上胸段硬膜外阻滞对兔蛛网膜下腔出血模型脑血管痉挛预防作用及其机制探讨的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:建立简单、重复率高的兔的SAH后的CVS模型和HTEB模型,证实HTEB对SAH后的CVS形成的预防作用,并进一步探讨HTEB预防SAH后的CVS形成的可能机制。
     方法:
     1.采用切开直接置入硬膜外导管法建立兔上胸段硬膜外阻滞的模型。
     2.硬膜外阻滞成功的新西兰兔60只,随机分为6组(n=10):正常1 d组(N1组)、正常7 d组(N7组)、单纯SAH 1 d组(S1组)、单纯SAH 7 d组(S7组)、HTEB+SAH 1 d组(HS1组)、HTEB+SAH 7 d组(HS7组);N1、N7组硬膜外导管推注生理盐水(NS)1 mL后接镇痛泵持续泵入NS 1 mL/h,30 min后枕大池推注NS 0.5 mL/kg;S1、S7组硬膜外推注NS 1 mL后接镇痛泵泵入NS 1 mL/h,30 min后制备SAH模型;HS1、HS7组硬膜外推注1 g·L~(-1)罗哌卡因1 mL后接镇痛泵泵入1 g·L~(-1)罗哌卡因1 mL/h,30 min后制备SAH模型。
     3.采用经皮枕大池穿刺自体动脉血注入法建立兔的SAH后的CVS模型。
     4.观察动物的进食量比较N7、HS7与S7三组兔日食量的差别。
     5.用经颅多普勒(TCD)动态检测基底动脉血流动力学指标,反映血管痉挛的情况。
     6.开颅取脑后,先进行大体标本观察;再剪取基底动脉下1/3,放入标本杯,40 g·L~(-1)多聚甲醛浸泡固定,备石蜡包埋切片、HE染色,观察基底动脉。剪取基底动脉上2/3,放入Eppendof管,放入液氮保存,备RT-PCR检测基底动脉preproET-lmRNA和eN0SmRNA表达含量变化。
     结果:
     1.食量:N7组1 d减少(P<0.05),2 d后无明显变化(P>0.05);S7组1~3 d(P<0.01)和4~7 d(P <0.05)均明显减少;HS7组1~2 d明显减少(P<0.01),4 d后明显恢复(P>0.05)。
     2.大体标本可见S1组、S7组、HS1组、HS7组脑底面可见血凝块,以基底动脉周围最多,脑底池呈暗红色,N1组、N7组基底动脉清晰可见,无血凝块形成。
     3.兔基底动脉N1组、S1组、HS1组、N7组、S7组、HS7组的TCD指标变化。Vs和Vm: S1组较N1组明显加快(P<0.01),S7组较N7组明显加快(P<0.01),HS1组较N1组有加快(P<0.05),HS7组和N7组相比差异不明显(P>0.05)。PI和RI:S1组较N1组明显降低(P<0.01),S7组较N7组明显降低(P<0.01)。
     4. BA光镜观察:N1、N7组未见异常,S1、S7组管壁收缩、管腔狭窄,HS1、HS7组变化程度均轻于S1、S7组,HS7组狭窄程度轻于HS1。
     5. preproET-lmRNA的表达:与N1组相比,S1组表达显著增多(P?0.01),HS1组也增多(P?0.05);与N7组相比,S7组显著增多(P?0.01),HS7组也增多(P?0.05);与HS1相比,HS7组表达降低(P?0.05)。eN0SmRNA的表达:与N1组相比,S1组表达显著降低(P?0.01),HS1组也降低(P?0.05);与N7组相比,S7组显著降低(P?0.01),HS7组也降低(P?0.05);与HS1相比,HS7组表达增多(P?0.05)。
     结论:
     1.采用经T6-7切开置管法可建立兔上胸段硬膜外阻滞的模型。
     2.采用经皮枕大池穿刺自体动脉血注入法可建立兔的SAH后的CVS模型。
     3.预防性应用HTEB可以减轻SAH后CVS的程度,治疗时间越长效果越好。
     4.预防性应用HTEB可以下调SAH后基底动脉痉挛的内皮细胞的preproET-lmRNA的表达水平和上调eN0SmRNA的表达水平。
Objective:
     The purpose of the study was to establish two simple and inexpensive animal models of experimental CVS after SAH and HTEB in rabbits and to investigate the preventive effects of HTEB on CVS following SAH and to study the possible mechanism of the preventive effects .
     Methods:
     1. Sixty rabbits with HTEB made successfully were randomly assigned into 6 groups (n = 10,each): the normal 1 day group (N1)、the normal 7 day group(N7)、SAH 1 day group (S1)、SAH 7 day group (S7)、HTEB plus SAH 1 day group (HS1)、HTEB plus SAH 7 day group (HS7). the normal group (N1、N7): normal saline 0.5 mL/kg was injected into the cisterna magna and 1 mL/h injected through the epidural pipe; SAH group (S1、S7): non-anticoagulant autologous arterial blood 0.5 mL/kg was injected into the cisterna magna and normal saline 1mL/h was injected through the epidural pipe; HTEB plus SAH group (HS1、HS7): non-anticoagulant autologous arterial blood 0.5 mL/kg was injected into the cisterna magna and 1 g·L~(-1) Ropivacaine 1 mL/h injected through the epidural pipe.
     2. To establish the HTEB model, T6-7 epidural space was explored, and an epidural pipe was introduced. The 1 g·L~(-1) ropivacaine was injected continually through the pipe at 1 mL/h to block T1-5 sympathetic nerves.
     3. SAH models of rabbits were developed by injecting non-anticoagulant autologous arterial blood 0.5 mL/kg into the cisterna magna.
     4. In-taking food of group N7、S7、HS7 was evaluated every day for 7 days..
     5. Transcranial Doppler (TCD) ultrasonography was used to detect the basilar artery blood flow velocity changes.
     6. After taking out the brain by opening skulls, a general observation of specimens was made firstly. Then one-third of basilar arteries were preservinged and fixed by 40 g·L~(-1) paraformaldehyde, and paraffin-embedded、sected、HE stained. Lastly the basilar artery changes were observed through Optical Microscope. Two-third of basilar arteries were preserved in liquid nitrogen by Eppendof tubes and was used to detect the expressions of preproET-lmRNA and eN0SmRNA by RT-PCR.
     Results:
     1. In-taking food was not significant decreased in group N7 except the first day after injecting Sodium Chloride into the cisterna magna. In group S7, it was decreased significantly through the 7 days observative period. It was decreased in the first two days, and returned to normal from the fourth day in group HS7.
     2. The changes of pathology: By eyes there were blood clots scattering on the basal surface of the brain and around the basilar artery in group HS1、HS7 and S1、S7. But there were no blood clots in group N1、N7.
     3. Changes of vascular hemodynamic indexes were showed by TCD. Vs and Vm in group S1 and S7 were increased significantly compared with group N1 and N7 (P<0.01); but PI and RI were decreased respectively (P<0.05). Vm and Vs in group HS1 and HS7 were decreased compared with group S1 and S7(P<0.05), but PI and RI were increased respectively(P<0.05).
     4. Pathological observation:The structure of the basilar artery in group N1 and N7 were normal. The vessel wall was shrink and the lumina became narrow in group S1 and S7. The pathologic changes in group HS1 and HS7 were slighter than in group S1 and S7.
     5. The expression of preproET-lmRNA of group S1 and S7 were higher than group N1 and N7(P?0.05),and group HS1 and HS7 higher than group N1 and N7(P?0.05).The expression of eN0SmRNA of group S1 and S7 were decreased significantly compared with N1 and N7 respectively(P?0.05);but there were no significant differences between group N7 and HS7 (P>0.05).
     Conclusions:
     1. The HTEB rabbit model can be established successfully by incision T6-7 epidural space and introducing epidural pipe.
     2. the CVS following SAH rabbit model can be established successfully by injecting non-anticoagulant autologous arterial blood 0.5mL/kg into the cisterna magna.
     3. HTEB used before SAH can reduce the extent of CVS following SAH, and the longer of the treatment, the better of the effect.
     4. HTEB used before SAH can inhibit the expressions of preproET-lmRNA and promote the expressions of eNOSmRNA of the vasospasm BA.
引文
[1] Nazli J, Mayer S. Cerebral vasospasm after subaracnoid hemorrhage[J]. Curr Op in Crit Care.2003,9(2):113-119.
    [2] 全守波,王清秀. 自主神经干预对脑循环的影响[J]. 国外医学麻醉与复苏分册,2002,23(2);116-119.
    [3] Yokoyanma M, Nakatsuka H, Itano Y, et al. Stellate ganglion block modifies the distribution of lymphocyte subsets and natural-killer cell activity[J].Anesthesiology,2000,92(2):109-115.
    [4] Bunc G, Kovacic S, Strnad S. The influence of noradrenergic blockade on vasospasm and the quantity of cerebral dopamine beta-hydroxylase following subarachnoid haemorrhage in rabbits[J]. Wien Klin Wochenschr,2003, 115(17-18):652-659.
    [5] Treggiari MM, Romand JA, Martin JB, et al. Cervical sympathetic block to reverse delayed ischemic neurological deficits after aneurysmal subarachnoid hemorrhage[J]. Stroke, 2003, 34(4): 961-967.
    [6] Moss J,Renz CL. The autonomic nervous system. In: Miller RD,ed. Anesthesia. 1st edn. Harcout Asia:Churchill Livinstone, 2001:526-528.
    [7] 胡玉红. 一种新的家兔麻醉方法[J].中国实验动物杂志.2001,11(3):183.
    [8] 陈志扬,薛张纲,蒋豪.全麻复合胸段硬膜外阻滞对兔实验性心肌梗塞应激反应的影响[J].中华麻醉学杂志,2000,20(11):684-686.
    [9] 沈伟,余绍祖,范华燕.降钙素基因相关肽及内皮素在实验性蛛网膜下腔出血后急性与迟发性脑血管痉挛中的作用[J].临床神经病学杂志, 2003, 16(4): 221-223.
    [10] 郑维平,高 进,李晓军,等. 家兔胸段硬膜外阻滞麻醉的改良方法[J].四川动物,2002.21(4):260-261.
    [11] Scoott D,Lee A,Fagan D,et a1.Acute toxicity of ropivacaine compared with that of bupivacaine[J].Anesth Analg。1989,65(5):563—569.
    [12] 陈绍洋,熊利泽,王 强,等. 上胸段硬膜外阻滞应用罗哌卡因 3.75 g·L-1 对肺通气功能的影响[J].第四军医大学学报, 2002, 23(15): 1376-1378.
    [13] 高山, 黄家星, 主编. 经颅多普勒超声(TCD)的诊断技术和临床应用[M]. 北京:中国协和医科大学出版社, 2004:12-14.
    [14] Nelson RJ, Perry S , Hames TK, et al. Transcranial Doppler ultransound studies of cerebral autoregulation and subarachnoid hemorrhage in the rabbit[J]. J Neurosurg.1990,73(4):601-610.
    [15] Sercombc R, Dinh YR , Gomis P. Cerebrovascular inflammation following subarachnoid hemorrhage [J]. Pharmacology,2002 ,88 (3):227-249.
    [16] Dietrich HH,Dacey RGJR. Molecular keys to the problems of cerebral vasospasm [J]. Neurosurgery,2000,46(3) :517-530.
    [17] Bowman G, Dixit S, Bonneau RH,et al. Neutralizing antibody against interleukin-6 attenuates post-hemorrhagic vasospasm in the rat femoral artery model[J]. Neurosurgery, 2004, 54(3):719-725.
    [18] 宋锦宁,陈五岭,梁琦.实验性蛛网膜下腔出血后兔脑血管内皮素受体A的表达及意义[J].第四军医大学学报,2007,28(15):1401-1404.
    [19] Frazee JG, Giannotta SL, Stern WE. Intravenous nitroglycerin for the treatment of chronic cerebral vasoconstriction in the primate[J]. J Neurosurg, 1981, 55(3): 865-868.
    [20] Afshar JK, Pluta RM, Boock RJ, et al. Effect of intracarotid nitric oxide on primate cerebral vasospasm after subarachnoid hemorrhage[J]. J Neurosurg, 1995, 83(6): 1182-122.
    [21] Wolf EW, Banerjee A, Soble Smith J , et al. Reversal of cerebral vasospasm using an intrathecally administered nitric oxide donor[J]. J Neurosurg, 1998, 89(1): 278-288.
    [22] Raabe A, Zimmermann M, Setzer M, et al. Effect of intraventricular sodium nitroprusside on cerebral hemodynamics and oxygenation in poor-grade aneurysm patients with severe, medically refractory vasospasm[J]. Neurosurgery,2002, 50(5): 1006-1014.
    [23] Krumenacker JS, Hanafy KA, Murad F. Regulation of nitric oxide and soluble guanylyl cyclase[J]. Brain Res Bull,2004, 62(2): 505-515.
    [24] Wang X, Mori T, Sumii T, et al. Hemoglobin induced cytotoxicity in rat cerebral cortical neurons: caspase activation and oxidative stress[J]. Stroke, 2002, 33(10): 1882-1888.
    [25] Nishizawa S, Chen D, Yokoyama T, et al. Endothelin initiates the development of vasospasm after subarachnoid haemorrhage through protein kinase C activation, but does not contribute to prolonged vasospasm[J]. Acta Neurochir,2000, 142(9): 1409-1415.
    [26] M M Gupta, P K Bithal, H H Dash, A Chaturvedi, R P Mahajan.Effects of stellate ganglion block on cerebral haemodynamics as assessed by transcranial Doppler ultrasonography[J]. British Journal of Anaesthesia.2005; 95(5):669-673.
    [27]Steinle JJ, Krizsan-Agbas D, Smith PG.J. Regional regulation of choroidal blood flow by autonomic innervation in the rat[J]. J Physiol Regul Integr Comp Physiol,2000,279(1):R202-209.
    [28] Khatun S, Kanayama N, Belayet HM, et al. The impact of vasoactive peptides on nitric oxide production in cultured sympathetic neurons[J]. Neuroscience, 1999,93(2):605-609.
    [29] Yamada K,Kushiku K,Yamada H,et al. Contribution of nitric oxide to the presynptic inhibition by endothelin ETB receptor of the canine stellate ganglionic transmission[J]. J Pharmacol Exp Ther, 1999, 290:1175-1181.
    [30] 全守波,刘菊英,王清秀等.星状神经节阻滞对全脑缺血-再灌注损伤家血浆内皮素和降钙素基因相关肽的影响[J].临床麻醉学杂志,2005,21(4 ):260-262.
    [1] Edvinsson L, Emson P, Mc Culloch J, et al. Neuropeptide Y: immunocytochemical localization to and effect upon feline pial arteries and veins invitro and insitu[J]. Acta Physio l Scand,1984, 122(1): 155~163.
    [2] Alafaci C, Cowen T, Crockard HA , et al. Perivascular nerve ypes supplying cerebral blood vessels[J]. Acta Physio l Scand,1986, 127(1): 9~12.
    [3] 林雪群,邵立健,程上穆,石嘉庆.大鼠椎动脉基底动脉系脑血管神经肽Y 能神经与星状神经节、颈上神经节的关系[J].神经解剖学杂志,2001,17(3):257~260.
    [4] Ohinata Y,Makimoto K, Kawakami M, Haginomori S, Araki M,Takahashi H. Blood flow in common carotid and vertebral arteries in patients with sudden deafness[J]. Ann Otol Rhinol Laryngol,1997,106(1):27-32.
    [5] Keiichi Nitahara; Kenjiro Dan. Blood flow velocity changes in carotid and vertebral arteries with stellate ganglion block[J]. Regional Anesthesia and Pain Medicine,1998,23(6):600-604.
    [6] Moppett IK, Mahajan RP. Transcranial Doppler ultrasonography in anaesthesia and intensive care[J]. Br J Anaesth 2004,93(3):710-724.
    [7] M M Gupta, P K Bithal, H H Dash, A Chaturvedi, R P Mahajan. Effects of stellate ganglion block on cerebral haemodynamics as assessed by transcranial Doppler ultrasonography[J].British Journal of Anaesthesia.2005; 95(5):669-673.
    [8] Ohta Sukejuro; Hadeishi Hiromu; Suzuki Masahiro. Effect of Stellate Ganglion Block on Cerebral Blood Flow in Normoxemic and Hyperoxemic States[J]. Journal of Neurosurgical Anesthesiology,1990,2(4):272-279.
    [9] Okuda Y, Kitajima T. Influence of stellate ganglion block and electrical stimulation of the stellate ganglion on bilateral brachialarterial blood flow is stellate ganglion block effective either unilaterally or bilaterally[J]. Anesth Analg, 2000, 90(7):1630-1635.
    [10] Feng Liu, Guozhong Xu, Zheli Liu, et al. The Effects of Stellate Ganglion Block on Visual Evoked Potential and Blood Flow of the Ophthalmic and Internal Carotid Arteries in Patients with Ischemic Optic Neuropathy[J]. Anesth Analg, 2005;100(10):1193-1196.
    [11] Iwama H. A study of cerebral circulation following cervical sympathetic ganglion block[J].Masui,1992;41(12): 1250–1259.
    [12] Treggiari MM,Romand JA,Martin JB,Reverdin A, Rufenacht DA,de Tribolet N. Cervical sympathetic block to reverse delayed ischemic neurological deficits after aneurismal subarachnoid hemorrhage[J]. Stroke,2003,34(7): 961-967.
    [13] Bonvento G, Lacombe P, Mackenzie ET, et al. Differential effects of electrical stimulation of the dorsal raphe nucleus and of cervical sympathectomy on serotonin and noradrenaline concentrations in major cerebral arteries and pial vessels in the rat [J ]. J Cereb Blood Flow Metab, 1990, 10(1): 123-126.
    [14] 王贤裕, 王清秀, 杨 光, 等. 星状神经结阻滞对兔血浆去甲肾上腺素浓度的影响[J ]. 中华麻醉学杂志,2001,21 (7) : 420-422.
    [15] 赵春亭,王恩真,张迎萍,等.星状神经节阻滞稳定全麻气管内插管及切皮时应激反应的初步研究[J]. 首都医科大学学报.2000,21(2):125-127.
    [16] Yamada K,Kushiku K,Yamada H,et al. Contribution of nitric oxide to the presynptic inhibition by endothelin ETB receptor of the canine stellate ganglionic transmission[J]. J Pharmacol Exp Ther, 1999, 290(10):1175-1181.
    [17] Steinle JJ, Krizsan-Agbas D, Smith PG.J. Regional regulation of choroidal blood flow by autonomic innervation in the rat[J]. J Physiol Regul Integr Comp Physiol,2000,279(1):R202-209.
    [18] Khatun S, Kanayama N, Belayet HM, et al. The impact of vasoactivepeptides on nitric oxide production in cultured sympathetic neurons. Neuroscience, 1999,93(2):605-609.
    [19] 全守波,刘菊英,王清秀等.星状神经节阻滞对全脑缺血-再灌注损伤家血浆内皮素和降钙素基因相关肽的影响[J].临床麻醉学杂志,2005,21(4):260-262.
    [20] Hargreaves KM , Bowles WR , Jackson DL. Intrinsic regulation of CGRP release by dental pulp sympathetic fibers[J]. J Dent Res, 2003, 82(2):398-401.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700