高精度ΔΣ调制器的高性能优化技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为一种高精度模数转换器结构,ΔΣ模数转换器(Analog-to-Digital Converter,ADC)在迅速发展的现代便携式电子产品中获得了广泛的应用。为了在性能提升和功能增多的同时满足对产品续航能力增长的需求和确保产品的可靠性,对其进行低压低功耗设计是十分必要的,且一直也是学术界和工业界所关注的热点话题。
     △∑ADC通常包含模拟调制器和数字降采样滤波器两部分,论文针对若干不同应用领域中高精度△Σ调制器的性能要求,研究与发展了其优化设计技术。
     1、针对便携式测量领域的需求,分别对高阶单比特和多比特调制器结构的高精度、低压低功耗设计技术展开了研究。为适应低压低功耗设计要求,单比特调制器采用了单环全差分前馈结构,并结合以下技术进行优化:(1)使用全面、精确的系统建模设计与分析方法选取最优系统结构;(2)提出一种新颖的低压低功耗运算跨导放大器(Operational Transconductance Amplifier, OTA)结构及相应的高性能共模反馈(Commmon Mode Feedback, CMFB)电路来优化核心电路功耗;(3)运用一种功耗和面积优化的Resonator技术来降低带内量化噪声能量。
     在上述工作基础上,开展了多比特结构的性能优化研究,提出若干具有创新性的技术措施:(1)首次采用MBSO (Multi-Bit Switched-Opamp)技术来实现精度与功耗的最佳化;(2)提出一种新颖的高效率、低功耗SO结构;(3)给出适用于SO技术的超低功耗、微型化Resonator技术,与传统结构相比可节省75%功耗和70%面积。
     以上调制器都采用0.35μm CMOS工艺实现,信号带宽1KHz。测试结果表明单比特结构在1.5V电压下,其动态范围(Dynamic Range, DR)达到了95dB,功耗为20μW;而多比特结构在1.8V电压下,其DR有88dB,功耗仅为9μW。
     2、为了实现植入式电子系统精确记录全频带微弱生物电信号,论文对高精度植入式调制器的超低功耗、微型化设计技术展开研究。针对上述MBSO调制器存在的不足之处提出了相应的改进:(1)重新优化系统系数并合理安排关键模块工作时序,提高了系统稳定性;(2)采用高密度MOSCAP设计技术来实现微型化目标;(3)提出一种新电路偏置技术来进一步优化SO的功耗;(4)介绍一种基于MOSCAP-String设计的微型化、超低功耗量化器结构。
     所设计的调制器在0.18μm CMOS工艺下设计与实现,测试结果表明,在1V工作电压下调制器具有85dB信号噪声失真比(Signal-to-Noise and Distortion Ratio, SNDR)的和10KHz信号带宽,其功耗仅为13μW。
     3、为了确保音频电子产品的保真度,克服目前高精度音频调制器功耗大的缺点,论文进一步对高精度音频调制器的低失真、超低功耗关键设计技术展开研究。与植入式MBSO调制器相比,在前馈部分采用了两步相加技术来优化功耗。此外,提出一种新颖的低失真双向选择(Dual-Cycle Shift, DCS)数据加权平均(Data-Weighted Averaging, DWA)技术用来抑制反馈数模转换器(Digital-to-Analog Converter, DAC)中的电容失配误差。同时,还提出一种比较器数目可减半的超低功耗、微型化量化器结构。设计在0.18μmCMOS工艺下实现,测试结果表明在0.9V工作电压下其SNDR可达92dB,功耗仅为58μW。
△∑ADC, a high-precision analog-to-digital converter structure, is currently widely used in modern portable electronic products. These products develop rapidly in recent years, and their performance and functions are greatly improved. For this case, it is very necessary to carry out research on low voltage low power△∑ADC in order to meet the growing demands for battery operational life and ensure the reliability of products. It is also considered as a hot topic of concern in both academia and industry.
     Usually,△∑ADC contains analog modulator and digital decimation filter. This dissertation focuses on high-performance optimization techniques for high-precision△∑modulators in different applications.
     1. Considering the requirements of portable measurement devices, high-precision, low voltage low power techniques for high-order single-bit and multi-bit modulators are discussed respectively. To meet the requirements of low voltage low power, a single-loop fully differential feed-forward structure is proposed in single-bit modulator design, and other optimization techniques are shown below:(1) comprehensive, accurate system models and analysis methods are developed to select optimal system architecture; (2) a new low voltage low power operational transconductance amplifier (OTA) with high performance common mode feedback (CMFB) circuit is introduced to reduce core power consumption; (3) a power and area optimized resonator circuit is adopted to improve in-band quantization noise power.
     Based on the former research, performance optimization on multi-bit structure is also introduced, and its innovative techniques are given:(1) multi-bit switched-opamp (MBSO) techqnque is first used to achieve a good trade-off between high precision and low power design; (2) a novel high power-efficiency SO is proposed; (3) a new ultra-low power, miniaturized resonator structure applicable to SO technique is developed to save 75% power and 70% area cost compared with the traditional structure.
     Both modulators are implemented in 0.35μm CMOS, and their bandwidth is 1KHz. Measurement results show single-bit modulator achieves 95dB dynamic range (DR) and consumes 20μW under a 1.5V supply; for multi-bit modulator under a 1.8V supply, its DR is 88dB and the total power is only 9μW.
     2. To accurately record full-spectrum weak biomedical signals and meet the demands of implantable electronic systems, ultra-low power, miniaturization techniques for high precision implantable modulator is also described. This implantable modulator is optimized according to the shortcomings of previous MBSO one. its improvements are follow:(1) system coefficients and operating time of key modules are re-optimized to guarantee the stability; (2) one technique based on high density MOSCAP is employed to realize the target of miniaturization; (3) one new bias technique is developed to further optimize the power consumption of SO; (4) an innovative miniaturized ultra-low power quantizer structure with MOSCAP-string is proposed. Testing results verify that the designed implantable modulator in 0.18μm CMOS can obtain 85dB signal-to-noise and distortion ratio (SNDR) over a 10KHz bandwidth, but it power is only 13μW under a 1.OV supply.
     3. Low distortion, ultra-low power techniques for high-precision audio modulators are introduced to ensure the fidelity of electronic products and overcome the problem of high power. Compared with implantable MBSO modulator design, one two-step summation technique is adopted in the feed-forward part to further reduce power consumption. In addition, one novel low-distortion dual-cycle shift (DCS) data-weighted averaging (DWA) technique is used to suppress harmonic distortions caused by capacitance mismatch of feedback digital-to-analog converter (DAC). Another miniaturized ultra-low power quantizer structure with half comparator number reduction is given in this design. Finally, the measured SNDR of the designed modulator implemented in 0.18μm CMOS is 92dB, and the total power under a 0.9V supply is 58μW.
引文
[1]J. Roh, S. Byun, Y. Choi, H. Roh, Y.-G. Kim and J.-K. Kee, "A 0.9-V 60-μW 1-Bit Fourth-Order Delta-Sigma Modulator with 83-dB Dynamic Range," IEEE J. Solid-State Circuits, vol.43, no.2, pp.361-370, Feb.2008.
    [2]Jinghua Zhang, Yong Lian, Libin Yao and Bo Shi, "A 0.6-V 82-dB 28.6-μW Continuous-Time Audio Delta-Sigma Modulator," IEEE J. Solid-State Circuits, vol.46, no.10, pp. 2326-2335, Oct.2011.
    [3]Fridolin Michel and Michiel Steyaert, "A 250mV 7.5μW 61 dB SNDR CMOS SC △∑ Modulator Using a Near-Threshhold-Voltage-Biased CMOS Inverter Technique," ISSCC Dig. Tech. Papers, pp.476-477, Feb.2011. [4] YunYoung Choi, "A 720μW,16-Bit △∑ A/D Converter for Audio Applications," PhD Dissertation, University of Texas at Dallas, Aug.2005. [5] Xuefeng Chen, "A Wideband Low-Power Continuous-Time Delta-Sigma Modulator for Next Generation Wireless Applications," PhD Dissertation, Oregon State University, Jun.2007. [6] Saiyu Ren, "Broad Bandwidth High Resolution Analog-to-Digital Converters:Theory, Architecture and Implementation," PhD Dissertation, Wright State University, Mar. 2008. [7] Jian Xu, et al, "A 9μW 88dB DR Fully-Clocked Switched-Opamp △∑ Modulator with Novel Power and Area Efficient Resonator," Proc. of IEEE CICC, Sept.2010. [8] J. Xu, et al., "9μW 88dB DR Fully-Clocked Switched-Opamp △∑ Modulator with Novel Efficient Resonator," IEE Electron. Lett, vol.46, no.19, pp.1313-1315, Sep.2010. [9] R. Muller, S. Gambini, and J. M. Rabaey, "A 0.013mm2,5μW, DC-Coupled Neural Signal Acquisition IC With 0.5V Supply," ISSCC Dig. Tech. Papers, pp.302-304, Feb. 2011.
    [10]Gang Wang, "An Integrated Low Noise Neural Recording System," PhD Dissertation University of California at Santa Cruz, Mar.2009.
    [11]M. Kim et al., "A 0.9 V 92dB Double-Sampled Switched-RC Delta-Sigma Audio ADC," IEEE J. Solid-State Circuits, vol.43, no.5, pp.1195-1206, May 2008.
    [12]H. Park, et al., "A 0.7-V 100-dB 870-μW Digital Audio ∑△ Modulator," in Symp. VLSI Circuits Dig. Tech. Papers, pp.178-179,Jun.2008.
    [13]L. Liu, D. Li, Y. Ye, L. Chen and Z. Wang, "A 95dB SNDR Audio △∑ Modulator in 65nm CMOS," Proc. of IEEE CICC, Sept.2011.
    [14]M. El-Chammas and B. Murmann, "A 12-GS/s 81-mW 5-bit time-interleaved flash ADC with background timing skew calibration," in Symp. VLSI Circuits Dig. Tech. Papers, pp. 157-158, Jun.2010.
    [15]R. Nguyen, C. Raynaud, A. Cathelin, and B. Murmann, "A 6.7-ENOB,500-MS/s, 5.1-mW Dynamic Pipeline ADC in 65-nm SOI CMOS," Proc. of IEEE ESSCIRC, pp. 359-362, Sep.2011.
    [16]Rajaee, O., S. Takeuchi, M. Aniya, K. Hamashita, and U. Moon, "Low-OSR Over-Ranging Hybrid ADC Incorporating Noise-Shaped Two-Step Quantizer," IEEE J. Solid-State Circuits, vol.46, no.11, pp.2458-2468, Nov.2011.
    [17]Maghari, N., and U. Moon, "A Third-Order DT △∑ Modulator Using Noise-Shaped Bi-directional Single-Slope Quantizer", ISSCC Dig. Tech. Papers, pp.474-476, Feb.2011.
    [18]Zhenglin Yang, Libin Yao and Yong Lian, "A 0.5-V 35-μW 85-dB DR Double-Sample AS Modulator for Audio Applications," IEEE J. Solid-State Circuits, vol.47, no.3, pp. 722-735, Mar.2012.
    [19]X. D. Zou, W. S. Liew, L. B. Yao and Y. Lian, "A 1V 22μW 32-Channel Implantable EEG Recording IC," ISSCC Dig. Tech. Papers, pp.126-127, Feb.2010.
    [20]A. J. Chen and Y.P. Xu, "Multi-bit Delta-Sigma Modulator with Noise Shaping Dynamic Element Matching," IEEE Trans. Circuit Syst.-I, vol.56, no.6, pp.1125-1133, Jun.2009.
    [21]J. Chen and Y.P. Xu, "A 94dB SFDR 78dB DR 2.2MHz BW Multi-bit Delta-Sigma Modulator with Noise Shaping DAC," Proc. of IEEE CICC, pp.69-72, Sep.2007.
    [22]Chun-Cheng Liu, Soon-Jyh Chang, Guan-Ying Huang and Ying-Zu Lin, "A 10-bit 50-MS/s SAR ADC with a Monotonic Capacitor Switching Procedure," IEEE J. Solid-State Circuits, vol.45, no.4, pp.731-740, Apr.2010.
    [23]Ying-Zu Lin, Chun-Cheng Liu, Guan-Ying Huang, Ya-Ting Shyu and Soon-Jyh Chang, "A 9-bit 150-MS/s 1.53-mW Subranged SAR ADC in 90-nm CMOS," in Symp. VLSI Circuits Dig. Tech. Papers, pp.243-244, Jun.2010.
    [24]Chun-Cheng Liu, Soon-Jyh Chang, Guan-Ying Huang, Ying-Zu Lin, Chung-Ming Huang and Chih-Hao Huang, "A 10b 100MS/s 1.13mW SAR ADC with Binary Scaled Error Compensation," ISSCC Dig. Tech. Papers, pp.386-387, Feb.2010.
    [25]Libin Yao, Michiel S. J. Steyaert and Willy Sansen, "A 1V 88dB 20kHz △∑ Modulator in 90nm CMOS", ISSCC Dig. Tech. Papers, pp.80-81, Feb.2004.
    [26]Libin Yao, Michiel S. J. Steyaert and Willy Sansen, "A 1V 140μW 88dB Audio Sigma-Delta Modulator in 90nm CMOS", IEEE J. Solid-State Circuits, vol.39, no.11, pp.1809-1818, Nov.2004.
    [27]Jens Sauerbrey, Thomas Tille, Doris Schmitt-Landsiedel and Roland Thewes, "A 0.7V MOSFET-Only Switched-Opamp ∑△ Modulator", ISSCC Dig. Tech. Papers, pp.168-169, Feb.2002.
    [28]V. Peluso, M. S. J. Steyaert and W. Sansen, "A 1.5-V 100-μW △∑ Modulator with 12-b Dynamic Range Using The Switched-Opamp Technique," IEEE J. Solid-State Circuits, vol.32, no.7, pp.943-951, Jul.1997.
    [29]J. Goes, B. Vaz, R. Monteiro and N. Paulino, "A 0.9-V △∑ Modulator with 80-dB SNDR and 83-dB DR Using A Single-Phase Technique," ISSCC. Dig. Tech. Papers, pp.74-75, Feb.2006.
    [30]Youngcheol Chae, et al., "A 0.7V 36μW 85dB-DR Audio ∑△ Modulator Using Class-C Inverter," ISSCC Dig. Tech. Papers, pp.489-490, Feb.2008.
    [31]Youngcheol Chae and Gunhee Han, "Low Voltage, Low Power, Inverter-Based Switch-ed-Capacitor Delta-Sigma Modulator", IEEE J. Solid-State Circuits, vol.44, no.2. pp.458-472, Feb.2009.
    [32]Y. Chae and G. Han, "A Low Power △∑ Modulator Using Class-C Inverter," in Symp. VLSI Circuits Dig. Tech. Papers, pp.240-241, Jun.2007.
    [33]J. K. Fiorenza, T. Sepke, P. Holloway, C. G. Sodini and H.-S.Lee, "Comparator-Based Switched-Capacitor Circuits for Scaled CMOS Technologies," IEEE J. Solid-State Cir-cuits, vol.41, no.12, pp.2658-2668, Dec.2006.
    [34]Shanthi Pavan, et al, "A 110μW Single Bit Audio Continuous-time Oversampled Con-verter with 92.5 dB Dynamic Range," Proc. of IEEE ESSCIRC, pp.320-323, Sep.2009.
    [35]K.-P. Pun, S. Chatterjee and P. Kinget, "A 0.5-V 74-dB SNDR 25-kHz CT △∑ Modulator with Return-to-Open DAC," ISSCC. Dig. Tech. Papers, pp.72-73, Feb.2006.
    [36]Vijay Dhanasekaran. et al.. "A Continuous Time Multi-Bit △∑ ADC Using Time Domain Quantizer and Feedback Element," IEEE J. Solid-State Circuits, vol.46, no.3, pp.639-650, Mar.2011.
    [37]Kazuo Matsukawa, et al., "A Fifth-Order Continuous-Time Delta-Sigma Modulator With Single-Opamp Resonator," IEEE J. Solid-State Circuits, vol.45, no.4, pp.697-706, Apr. 2010.
    [38]Guanghua Shu, Mingjun Fan, Chen Shu, Cheng Chen, Ning Li and Junyan Ren, "A 12-bit 50-MS/s Pipelined Analog-to-Digital Converter in 65nm CMOS," IEEE Interna-tional Conference on Solid-State and Integrated Circuit Technology (ICSICT), pp.563-565, Nov.2010.
    [39]Hui Zhang, Yajie Qin, Siyu Yang and Zhiliang Hong, "Design of An Ultra-Low Power SAR ADC for Biomedical Applications," IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT), pp.460-462, Nov.2010.
    [40]Yudan Yuan, Yawei Guo, Xu Cheng and Xiaoyang Zeng, "A 100-MHz Bandpass △∑ Modulator with 75-dB Dynamic Range," IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT), pp.242-244, Nov.2010.
    [41]Jian Li, Xiaoyang Zeng, Lei Xie, Jun Chen, Jianyun Zhang and Yawei Guo, "A 1.8-V 22-mW 10-bit 30-MS/s Pipelined CMOS ADC for Low-Power Subsampling Applica-tions," IEEE J. Solid-State Circuits, vol.43, no.2, pp.321-329, Feb.2008.
    [42]Lei Luo, Kaihui Lin, Long Cheng, Liren Zhou, Fan Ye and Junyan Ren, "A Digitally Ca-librated 14-Bit Linear 100-MS/s Pipelined ADC With Wideband Sampling Frontend,' Proc. of IEEE ESSCIRC, pp.472-475, Sep.2009.
    [43]Jian Xu, Xiaobo Wu, Menglian Zhao, Rui Fan, Hanqing Wang, Xiao fen Ma and Bill Liu. "Ultra Low-FOM High-Precision △∑ Modulators with Fully-Clocked SO and Static Power-less Quantizers," Proc. of IEEE CICC, Sept.2011.
    [44]Jian Xu, Xiaobo Wu, Hanqing Wang, Junyi Shen and Bill Liu, "Power Optimization of High Performance △∑ Modulators for Portable Measurement Applications," Proc. of IEEE Asia Solid-State Circuits Conference (A-SSCC), Nov.2010.
    [45]Liyuan Liu, Dongmei Li, Yafei Ye and Zhihua Wang, "A 92.4dB SNDR 24kHz △∑ Mod- ulator Consuming 352μW," Proc. of International Symposium on Low Power Electronics and Design (ISLPED), pp.351-356, Mar.2011.
    [46]Liyuan Liu, Dongmei Li, Liangdong Chen, Chun Zhang, Shaojun Wei and Zhihua Wang, "A 1V 350μW 92dB SNDR 24 kHz △∑ Modulator in 0.18μm CMOS," Proc. of IEEE Asia Solid-State Circuits Conference (A-SSCC), Nov.2010.
    [47]毕查德·拉扎维,“模拟CMOS集成电路设计”,西安交通大学出版社,2003年。
    [48]Phillip E. Allen and Douglas R. Holberg, "CMOS模拟集成电路设计”,电子工业出版社,2005年。
    [49]R. Jacob Baker, Harry W. Li and David E.Boyce, "CMOS电路设计·布局与仿真”,机械工业出版社,2006年。
    [50]Chang-Hyuk Cho, "A Power Optimized Pipelined Analog-to-Digital Converter Design in Deep Sub-micron CMOS Technology," PhD Dissertation, Georgia Institute of Tech-nology, Dec.2005.
    [51]胡如波,“测量用16位Delta-Sigma ADC的设计”,硕士学位论文,浙江大学,2006年5月。
    [52]Walt Kester, "了解SINAD、ENOB、SNR、THD、THD+N、SFDR,不在噪底中迷失”,MT-003指南,Analog Devices Inc.,2009年。
    [53]Brian P. Ginsburg and Anantha P. Chandrakasan, "500-MS/s 5-bit ADC in 65-nm CMOS With Split Capacitor Array DAC," IEEE J. Solid-State Circuits, vol.42, no.4, pp. 739-747, Apr.2007.
    [54]Pieter Harpe, Ben Busze, Kathleen Philips and Harmke de Groot, "A 0.47-1.6mW 5bit 0.5-1GS/s Time-Interleaved SAR ADC for Low-Power UWB Radios," Proc. of IEEE ESSCIRC, pp.147-150, Sep.2011.
    [55]Wenbo Liu, Yuchun Chang, Szu-Kang Hsien, Bo-Wei Chen, Yung-Pin Lee, Wen-Tsao Chen, Tzu-Yi Yang, Gin-Kou Ma and Yun Chiu, "A 600MS/s 30mW 0.13μm CMOS ADC Array Achieving Over 60dB SFDR With Adaptive Digital Equalization," ISSCC Dig. Tech. Papers, pp.82-83, Feb.2009.
    [56]Masato Yoshioka, Kiyoshi Ishikawa, Takeshi Takayama and Sanroku Tsukamoto, "A 10-b 50-MS/s 820-μW SAR ADC With On-Chip Digital Calibration," ISSCC. Dig. Tech. Papers, pp.384-385, Feb.2010.
    [57]Wenbo Liu. Pingli Huang and Yun Chiu,"A 12-bit,45-MS/s,3-mW Redundant Succes-sive-Approximation-Register Analog-to-Digital Converter With Digital Calibration, IEEE J. Solid-State Circuits, vol.46, no.11, pp.2661-2672, Nov.2011.
    [58]Patrick Y. Wu, Vincent Sin-Luen Cheung and Howard C. Luong, "A 1-V 100-MS/s 8-bit CMOS Switched-Opamp Pipelined ADC Using Loading-Free Architecture," IEEE J. Solid-State Circuits, vol.42, no.4, pp.730-738, Apr.2007.
    [59]Jie Yuan, Sheung Wai Fung, Kai Yin Chan and Ruoyu Xu, "A 12-bit 20 MS/s 56.3 mW Pipelined ADC With Interpolation-Based Nonlinear Calibration," IEEE Trans. Circuit Syst.-J, vol.59, no.3, pp.555-565, Mar.2012.
    [60]A. Panigada and I. Galton, "Digital Background Correction of Harmonic Distortion in Pipelined ADCs," IEEE Trans. Circuit Syst.-I, vol.53, no.9, pp.1885-1895, Sep.2006.
    [61]Shahriar Rabii and Bruce A. Wooley, "A 1.8-V Digital-Audio △∑ Modulator in 0.8-μm CMOS", IEEE J. Solid-State Circuits, vol.32, no.6, pp.783-796, Jun.1997.
    [62]S. Rabii and B. A. Wooley, "The Design of Low-Voltage, Low-Power △∑ Modulators," Norwell, MA:KAP,1999.
    [63]欧伟,“高精度低功耗多位量化Σ-Δ调制器的研究”,硕士学位论文,浙江大学,2008年5月。
    [64]朱恒芳,“AE ADC的低压低功耗设计技术研究”,硕士学位论文,浙江大学,2007年5月。
    [65]Walt Kester, "ADC Architectures III:△∑ ADC Basics", MT-022 Tutorial, Analog Devices Inc.,2009。
    [66]Lucien J. Breems, Robert Rutten, Robert van Veldhoven, Gerard van der Weide and Henk Termeer, "A 56mW CT Quadrature Cascaded ∑△ Modulator with 77dB DR in a Near Zero-IF 20MHz Band," ISSCC. Dig. Tech. Papers, pp.238-239. Feb.2007.
    [67]Xuefeng Chen, Yan Wang, Yoshihisa Fujimoto, Pascal Lo Re, Yusuke Kanazawa, Jesper Steensgaard and Gabor Temes, "An 18mW CT △∑ Modulator with 25MHz Bandwidth for Next Generation Wireless Applications," Proc. of CICC, pp.73-76, Sep.2007.
    [68]R. Schreier and G. C. Temes, "Understanding Delta-Sigma Data Converters," John Wiley & Sons, New York:IEEE Press,2004.
    [69]Steven R. Norsworthy, Richard Schreier and Gabor C. Temes, "Delta-Sigma Data Con- verters Theory, Design, and Simulation," Piscataway USA:IEEE, Circuits & Systems Society,1996.
    [70]Gerhard Mitteregger, Christian Ebner, Stephan Mechnig, Thomas Blon, Christophe Ho-luigue and Ernesto Romani, "A 20-mW 640-MHz CMOS Continuous-Time ADC With 20-MHz Signal Bandwidth,80-dB Dynamic Range and 12-bit ENOB," IEEE J. Sol-id-State Circuits, vol.41, no.12, pp.2641-2649, Dec.2006.
    [71]KiYoung Nam, Sang-Min Lee, David K. Su and Bruce A. Wooley, "A Low-Voltage Low-Power △∑ Modulator for Broadband Analog-to-Digital Conversion," IEEE J. Sol-id-State Circuits, vol.40, no.9, pp.1855-1864, Sep.2005.
    [72]Kyehyung Lee, Jeongseok Chae, Mitsuru Aniya, Koichi Hamashita, Kaoru Takasuka, Seiji Takeuchi and Gabor C. Temes, "A Noise-Coupled Time-Interleaved △∑ ADC with 4.2MHz BW,-98dB THD, and 79dB SNDR," ISSCC. Dig. Tech. Papers, pp.494-495. Feb.2008.
    [73]Kyehyung Lee, Matthew R. Miller and Gabor C. Temes, "An 8.1 mW,82 dB Delta-Sigma ADC With 1.9 MHz BW and 98 dB THD," IEEE J. Solid-State Circuits, vol.44. no.8, pp.2202-2211, Aug.2009.
    [74]Enrique Prefasi, Susana Paton and Luis Hernandez, "A 7 mW 20 MHz BW Time-Encoding Oversampling Converter Implemented in a 0.08 mm2 65 nm CMOS Circuit," IEEE J. Solid-State Circuits, vol.46, no.7, pp.1562-1574, Jul.2011.
    [75]Jun-Gi Jo, Jinho Noh and Changsik Yoo, "A 20-MHz Bandwidth Continuous-Time △∑ Modulator With Jitter Immunity Improved Full Clock Period SCR (FSCR) DAC and High-Speed DWA," IEEE J. Solid-State Circuits, vol.46, no.11, pp.2469-2477, Nov. 2011.
    [76]Wenhua Yang, William Schofield, Hajime Shibata, Sudhir Korrapati, Ali Shaikh, Nazmy Abaskharoun and Dave Ribner, "A 100mW lOMHz-BW CT △∑ Modulator with 87dB DR and 91dBc IMD," ISSCC. Dig. Tech. Papers, pp.498-499, Feb.2008.
    [77]Paul Morrow, Maria Chamarro, Colin Lyden, Pablo Ventura, Andrew Abo, Atsushi Ma-tamura, Michael Keane, Richard O'Brien, Paschal Minogue, Johan Mansson, Niall McGuinness, Martin McGranaghan and Ivan Ryan, "A 0.18 m 102dB-SNR Mixed CT SC Audio-Band △∑ ADC," ISSCC. Dig. Tech. Papers, pp.178-179, Feb.2005.
    [78]Devrim Aksin, Mohammad Al-Shyoukh. and Franco Maloberti. "Switch Bootstrapping for Precise Sampling Beyond Supply Voltage," IEEE J. Solid-State Circuits, vol.41. no. 8, pp.1938-1943, Aug.2006.
    [79]C. C. Enz and G. C. Temes, "Circuit Techniques for Reducing the Effects of Opamp Im-perfactions:Auto-Zeroing, Correlated Double Sampling, and Chopper Stabilization.' Proc. IEEE, vol.84, pp.1584-1614, Nov.1996.
    [80]Hsin-Liang Chen, Po-Sheng Chen and Jen-Shiun Chiang, "A Low-Offset Low-Noise △∑ Modulator With Pseudorandom Chopper-Stabilization Technique," IEEE Trans. Circuit Syst.-1, vol.56, no.12, pp.2533-2543, Dec.2009.
    [81]Wei Ou, Xiaobo Wu, "High-Consistency Behavior Modeling of Switched-Capacitor △∑ Modulator in SIMULINK", Chinese Journal of Semiconductors, Vol.29, No.11, pp. 2209-2217, Nov.2008.
    [82]S. S. Rajput and S. S. Jamuar, "Low Voltage Analog Circuit Design Techniques." IEEE Circuits Syst. Mag., vol.2, no.1, pp.24-42, May 2002.
    [83]Jian Xu, Xiaobo Wu, Menglian Zhao and Junyi Shen, "A 20μW 95dB DR 4th-Order Delta-Sigma Modulator with Novel Power Efficient OTA and Resonator," Journal of Zhejiang University Science-C, vol.12, no.6, pp.486-498, Jun.2011.
    [84]Ojas Choksi and L.Richard Carley, "Analysis of Switched-Capacitor Common-Mode Feedback Circuit," IEEE Trans. Circuit Syst. II, vol.50, no.12, pp.906-917, Dec.2003.
    [85]K. Nagaraj, "A Parasitic-Insensitive Area-Efficient Approach to Realizing Very Large Time Constants in Switched-Capacitor Circuits," IEEE Trans. Circuit Syst., vol.36, no.9, pp.1210-1216, Sep.1989.
    [86]Jiang Yu and Franco Maloberti, "A Low-Power Multi-Bit △∑ Modulator in 90nm Digital CMOS without DEM," ISSCC Dig. Tech. Papers, pp.168-169, Feb.2005.
    [87]Ahmed Gharbiya and David A. Johns, "A 12-bit 3.125 MHz Bandwidth 0-3 MASH Del-ta-Sigma Modulator," IEEE J. Solid-State Circuits, vol.44, no.7, pp.2010-2018, Jul. 2009.
    [88]I. Fujimori, et al., "A 90-dB SNR 2.5-MHz Output-Rate ADC Using Cascaded Multi-Bit Delta-Sigma Modulation at 8x Oversampling Ratio," IEEE J. Solid-State Circuit, vol.35, no.12, pp.1820-1828, Dec.2000.
    [89]Xiaofen Ma, Jian Xu and Xiaobo Wu, "Dual Cycle Shift Data-Weighted Averaging Technique for Multi-Bit △∑ Modulators," IEEE International Electron Devices and Sol-id-State Circuits (EDSSC) Conference, pp.174-177, Nov.2009.
    [90]R. Wang, "A Multi-Bit Delta-Sigma Audio Digital-to-Analog Converter," PhD Disser-tation, Oregon State University, Jun.2006.
    [91]Anas A. Hamoui and Kenneth W. Martin, "High-Order Multi-Bit Modulators and Pseudo Data-Weighted-Averaging in Low-Oversampling △∑ ADCs for Broadband Applica-tions," IEEE Trans. Circuit Syst.-I, vol.51, no.1, pp.72-85, Jan.2004.
    [92]K. Vleugels, S. Rabii and B. A.Wooley, "A 2.5-V △∑ Modulator for Broadband Commu-nications Applications," IEEE J. Solid-State Circuits, vol.36, no.12, pp.1887-1899. Dec.2001.
    [93]Vincent Sin-Luen Cheung, Howard Cam Luong and Wing-Hung Ki, "A 1V CMOS Switched-Opamp Switched-Capacitor Pseudo-2-Path Filter," IEEE J. Solid-State Cir-cuits, vol.36, No.1, Jan.2001.
    [94]M. Azin, D. J. Guggenmos, S. Barbay, R. J. Nudo and P. Mohseni, "A Battery-Powered Activity-Dependent Intracortical Micro stimulation IC for Brain-Machine-Brain Interface," IEEE J. Solid-State Circuits, vol.46, no.4 pp.731-745, Apr.2011.
    [95]D. J. McFarland and J. R. Wolpaw, "Brain-Computer Interface Operation of Robotic and Prosthetic Devices," Computer, vol.41, no.10, pp.52-56, Oct.2008.
    [96]A. T. Avestruz, W. Santa, D. Carlson, et al., "A 5μW/Channel Spectral Analysis IC for Chronic Bidirectional Brain-Machine Interfaces," IEEE J. Solid-State Circuits, vol.43, no.12, pp.3006-3024, Dec.2008.
    [97]A. Hassibi, R. Navid, R. W. Dutton and T. H. Lee, "Comprehensive Study of Noise Processes in Electrode Electrolyte Interfaces," Journal of Applied Physics, vol.96, no.2 pp.1074-1082, Jul.2004.
    [98]K. J. Miller, S. Zanos, E. E. Fetz, M. d. Nijs, and J. G. Ojemann, "Decoupling The Cortical Power Spectrum Reveals Real-Time Representation of Individual Finger Movements in Humans," J. Neurosci., vol.29, no.10, pp.3132-3137, Mar.2009.
    [99]Tee Hui Teo, el al, "A 700-μW Wireless Sensor Node SoC for Continuous Real-Time Health Monitoring", IEEE J. Solid-State Circuits, vol.45, no.11, pp.2292-2299. Nov. 2010.
    [100]T. Tille, J. Sauerbrey and D. Schmitt-Landsiedel. "A 1.8-V MOSFET-Only ∑△ Modula-tor Using Substrate Biased Depletion-Mode MOS Capacitors in Series Compensation,' IEEE J. Solid-State Circuits, vol.36, no.7, pp.1041-1047, Jul.2001.
    [101]Rui Fan, Jian Xu and Xiaobo Wu, "A MOSFET-Only Delta-Sigma Modulator for Im-plantable Neural Signal Sensors," Proceedings International MultiConference of Engi-neering and Computer Scientists, pp.1282-1285, Mar.2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700