R., Companyo X., Valero G., et al. Enantioselective Organocatalytic Addition of Oxazolones to 1,1-Bis(phenylsulfonyl)ethylene:A Convenient Asymmetric Synthesis of Quaternary a-Amino Acids, Chem. Eur. J. 2010,16(18),5354-5361. (c) Zhu Q., Lu Y. Chiral primary amine mediated conjugate addition of branched aldehydes to vinyl sulfone:asymmetric generation of quaternary carbon centers, Chem. Commun.2010,46 (14), 2235-2237. (d) Liu T.-Y., Long J., Li B.-J., et al. Enantioselective construction of quaternary carbon centre catalysed by bifunctional organocatalyst, Org. Biomol. Chem.2006,4 (11),2097-2099. (e) Quintard A., Belot S., Marchal E. et al. Aminal-Pyrrolidine Organocatalysts-Highly Efficient and Modular Catalysts for a-Functionalization of Carbonyl Compounds, Eur. J. Org. Chem. 2010, (5),927-936. (f) Quintard A., Alexakis A. Organocatalytic Addition on 1,2-Bis(sulfone)vinylenes Leading to an Unprecedented Rearrangement, Chem. Eur. J.2009,15 (42),11109-11113. (g) Sulzer-Mosse S., Alexakis A., Mareda J., et al. Enantioselective Organocatalytic Conjugate Addition of Aldehydes to Vinyl Sulfones and Vinyl Phosphonates as Challenging Michael Acceptors, Chem. Eur. J.2009,15 (13),3204-3220. (h) Landa A., Maestro M., Masdeu C., et al. Highly Enantioselective Conjugate Additions of Aldehydes to Vinyl Sulfones, Chem. Eur. J.2009,15 (7),1562-1565. (i) Mosse S. Alexakis A. First Organocatalyzed Asymmetric Michael Addition of Aldehydes to Vinyl Sulfones, Org. Lett.2005,7 (20),4361-4364.
    [110](a) Rice G. T., White M. C. Allylic C-H Amination for the Preparation of syn-1,3-Amino Alcohol Motifs, J. Am. Chem. Soc.2009,131 (33), 11707-11711. (b) Reed S. A., Mazzotti A. R., White M. C. A Catalytic, Br(?)nsted Base Strategy for Intermolecular Allylic C-H Amination, J. Am. Chem. Soc. 2009,131 (33),11701-11706. (c) Delcamp J. H., Brucks A. P., White M. C. A General and Highly Selective Chelate-Controlled Intermolecular Oxidative Heck Reaction, J. Am. Chem. Soc.2008,130 (34),11270-11271. (d) Song R.-J., Liu Y., Liu Y.-Y., et al. Palladium-Catalyzed Conjugate Addition toElectron-Deficient Alkynes with Benzenesulfinic AcidDerived from 1,2-Bis(phenylsulfonyl)ethane:Selective Synthesis of (E)-Vinyl Sulfones, J. Org. Chem.2011,76(9),1001-1004.
    [111]Wang Z. Q., Liang Y., Lei Y., et al. Iron-catalyzed annulations of 2-(2-alkynyl)phenoxy)-1-arylethanones leading to substituted naphthalen-1-ols, Chem. Commun.2009, (35),5242-5244.
    [112]Guo X.-W., Li W.-J., Li Z.-P. Iron-Catalyzed ortho-Selective Functionalization of Phenols:A Straightforward Strategy towards the 2'-Hydroxyphenyl-1,2-dione Skeleton, Eur. J. Org. Chem.2010, (30), 5787-5790.
    [113]Mali R. S., Jagtap P. G., Tilve S. G. Convenient synthesis of naturally occurring methoxyphthalides and hydroxy phthalides, Synth. Commun.1990,20 (17),2641-2652.
    [114]Denmark S. E., Butler C. R. Vinylation of Aromatic Halides Using Inexpensive Organosilicon Reagents. Illustration of Design of Experiment Protocols, J. Am. Chem. Soc.2008,130 (11),3690-3704.
    [115]Cuyegkeng M. A., Mannschreck A. Liquid Chromatography on Triacetycellulose,14 Chromatographic Separation of Enantiomers and Barriers to Enantiomerization of Axially Chiral Aromatic Carboxamides, Chem. Ber. 1987,120 (5),803-809.
    [116]Hanada S., Tsutsumi E., Motoyama Y, et al. Practical Access to Amines by Platinum-Catalyzed Reduction of Carboxamides with Hydrosilanes:Synergy of Dual Si-H Groups Leads to High Efficiency and Selectivity, J. Am. Chem. Soc. 2009,131 (41),15032-15040.
    [117]Weiwer M., Olivero S., Dunach E. Product selectivity in the electroreduction of thioesters, Tetrahedron 2005,61 (7),1709-1714.
    [118]Sunada Y., Kawakami H., Imaoka T., et al. Hydrosilane Reduction of Tertiary Carboxamides by Iron Carbonyl Catalysts, Angew. Chem. Int. Ed.2009,48 (50), 9511-9514.
    [119]Lee D.-H., Taher A., Hossain S., et al. An Efficient and General Method for the Heck and Buchwald-Hartwig Coupling Reactions of Aryl Chlorides, Org. Lett.2011,13 (20),5540-5543.
    [120]Biswas K., Woodward S. Stereoselective 1,4-addition of Grignard reagents to α,β-enamides using a combined chiral auxiliary-catalyst approach, Tetrahedron: Asymmetry 2008,19 (14),1702-1708.
    [121]Concellon J. M., Rodriguez-Solla H., Concellon C. Deuteration of α,β-acetylenic esters, amides, or carboxylic acids without using deuterium gas: synthesis of 2,2,3,3-tetradeuterioesters, amides, or acids, Tetrahedron Lett. 2004,45 (10),2129-2131.
    [122]Zhou M.-B., Wei W.-T., Xie Y.-X., et al. Palladium-catalyzed cross-coupling of electron-poor terminal alkynes with arylboronic acids under ligand-free and aerobic conditions, J. Org. Chem.2010,75 (16),5635-5642.
    [123]Tang J.-S., Xie Y.-X., Wang Z.-Q., et al. Efficient Palladium-Catalyzed Suzuki-Miyaura Cross-Coupling of Iodoethynes with Arylboronic Acids under Aerobic Conditions, Synthesis 2011,(17),2789-2795.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700