固体酸催化剂的核磁共振研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文围绕固体核磁共振(SSNMR)技术在多相催化领域中的应用这一主题,在一些固体酸催化体系的合成、修饰以及NMR表征方面,进行了一些基础性的研究。
     以Y型沸石前驱体与有机硅氧烷为硅源,通过共水解-缩聚的方法合成了具有高水热稳定性的巯基(-SH)和磺酸基(-SO_3H)官能化的MSU型介孔硅基材料。Y型沸石前驱体主要由硅酸钠制备而来,这样一种合成途径既提高了有机-无机复合介孔硅基材料的水热稳定性,又降低了材料的合成成本。
     采用四氯化锡(SnCl_4)和钼酸铵为原料,通过浸渍法合成了在氧化锡上担载钼物种的(MoO_3/SnO_2)催化剂,这是一种在工业上有着重要应用的氧化催化剂,同时又是一种固体酸。
     应用固体核磁共振技术、探针分子技术和理论计算方法,结合XRD、N_2吸脱附等手段,对磺酸基官能化的介孔硅基材料(MSU-SO_3H)的结构和表面酸性进行了详细的研究。研究结果表明,磺酸基被成功引入到介孔MSU的骨架上,当有机硅组分MPTMS的含量低于30%时,MSU的介孔结构能得到保持。我们合成的MSU-SO3H催化剂具有纯的Brφnsted酸性,酸强度和酸浓度略低于微孔的HZSM-5分子筛。鉴于其介孔结构、相对高的热稳定性和较强的酸性,磺酸基官能化的MSU材料有望应用于一些涉及较大分子的酸催化过程。
     应用固体核磁共振技术、探针分子技术和理论计算方法,对钼组分与SnO_2间的相互作用、MoO_3/SnO_2催化体系的结构和一些重要性质进行了系统研究。结果表
This dissertation is concentrated on the applications of solid-state NMR techniques to heterogeneous catalysis. Some fundamental studies on synthesis, modifications and characterizations of solid acid catalyst matrials have been carried out.
     Using zeolite Y seeds and organotrialkoxysilane as silica sources, hydrothermally stable thiol- and sulfonic functionalized mesoporous silicas of MSU structure were prepared by a one-pot synthesis involving co-condensation of organotrialkoxysilane and tetraalkoxysilane and post oxidation. It should be noted that inexpensive reactant, mainly including sodium silicate and sodium aluminate, used in the preparation of zeolite Y seeds provided a low-cost route for the synthesis of hydrothermally stable organo-functionalized mesoporous silicas.
     Tin oxide supported molybdena (MoO_3/SnO_2) was prepared by impregnation process using SnCl4.xH2O and ammonium heptamolybdate as initial materials. MoO_3/SnO_2 is a widely used catalyst for oxidation reactions, and a solid acid as well.
     The structure and acidity of sulfonic group functionalized mesoporous materials with MSU structure were characterized in detail using multinuclear NMR technique in combination with other approaches such as XRD, N_2 adsorption and desorption, as well as density function theory (DFT) calculation. Our experimental and theoretical calculation results indicate that functionalized MSU-SO3H materials with well-ordered mesostructure have been successfully synthesized and the materials have acid strength slightly weaker than that of microporous zeolite HZSM-5. It can be expected that MSU-SO3H may probably satisfy some catalytic applications involving larger molecules
引文
[1] T. Okuhara; Water-Tolerant Solid Acid Catalysts Chem. Rev. 2002, 102, 3641.
    [2] J. F. Haw; Zeolite Acid Strength and Reaction Mechanisms in Catalysis Phys. Chem. Chem. Phys. 2002, 4, 5431.
    [3] S. Ganapathy, M. Fournier, J. F. Paul, L. Delevoye, M. Guelton, J. P. Amoureux; Location of Protons in Anhydrous Keggin Heteropolyacids H3PMo12O40 and H3PW12O40 by 1H{31P}/31P{1H} REDOR NMR and DFT Quantum Chemical Calculations J. Am. Chem. Soc. 2002, 124, 7821.
    [4] J. Yang, M. J. Janik, D. Ma, A. Zheng, M. Zhang, M. Neurock, R. J. Davis, C. Ye, F. Deng; Location, Acid Strength, and Mobility of the Acidic Protons in Keggin 12-H3pw12o40: A Combined Solid-State NMR Spectroscopy and DFT Quantum Chemical Calculation Study J. Am. Chem. Soc. 2005, 127, 18274.
    [5] G. D. Yadav, J. J. Nair; Sulfated Zirconia and Its Modified Versions as Promising Catalysts for Industrial Processes Micropor. Mesopor. Mater. 1999, 33, 1.
    [6] J. F. Haw, J.H. Zhang, Kiyoyuki Shimizu, T. N. Venkatraman, D.-P. Luigi, W. G. Song, D. H. Barich, J. B. Nicholas; NMR and Theoretial Study of Acidity Probes onSulfated Zirconia Catalysts J. Am. Chem. Soc. 2000, 122, 12561.
    [7] J. Yang, A. Zheng, M. Zhang, Q. Luo, Y. Yue, C. Ye, X. Lu, F. Deng; Br?nsted and Lewis Acidity of the BF3/γ?A?l2O3 Alkylation Catalyst as Revealed by Solid-State NMR Spectroscopy and DFT Quantum Chemical Calculations J. Phys. Chem. B 2005, 109, 13124.
    [8] C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, J. S. Beck; Ordered Mesoporous Molecular-Sieves Synthesized by A Liquid-Crystal Template Mechanism Nature 1992, 359, 710.
    [9] J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T. W. Chu, D. H. Olson, E. W. Sheppard, S. B. McCullen, J. B. Higgins, J. L. Schlenker; A New Family of Mesoporous Molecular Sieves Prepared with Liquid Crystal Templates J. Am. Chem. Soc. 1992,114,10834
    [10] T. Yanagisawa, T. Shimizu, K. Kuroda, C. Kato; The Preparation of Alkyltrimethylammonium-Kanemite Complexes and Their Conversion to Microporous Materials Bull. Chem. Soc. Jpn. 1990, 63, 988.
    [11] S. Inagaki, Y. Fukushima, K. Kuroda; Synthesis of Highly Ordered Mesoporous Materials from a Layered Polysilicate Chem. Commun. 1993, 8, 680.
    [12] A. Sayari; Catalysis by Crystalline Mesoporous Molecular Sieves Chem. Mater. 1996, 8, 1840.
    [13] A. Sayari, P. Liu; Non-silica Periodic Mesostructured Materials: Recent Progress Microporous Mater. 1997, 12, 149.
    [14] A. Sayari; Periodic Mesoporous Silica-Based Organic-Inorganic Nanocomposite Materials Chem. Mater. 2001, 13, 3151.
    [15] J. Y. Ying, C. P. Mehnert, M. S. Wong; Synthesis and Applications of Supramolecular-Templated Mesoporous Materials Angew. Chem., Int. Ed. 1999, 38, 56.
    [16] T. Maschmeyer; Derivatised Mesoporous Solids Curr. Opin. Solid State Mater. Sci. 1998, 3, 71.
    [17] D. Brunel; Functionalized Micelle-Templated Silicas (MTS) and Their Use as Catalysts for Fine Chemicals Micropor. Mesopor. Mater. 1999, 27, 329.
    [18] K. Moller, T. Bein; Inclusion Chemistry in Periodic Mesoporous Hosts Chem. Mater. 1998, 10, 2950.
    [19] A. Stein, B. J. Melde, R. C. Schroden; Hybrid Inorganic-Organic Mesoporous Silicates - Nanoscopic Reactors Coming of Age Adv. Mater. 2000, 12, 1403.
    [20] A. Corma; From Microporous to Mesoporous Molecular Sieve Materials and Their Use in Catalysis Chem. Rev. 1997, 97, 2373.
    [21] Q. Huo, D. I. Margolese, U. Ciesla, D. G. Demuth, P. Feng, T. E. Gier, P. Sieger, A. Firouzi, B. F. Chmelka, F. Schuth, G. D. Stucky; Organization of Organic Molecules with Inorganic Molecular Species into Nanocomposite Biphase Arrays Chem. Mater. 1994, 6, 1176.
    [22] Y. Sakamoto, M. Kaneda, O. Terasaki, D. Y. Zhao, J. M. Kim, G. Stucky, H. J. Shin, R. Ryoo; Direct Imaging of the Pores and Cages of Three-dimensional Mesoporous Materials Nature 2000, 408, 449.
    [23] Q. Huo, R. Leon, P. M. Petroff, G. D. Stucky; Mesostructure Design with Gemini Surfactants: Supercage Formation in a 3-D Hexagonal Array Science 1995, 268, 1324.
    [24] D. Zhao, Q. Huo, F. Jianglin, B. F. Chmelka, G. D. Stucky; Nonionic Triblock and Star Diblock Copolymer and Oligomeric Surfactant Syntheses of Highly Ordered, Hydrothermally Stable, Mesoporous Silica Structures J. Am. Chem. Soc. 1998, 120, 6024.
    [25] D. Zhao, Q. Huo, J. Feng, J. Kim, Y. Han, G. D. Stucky; Novel Mesoporous Silicates with Two-Dimensional Mesostructure Direction Using Rigid Bolaform Surfactants Chem. Mater. 1999, 11, 2668.
    [26] P. T. Tanev, T. J. Pinnavaia; A Neutral Templating Route to Mesoporous Molecular-Sieves Science 1995, 267, 865.
    [27] S. A. Bagshaw, E. Prouzet, T. J. Pinnavaia; Templating of Mesoporous Molecular-Sieves by Nonionic Polyethylene Oxide Surfactants Science 1995, 269, 1242.
    [28] S. S. Kim, W. Zheng, T. J. Pinnavaia; Ultrastable Mesostructured Silica Vesicles Science 1998, 282, 1302.
    [29] R. Ryoo, J. M. Kim, C. H. Shin, J. Y. Lee; Synthesis and Hydrothermal Stability of a Disordered Mesoporous Molecular Sieve Stud. Surf. Sci. Catal. 1997, 105, 45.
    [30] A. P. Wight, M. E. Davis; Design and Preparation of Organic-Inorganic Hybrid Catalysts Chem. Rev. 2002, 102, 3589.
    [31] H. V. Michael, F. H. Wolfgang; Preparation and Use of Hybrid Organic–Inorganic Catalysts Catal. Rev. 2002, 44, 321.
    [32] W. D. Bossaert, D. E. De Vos, W. M. Van Rhijn, J. Bullen, P. J. Grobet, P. A. Jacobs; Mesoporous Sulfonic Acids as Selective Heterogeneous Catalysts for the Synthesis of Monoglycerides J. Catal. 1999, 182, 156.
    [33] V. Antochshuk, M. Jaroniec; 1-Allyl-3-Propylthiourea Modified Mesoporous Silica for Mercury Removal Chem. Commun. 2002, 258.
    [34] X. Feng, G. E. Fryxell, L. Wang, A. Y. Kim, J. Liu, K. M. Kemner; Functionalized Monolayers on Ordered Mesoporous Supports Science 1997, 276, 923.
    [35] L. Mercier, T. J. Pinnavaia; Access in mesoporous materials: Advantages of a uniform pore structure in the design of a heavy metal ion adsorbent for environmental remediation Adv. Mater. 1997, 9, 500.
    [36] A. M. Liu, K. Hidajat, S. Kawi, D. Y. Zhao; A new class of hybrid mesoporous materials with functionalized organic monolayers for selective adsorption of heavy metal ions Chem. Commun. 2000, 1145.
    [37] W. Yantasee, Y. Lin, X. Li, G. E. Fryxell, T. S. Zemanian, V. V. Viswanathan; Nanoengineered Electrochemical Sensor Based on Mesoporous Silica Thin-Film Functionalized with Thiol-Terminated Monolayer Analyst 2003, 128, 899.
    [38] D. Das, J.-F. Lee, S. Cheng; Sulfonic Acid Functionalized Mesoporous MCM-41 Silica as A Convenient Catalyst for Bisphenol-A Synthesis Chem. Commun. 2001, 2178.
    [39] X. S. Zhao, G. Q. Lu, X.Hu; Characterization of the Structural and Surface Properties of Chemically Modified MCM-41 Material Micropor. Mesopor. Mater. 2000, 41, 37.
    [40] A. Walcarius, M. Etienne, B. Lebeau; Rate of Access to the Binding Sites in Organically Modified Silicates. 2. Ordered Mesoporous Silicas Grafted with Amine or Thiol Groups Chem. Mater. 2003, 15, 2161.
    [41] V. Antochshuk, M. Jaroniec; Simultaneous Modification of Mesopores and Extraction of Template Molecules from MCM-41 with Trialkylchlorosilanes Chem.Commun. 1999, 2373.
    [42] V. Antochshuk, M. Jaroniec; Functionalized Mesoporous Materials Obtained via Interfacial Reactions in Self-Assembled Silica-Surfactant Systems Chem. Mater. 2000, 12, 2496.
    [43] S. Dai, Y. Shin, Y. Ju, M. C. Burleigh, J. S. Lin, C. E. Barnes, Z. Xue; A New Methodology to Functionalize Surfaces of Ordered Mesoporous Materials Based on Ion Exchange Reactions Adv. Mater. 1999, 11, 1226.
    [44] R. Anwander, C. Palm, J. Stelzer, O. Groeger, G. Engelhardt; Silazane-Silylation Of Mesoporous Silicates: Toward Tailor-Made Support Materials Stud. Surf. Sci. Catal. 1998, 117, 135.
    [45] L. Mercier, T. J. Pinnavaia; Direct Synthesis of Hybrid Organic-Inorganic Nanoporous Silica by a Neutral Amine Assembly Route: Structure-Function Control by Stoichiometric Incorporation of Organosiloxane Molecules Chem. Mater. 2000, 12, 188.
    [46] Y. Mori, T. J. Pinnavaia; Optimizing Organic Functionality in Microstructures Silica: Direct Assembly of Mercaptopropyl Groups in Wormhole Framework Structures Chem. Mater. 2001, 13, 2173.
    [47] J. A. Melero, G. D. Stucky, R. van Griekena, G. Morales; Direct Syntheses of Ordered SBA-15 Mesoporous Materials Containing Arenesulfonic Acid Groups J. Mater. Chem. 2002, 12, 1664.
    [48] A. Walcarius, C. Delac?te; Rate of Access to the Binding Sites in Organically Modified Silicates. 3. Effect of Structure and Density of Functional Groups in Mesoporous Solids Obtained by the Co-Condensation Route Chem. Mater. 2003, 15,4181.
    [49] M. H. Lim, A. Stein; Comparative Studies of Grafting and Direct Syntheses of Inorganic-Organic Hybrid Mesoporous Materials Chem. Mater. 1999, 11, 3285.
    [50] M. Kruk, T. Asefa, M. Jaroniec, G. A. Ozin; Metamorphosis of Ordered Mesopores to Micropores: Periodic Silica with Unprecedented Loading of Pendant Reactive Organic Groups Transforms to Periodic Microporous Silica with Tailorable Pore Size J. Am. Chem. Soc. 2002, 124, 6383.
    [51] S. L. Burkett, S. D. Sims, S. Mann; Synthesis of Hybrid Inorganic–Organic Mesoporous Silica by Co-Condensation of Siloxane and Organosiloxane Precursors Chem. Commun. 1996, 1367.
    [52] D. J. Macquarrie; Direct Preparation of Organically Modified MCM-Type Materials. Preparation and Characterisation of Aminopropyl–MCM and 2-Cyanoethyl–MCM Chem. Commun. 1996, 1961.
    [53] L. Beaudet, K.-Z. Hossain, L. Mercier; Direct Synthesis of Hybrid Organic-Inorganic Nanoporous Silica Microspheres. 1. Effect of Temperature and Organosilane Loading on the Nano- and Micro-Structure of Mercaptopropyl-Functionalized MSU Silica Chem. Mater. 2003, 15, 327.
    [54] Y. Guari, C. Thieuleux, A. Mehdi, C. Reyé, R. J. P. Corriu, S. G. Gallardo, K. Philippot, B. Chaudret, R. Dutartre; In situ Formation of Gold Nanoparticles within Functionalised Ordered Mesoporous Silica Via An Organometallic “Chimie Douce” Approach Chem. Commun. 2001, 1374.
    [55] I. K. Mbaraka, D. R. Radu, V. S.-Y. Lin, B. H. Shanks; Organosulfonic Acid-Functionalized Mesoporous Silicas for the Esterification of Fatty Acid J. Catal.2003, 219, 329.
    [56] J. Brown, L. Mercier, T. J. Pinnavaia; Selective Adsorption of Hg2+ by Thiol-Functionalized Nanoporous Silica Chem. Commun. 1999, 69.
    [57] A. Ghosh, C. R. Patra, P. Mukherjee, M. Sastry, R. Kumar; Preparation and Stabilization of Gold Nanoparticles Formed by in situ Reduction of Aqueous Chloroaurate Ions within Surface-Modified Mesoporous Silica Micropor. Mesopor. Mater. 2003, 58, 201.
    [58] J. H. Clark, S. Elings, K. Wilson; Catalysis for Green Chemistry - Ultra High Loaded Mesoporous Solid Acids Chemistry 2000, 3, 399.
    [59] I. Diaz, C. M.-Alvarez, F. Mohino, J. P.-Pariente, E. Sastre; Combined Alkyl and Sulfonic Acid Functionalization of MCM-41-Type Silica: Part 2. Esterification of Glycerol with Fatty Acids J. Catal. 2000, 193, 295.
    [60] J. G. C. Shen, R. G. Herman, K. Klier; Sulfonic Acid-Functionalized Mesoporous Silica: Synthesis, Characterization, and Catalytic Reaction of Alcohol Coupling to Ethers J. Phys. Chem. B 2002, 106, 9975.
    [61] 喻宁亚,巩雁军,王树国,吴东,孙予罕,罗晴,刘午阳,邓风; “硅酸钠与有机硅氧烷前驱体合成有机官能化硅基介孔材料” 化学学报 2003, 61(1), 58.
    [62] N. Yu, Y. Gong, S. Wang, D. Wu, Y. Sun; Direct Synthesis of Mesoporous Organosilica from Sodium Silicate and Organotrialkoxysilane J. Mater. Sci. lett. 2003, 17, 1229.
    [63] 喻宁亚,巩雁军,吴东,孙予罕,罗晴,刘午阳,邓风; “硅酸钠与有机硅氧烷前驱体自组装杂化硅基中孔材料” 物理化学学报 2004, 20(1), 81.
    [64] N. Yu, Y. Gong, D. Wu, Y. Sun, Q. Luo, W. Liu, F. Deng; One-Pot Synthesis ofMesoporous Organosilicas Using Sodium Silicate as A Substitute for Tetraalkoxysilane Micropor. Mesopor. Mater. 2004, 72, 25.
    [65] J. Shah, S.-S. Kim, T. J. Pinnavaia; A Versatile Pathway for the Direct Assembly of Organo-Functional Mesostructures from Sodium Silicate Chem. Commun. 2004, 572.
    [66] R. J. P. Corriu, A. Mehdi, C. Reyé, C. Thieuleux; Direct Syntheses of Functionalized Mesostructured Silica by Using An Inexpensive Silica Source Chem. Commun. 2004, 1440.
    [67] R. Mokaya; Improving the Stability of Mesoporous MCM-41 Silica via Thicker More Highly Condensed Pore Walls J. Phys. Chem. B1999, 103, 10204.
    [68] H. Knozinger, P. Ratnassamy; Catalytic Aluminas - Surface Models and Characterization of Surface Sites Catal. Rev-Sci. Eng. 1978, 17, 31.
    [69] A. Ghorbel, C. Hoang-Van, S. J. Teichner; Catalytic Activity of Amorphous Alumina Prepared in Aqueous Media: I. Catalytic Activity in Isomerization of Butene-1 J. Catal. 1973, 30, 298.
    [70] S. G. Bratsch; Electronegativity and the Acid-Base Character of Binary Oxides J. Chem. Edu. 1988, 65, 877.
    [71] E. R. Andrew, A. Bradbury, R. Geads; Nuclear Magnetic Resonance Spectra from A Crystal Rotated at High Speed Nature 1959, 182, 1659.
    [72] I. J. Lowe; Free Induction Decays of Rotating Solids Phys. Rev. Lett. 1959, 2, 285.
    [73] L. Frydman, J.S. Harwood; Isopropic Spectra of Half-Integer Quadrupolar Spins from Bidimensional Magic-Angle Spinning NMR J. Am. Chem. Soc. 1995,117, 5367.
    [74] A. Medek, J.S. Harwood, L. Frydman; Multiple-Quantum Magic-Angle Spinning NMR: A New Method for the Study of Quadrupolar Nuclei in Solids J. Am. Chem. Soc. 1995,117, 12779.
    [75] D. P. Burum, W. K. Rhim; Analysis of Multiple Pulse NMR in Solids. III J. Chem. Phys. 1979, 71, 944.
    [76] M. Lee, W. I. Goldburg; Nuclear-Magnetic-Resonance Line Narrowing by A Rotating rf Field Phys. Rev. 1965, 140, 1261.
    [77] W. P. Rothwell, W.X. Shen, J. H. Lunsford; Solid-State Phosphorus-31 NMR of A Chemisorbed Phosphonium Ion in HY Zeolite: Observation of Proton- Phosphorus-31 Coupling in the Solid-State J. Am. Chem. Soc. 1984, 106, 2452.
    [78] J. H. Lunsford, W. P. Rothwell, W. X. Shen; Acid Sites in Zeolite Y: A Solid-State NMR and Infrared Study Using Trimethylphosphine as A Probe Molecule J. Am. Chem. Soc. 1985, 107, 1540.
    [79] H. M. Kao, C. P. Grey; Characterization of the Lewis Acid Sites in Zeolite HY with the Probe Molecule Trimethylphosphine, and 31P/27Al Double Resonance NMR Chem. Phys. Lett. 1996, 259, 459.
    [80] B. Zhao, H. Pan, J. H. Lunsford; Characterization of [(CH3)3P-H]+ Complexes in Normal H-Y, Dealuminated H-Y, and H-ZSM-5 Zeolites Using31P Solid-State NMR Spectroscopy Langmuir 1999, 15, 2761.
    [81] A. Bendada, E. DeRose, J. J. Fripiat; Motions of Trimethylphosphine on the Surface of Acid Catalysts J. Phys. Chem. 1994, 98, 3838.
    [82] H. M. Kao, H. M. Liu, J. C. Jiang, S. H. Lin, C. P. Grey; Determining the Structure of Trimethylphosphine Bound to the Br?nsted Acid Site in Zeolite HY:Double-Resonance NMR and ab Initio Studies J. Phys. Chem. B 2000, 104, 4923.
    [83] E. F. Rackiewicz, A. W. Peters, R. F. Wormsbecher, K. J. Sutovich, K. T. Mueller; Characterization of Acid Sites in Zeolitic and Other Inorganic Systems Using Solid-State 31P NMR of the Probe Molecule Trimethylphosphine Oxide J. Phys. Chem. B 1998, 102, 2890.
    [84] A. I. Biaglow, R.J. Gorte, D. White; Molecular Motions and Carbon-13 Chemical Shift Anisotropy of Acetone Adsorbed in H-ZSM-5 Zeolite J. Phys. Chem. 1993, 97, 7135.
    [85] A. I. Biaglow, R. J. Gorte, D. White; A Probe of Br?nsted Site Acidity in Zeolites: 13C Chemical Shift of Acetone J. Catal. 1994, 148, 779.
    [86] J. F. Haw, J. B. Nicholas, D. B. Ferguson; Physical Organic Chemistry of Solid Acids: Lessons from in situ NMR and Theoretical Chemistry Acc. Chem. Res. 1996, 29, 259.
    [87] G. E. Maciel, J. F. Haw, I. S. Chuang, B. L. Hawkins, T. A. Early, D. R. McKay, L. Petrakis; NMR Studies of Pyridine on Silica-Alumina J. Am. Chem. Soc. 1983, 105, 5529.
    [88] J. F. Haw, S. Chuang, B. L. Hawkins, G.E. Maciel; Surface Titration of Silica-Alumina Monitored by Nitrogen-15 NMR with Cross Polarization and Magic-Angle Spinning J. Am. Chem. Soc. 1983, 105, 7206.
    [89] M. Hunger; Multinuclear Solid-State NMR Studies of Acidic and Non-Acidic Hydroxyl Protons in Zeolites Solid State Nucl. Magn. Reson. 1996, 6, 1.
    [1] J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T. -W. Chu, D. H. Olson, E. W. Sheppard, S. B. McCullen, J. B. Higgins, J. L. Schlenker; A New Family of Mesoporous Molecular Sieves Prepared with Liquid Crystal Templates J. Am. Chem. Soc. 1992, 114, 10834.
    [2] C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, J. S. Beck; Ordered Mesoporous Molecular-sieves Synthesized by A Liquid-crystal Template mechanism Nature 1992, 359, 710.
    [3] S. A. Bagshaw, E. Prouzet, T. J. Pinnavaia; Templating of Mesoporous Molecular-Sieves by Nonionic Polyethylene Oxide Surfactants Science 1995, 269, 1242.
    [4] D. Zhao, J. Feng, Q. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka, G. D. Stucky; Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores Science 1998, 279, 548.
    [5] D. Zhao, Q. Huo, J. Feng, B. F. Chmelka, G. D. Stucky; Nonionic Triblock and Star Diblock Copolymer and Oligomeric Surfactant Syntheses of Highly Ordered, Hydrothermally Stable, Mesoporous Silica Structures J. Am. Chem. Soc. 1998, 120, 6024.
    [6] S. S. Kim, W. Zhang, T. J. Pinnavaia; Ultrastable Mesostructured Silica Vesicles Science 1998,282, 1302.
    [7] Q. N. Le; US Patent 5118894 (1992).
    [8] Q. N. Le; US Patent 5232580 (1993).
    [9] S. Ernst, R. Glaser, M. Selle; MCM-41-type Molecular Sieves as Carriers for Metal-phthalocyanine Complexes Stud. Surf. Sci. Catal. 1997, 105, 1021.
    [10] A. Corma, M. T. Navarro, J. Pe′rez-Pariente; Acidity and Stability of MCM-41 Crystalline Aluminosilicates J. Catal. 1994, 148, 569.
    [11] Q. Luo, F. Deng, Z.Y. Yuan, J. Yang, M.J. Zhang, Y. Yue, C.H. Ye; Using Trimethylphosphine as A Probe Molecule to Study the Acid Sites in Al-MCM-41 Materials by Solid-State NMR Spectroscopy J. Phys. Chem. B 2003, 107, 2435.
    [12] M. C. Xu, A. Arnold, A. Buchholz, W. Wang, M. Hunger; Low-Temperature Modification of Mesoporous MCM-41 Material with Sublimated Aluminum Chloride in Vacuum J. Phys. Chem. B 2002, 106, 12140.
    [13] W. M. Van Rhijn, D. E. De Vos, B. F. Sels, W. D. Bossaert, P. A. Jacobs; Sulfonic Acid Functionalised Ordered Mesoporous Materials as Catalysts for Condensation and Esterification Reactions J. Chem. Soc. Chem. Commun. 1998, 317.
    [14] D. Margolese, J. A. Melero, S. C. Christiansen, B. F. Chmelka, G. D. Stucky; Direct Syntheses of Ordered SBA-15 Mesoporous Silica Containing Sulfonic Acid Groups Chem. Mater. 2000, 12, 2448.
    [15] Y. J. Gong, Y. Li, D. Wu, Y. H. Sun; Multiphasic Acetalization and Alkylation on Organically Modified MSU-X Silica Catal. Lett. 2001, 74, 213.
    [16] N. Y. Yu, Y. J. Gong, D. Wu, Y. H. Sun, Q. Luo, W. Y. Liu, F. Deng; One-Pot Synthesis of Mesoporous Organosilicas Using Sodium Silicate as A Substitute for Tetraalkoxysilane Micropor. Mesopor. Mater. 2004, 72, 25.
    [17] N. Y. Yu, J. L. Zheng, Q. L. Tang, D. Wu, Y. H. Sun, W. Hu, W. Y. Liu, F. Deng; Stud. Surf. Sci. Catal. 2005, 56, 213.
    [18] M. Hunger; Multinuclear Solid-State NMR Studies of Acidic and Non-acidic Hydroxyl Protons in Zeolites Solid State Nucl. Magn. Reson. 1996, 6, 1.
    [19] J. F. Haw, T. Xu; NMR Studies of Solid Acidity Adv. Catal. 1998,Vol.42.
    [20] J. G. Fripiat, P. Galet, J. Delhalle, J. M. Andre, J. B. Nagy, E. G. Derouane; A Nonempirical Molecular Orbital Study of the Siting and Pairing of Aluminum in Ferrierite J. Phys. Chem. 1985, 89, 1932.
    [21] P. J. Omalley, J. Dwyer; Ab-initio Molecular Orbital Calculations on the Siting of Aluminium in the Theta-1 Framework: Some General Guidelines Governing the Site Preferences of Aluminium in Zeolites zeolites 1988, 8, 317.
    [22] J. Zhang, J. B. Nicholas, J. F. Haw; NMR and Theoretical Study of Acid Sites Formed by Adsorption of SO3 onto Oxide Surfaces Angew. Chem. 2000, 112, 3440.
    [23] J. O. Ehresmann, W. Wang, B. Herreros, D. P. Luigi, T. N. Venkatraman, W. Song, J.B. Nicholas, J.F. Haw; Theoretical and Experimental Investigation of the Effect of Proton Transfer on the 27Al MAS NMR Line Shapes of Zeolite-Adsorbate Complexes: An Independent Measure of Solid Acid Strength J. Am. Chem. Soc. 2002, 124, 10868.
    [24] J. F. Haw, T. Xu, J. B. Nicholas, P.W. Gorgune; Solvent-assisted Proton Transfer in Catalysis by Zeolite Solid Acids Nature 1997,389, 832.
    [25] T. Xu, N. Kob, R. S. Drago, J. B. Nicholas, J. F. Haw; A Solid Acid Catalyst at the Threshold of Superacid Strength: NMR, Calorimetry, and Density Functional Theory Studies of Silica-Supported Aluminum Chloride J. Am. Chem. Soc. 1997, 119,12231.
    [26] S. Brunauer, P. H. Emmett, E. Teller; Adsorption of Gases in Multimolecular Layers J. Am. Chem. Soc. 1938, 60, 309.
    [27] E. P. Barrett, L. G. Joyner, P. P. Halenda; The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms J. Am. Chem. Soc. 1951, 73, 373.
    [28] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez and J. A. Pople, Gaussian 03, Revision B.05, Gaussian, Inc., Pittsburgh PA, 2003.
    [29] W. P. Rothwell, W. Shen, J. H. Lunsford; Solid-State Phosphorus-31 NMR of AChemisorbed Phosphonium Ion in HY Zeolite: Observation of Proton-Phosphorus-31 Coupling in the Solid-State J. Am. Chem. Soc. 1984, 106, 2452.
    [30] J. H. Lunsford, W. P. Rothwell, W. Shen; Acid Sites in Zeolite Y: A Solid-State NMR and Infrared Study Using Trimethylphosphine as A Probe Molecule J. Am. Chem. Soc. 1985,107, 1540.
    [31] T. Xu, E. J. Munson, J. F. Haw; Toward a Systematic Chemistry of Organic Reactions in Zeolites: In situ NMR Studies of Ketones J. Am. Chem. Soc. 1994, 116, 1962.
    [32] J. F. Haw, J. B. Nicholas, T. Xu, L. W. Beck, D. B. Ferguson; Physical Organic Chemistry of Solid Acids: Lessons from in Situ NMR and Theoretical Chemistry Acc. Chem. Res. 1996, 29, 259.
    [33] J. F. Haw, J. H. Zhang, Kiyoyuki Shimizu, T. N. Venkatraman, Donat-Pierre Luigi, W. G. Song, D. H. Barich, J. B. Nicholas; NMR and Theoretical Study of Acidity Probes on Sulfated Zirconia Catalysts J. Am. Chem. Soc. 2000, 122, 12561.
    [34] Q. Zhao, W. H. Chen, Shing-Jong Huang, Yu-Chih Wu, Huang-Kuei Lee, Shang-Bin Liu; Discernment and Quantification of Internal and External Acid Sites on Zeolites J. Phys. Chem. B 2002, 106, 4462.
    [35] J. B. Nicholas; A Theoretical Explanation of Solvent Effects in Zeolite Catalysis Top. Catal. 1999, 9, 181.
    [1] N. Evmenenko, Y. Gogokbvatskii; Kinet. Katal. 1969, 10, 1299.
    [2] R. S. Mann, K. Hahn; Kinetics of Vapor-Phase Oxidation of Methyl Alcohol on Vanadium Pentoxide-Molybdenum Trioxide Catalyst J. Catal. 1973, 28, 282.
    [3] M. Niwa, M. Mizutami, M. Takahashi, Y. Murakami; Mechanism of Methanol Oxidation over Oxide Catalysts Containing MoO3 J. catal. 1981, 70, 14.
    [4] H. C. Hu, I. E. Wachs; Catalytic Properties of Supported Molybdenum Oxide Catalysts: In Situ Raman and Methanol Oxidation Studies J. Phys. Chem. 1995, 99, 10911.
    [5] S. Braun, L. G. Appel, V. L. Camorim, M. Schmal; Thermal Spreading of MoO3 onto Silica Supports J. Phys. Chem. B 2000, 104, 6584.
    [6] M. Niwa, Y. Habuta, K. Okumura, N. Katada; Solid Acidity of Metal Oxide Monolayer and Its Role in Catalytic Reactions Catal. Today 2003, 87, 213.
    [7] M. Niwa, M. Sano, H. Yamada, Y. Murakami; Structure and Activity of Molybdenum Oxide Monoatomic Layer Formed on Tin Oxide J. Catal. 1995, 151, 285.
    [8] Y. Matsuoka, M. Niwa, Y. Murakami; Morphology of molybdena supported on various oxides and its activity for methanol oxidation J. Phys. Chem. 1990, 94, 1477.
    [9] W. M. Zhang, A. Desikan, S. T. Oyama; Effect of Support in Ethanol Oxidation on Molybdenum Oxide J. Phys. Chem. 1995, 99, 14468.
    [10] M. Niwa, J. Igarashi; Role of the Solid Acidity on the MoO3 Loaded on SnO2 in the Methanol Oxidation into Formaldehyde Catal. Today 1999, 52, 71.
    [11] Y. Okamoto, K. Oh-hiraki, S. Teranishi; X-Ray Photoelectron Spectroscopic Study of Mixed Oxide Catalysts Containing Molybdenum: I. SnO2-MoO3 Catalysts J. Catal. 1981, 71, 99.
    [12] M. Hunger; Multinuclear Solid-State NMR Studies of Acidic and Non-acidic Hydroxyl Protons in Zeolites Solid state Nucl. Magn. Reson. 1996, 6, 1.
    [13] Q. Luo, F. Deng, Z.Y. Yuan, J. Yang, M.J. Zhang, Y. Yue, C.H. Ye; Using Trimethylphosphine as A Probe Molecule to Study the Acid Sites in Al-MCM-41 Materials by Solid-State NMR Spectroscopy J. Phys. Chem. B 2003, 107, 2435.
    [14] J. Yang, A. Zheng, M. Zhang, Q. Luo, Y. Yue, C. Ye, X. Lu, F. Deng; Br?nsted andLewis Acidity of the BF3/γ-Al2O3 Alkylation Catalyst as Revealed by Solid-State NMR Spectroscopy and DFT Quantum Chemical Calculations J. Phys. Chem. B 2005, 109, 13124.
    [15] J. F. Haw, J. H. Zhang, K. Shimizu, T. N. Venkatraman, D-P. Luigi, W. G. Song, D. H. Barich, J. B. Nicholas; NMR and Theoretical Study of Acidity Probes on Sulfated Zirconia Catalysts J. Am. Chem. Soc. 2000, 122, 12561.
    [16] P. J. Omalley, J. Dwyer; Ab-initio Molecular Orbital Calculations on the Siting of Aluminium in the Theta-1 Framework: Some General Guidelines Governing the Site Preferences of Aluminium in Zeolites Zeolites 1988, 8, 317.
    [17] A.M. Zheng, L. Chen, J. Yang, Y. Yue, C.H. Ye, X. Lu, F. Deng; Prediction of the 13C NMR Chemical Shifts of Organic Species Adsorbed on H-ZSM-5 Zeolite by the ONIOM-GIAO Method Chem. Commun. 2005, 19, 2474.
    [18] J. Zhang, J. B. Nicholas, J. F. Haw, NMR and Theoretical Study of Acid Sites Formed by Adsorption of SO3 onto Oxide Surfaces Angew. Chem. 2000, 112, 3440.
    [19] T. Xu, N. Kob, R. S. Drago, J. B. Nicholas, J. F. Haw, A Solid Acid Catalyst at the Threshold of Superacid Strength: NMR, Calorimetry, and Density Functional Theory Studies of Silica-Supported Aluminum Chloride J. Am. Chem. Soc. 1997, 119, 12231.
    [20] T. Xu, E. J. Munson, J. F. Haw; Toward a Systematic Chemistry of Organic Reactions in Zeolites: In situ NMR Studies of Ketones J. Am. Chem. Soc. 1994, 116, 1962.
    [21] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K.N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al- Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M.W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, Gaussian 03, Revision C.02, Gaussian, Gaussian, Inc., Pittsburgh, PA, 2003.
    [22] A.D. Becke; Density-Functional Thermochemistry. III. The Role of Exact Exchange J. Chem. Phys. 1993, 98, 5648.
    [23] N. Godbout, D.R. Salahub, J. Andzelm, E. Wimmer; Optimization of Gaussian-Type Basis Sets for Local Spin Density Functional Calculations. Part I. Boron through Neon, Optimization Technique and Validation Can. J. Chem. 1992, 70, 560.
    [24] K. Chaudhari, T. K. Das, P. R. Rajmohanan, K. Lazar, S. Sivasanker,A. J. Chandwadker;Synthesis, Characterization, and Catalytic Properties of MesoporousTin-Containing Analogs of MCM-41 J. Catal. 1999, 183, 281.
    [25] Ph. Montgolfier, P. Meriaudeau, Y. Boudeville , M. Che; Hyperfine and Superhyperfine Interactions for Mo5+ in SnO2 Phys. Rev. B 1976, 14, 1788.
    [26] G. B. Hoflund; A Review of Tin Oxide-Based Catalytic Systems: Preparation, Characterization and Catalytic Behavior NASA Conference Publication 2456, NASA 1987, p179.
    [27] U. Fleischer, W. Kutzelnigg, A. Bleiber,J. Sauer; Proton NMR Chemical Shift and Intrinsic Acidity of Hydroxyl Groups. Ab Initio Calculations on Catalytically Active Sites and Gas-Phase Molecules J. Am. Chem. Soc. 1993, 115, 7833.
    [28] M. Daturi, L. G. Appel; Infrared Spectroscopic Studies of Surface Properties of Mo/SnO2 Catalyst J. Catal. 2002, 209, 427.
    [29] G. M. Maksimov, M. A. Fedotov, S. V. Bogdanov, G. S. Litvak, A. V. Golovin, V. A. Likholobov; Synthesis and study of acid catalyst 30% WO3/SnO2 J. Mol. Catal. A 2000, 158, 435.
    [30] W. P. Rothwell, W. Shen, J. H. Lunsford; Solid-State Phosphorus-31 NMR of A Chemisorbed Phosphonium Ion in HY Zeolite: Observation of Proton-Phosphorus-31 Coupling in The Solid-State J. Am. Chem. Soc. 1984, 106, 2452.
    [31] J. H. Lunsford, W. P. Rothwell, W. Shen; Acid Sites in Zeolite Y: A Solid-State NMR and Infrared Study Using Trimethylphosphine as A Probe Molecule J. Am. Chem. Soc. 1985, 107, 1540.
    [32] J. F. Haw, J. B. Nicholas, T. Xu, L. W. Beck, D. B. Ferguson; Physical OrganicChemistry of Solid Acids: Lessons from in Situ NMR and Theoretical Chemistry Acc. Chem. Res. 1996, 29, 259.
    [33] A. I. Biaglow, R. J. Gorte, D. white; 13C NMR Studies of Acetone in Dealuminated Faujasites: A Probe for Nonframework Alumina J. Catal. 1994, 150, 221.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700