纯化后海藻硫酸多糖蛋白复合物抗肿瘤作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:针对海藻硫酸多糖蛋白复合物(SPPC)的有效活性成分的构成特点,对SPPC进一步纯化处理,提高其有效活性成分含量;并研究纯化后海藻多糖蛋白复合物(PSPPC)在体内、外的抗肿瘤活性,探讨PSPPC的抗肿瘤作用机制。
     材料与方法:1.将海藻硫酸多糖蛋白复合物(SPPC)经乙醇分级,Sevage法去杂蛋白,再经活性炭脱色处理后得纯化后海藻硫酸多糖蛋白复合物(PSPPC)样品。2.以人肝癌细胞株(SMMC-7721)作为实验靶细胞,采用体外细胞培养技术,通过MTT法、流式细胞术等方法观察了不同浓度PSPPC对SMMC-7721细胞的增殖抑制作用;并以小鼠荷H22肝癌移植瘤模型为研究对象,通过腹腔给药,观察不同浓度PSPPC对小鼠肿瘤生长情况的影响和肿瘤组织病理形态学变化,探讨PSPPC是否也能在体内有效地抑制肿瘤细胞的生长。3.研究确证PSPPC的体内调节抗氧化酶活性和体外直接清除自由基作用。4.探讨PSPPC体外诱导人肝癌细胞(SMMC-7721)凋亡作用。5.在小鼠荷H22肝癌移植瘤模型上,进一步探讨PSPPC对荷瘤小鼠免疫功能的影响:称量各组小鼠胸腺和脾脏的重量,计算胸腺指数和脾脏指数;分离荷瘤小鼠外周血淋巴细胞(PBLC),测定PSPPC对荷瘤小鼠T淋巴细胞体外增殖作用的影响;ELISA法检测PSPPC治疗小鼠血清中IL-2和IL-12的活性水平。
     结果:1.经有效纯化处理后可使PSPPC有效成分含量明显提高,总糖、硫酸根和蛋白质含量分别为37.63%(P﹤0.01),26.47%(P﹤0.01)和2.84%(P﹤0.01)。2. MTT法观察不同浓度PSPPC对SMMC-7721肝癌细胞体外增殖作用,结果表明SMMC-7721肝癌细胞增殖受到抑制,并且具有时间和剂量的依赖性。流式细胞术检测发现,0.4、2.0和10.0mg/ml PSPPC作用SMMC-7721肝癌细胞48h后均可使G0/G1期细胞增多,S期和G2/M期细胞减少,细胞阻滞于G1→S期,阻止细胞进行有丝分裂,从而抑制细胞的增殖。PSPPC体内抑瘤实验结果显示:低剂量组与高剂量组PSPPC的抑瘤率分别为:30.48%和33.38%,PSPPC组与阴性对照组相比差异显著(P <0.01)。小鼠肿瘤组织切片后HE染色结果显示:PSPPC作用H22荷瘤小鼠后,镜下可见H22肿瘤细胞大片坏死,且坏死区周围可见凋亡小体存在。3. PSPPC在体外具有很强的清除超氧阴离子自由基(O2·)和羟基自由基(·OH)-的作用。PSPPC能够调节体内抗氧化酶的活性,抑制脂质过氧化产物的生成,即其具有一定的体内抗氧化作用。4.PSPPC能诱导SMMC-7721细胞发生凋亡。经PSPPC处理后,SMMC-7721细胞内凋亡相关蛋白procaspase-3有不同程度的表达降低;DNA凝胶电泳法检测到DNA ladder现象;AnnexinⅤ法检测到0.4、2.0和10.0 mg/ml PSPPC处理48h后的SMMC-7721细胞出现了早期凋亡现象,凋亡细胞百分率分别为11.13%,26.05%和29.56%,PSPPC处理组与对照组比较有显著性差异(P <0.01)。5.经PSPPC处理后,荷瘤小鼠免疫功能低下状态得到改善。PSPPC能够一定程度的增强NK细胞杀伤活性,并且能够提高淋巴细胞增殖功能。
     结论:海藻硫酸多糖蛋白复合物在一定程度上是复杂的复合物,有效纯化、分析海藻硫酸多糖蛋白复合物的生物活性十分必要。经有效纯化处理后可使其有效成分含量明显提高。游离杂蛋白含量显著降低的同时保护了多糖分子上结合的多肽或蛋白质分子,从而提高了有效成分的生物活性。体外抗肿瘤实验发现,PSPPC对SMMC-7721肝癌细胞的体外增殖具有明显的抑制作用。本研究建立了H22荷瘤小鼠模型,通过腹腔注射给药PSPPC,结果发现PSPPC具有一定的抑瘤作用。本研究还对PSPPC的抗肿瘤作用机制进行了初步探讨。体外实验证明,PSPPC能够在一定程度上清除超氧阴离子自由基(O2·)和羟基自由基(·OH),说明PSPPC能够直接发挥体外抗氧化作用。体内实验-
     结果显示,PSPPC具有一定的体内抗氧化作用,能够调节抗氧化酶的活性,抑制脂质过氧化产物的生成等。PSPPC同时可影响肿瘤细胞中凋亡相关蛋白的表达,诱导肿瘤细胞凋亡, PSPPC诱导SMMC-7721肝癌细胞凋亡的机制可能是通过caspase-3的活化来实现的。本研究进一步证明,PSPPC还可以改善肿瘤所致的小鼠免疫功能低下状态。根据本项研究获得的各项实验结果,我们认为PSPPC的抗肿瘤作用的几种可能机制为:诱导肿瘤细胞凋亡;调节机体抗氧化酶活性;直接清除活性氧自由基;提高机体自身的免疫机能。
Objective: To investigate the inhibitory effect of PSPPC on tumor growth in H22tumor-bearing mice in vivo and on human hepatoma SMMC-7721 cells growth in vitro, and explore its possible mechanisms of antitumor activity.
     Materials and methods: 1.SPPC was purificated by ethanol fractionation, taking off the dissociative protein, and decoloring with charcoal. 2. Taking the human hepatoma SMMC-7721 cells as our experimental object, the SMMC-7721 cell’s proliferation inhibitiontreated with PSPPC was observed by the way of MTT-colorimetric assay and Flow cytometric analysis. Hepatocellular carcinoma cells H22 were subcutaneously injected into mice and PSPPC was administered to the H22 tumor-bearing mice (i.p.). The tumor growth were measured, tumor growth inhibition rate was calculated, and the alterations of histomorphologism of H22 tumor were taken and examined by H&E staining to assess the inhibitory effects of PSPPC on tumor growth. 3. In order to explore the possible mechanisms of antitumor activity of PSPPC, further bioactivities were detected, which included: In vitro, free radical scavenging activities of PSPPC; In vivo, the functions of modulating the activities of antioxidase and inhibiting the production of MDA of PSPPC were detected. 4. To study the apoptosis effects of PSPPC on human hepatoma SMMC-7721 cells.5.The effects of PSPPC onthe H22 tumor-bearing mice immunofunction were also observed in vivo. Based on the same H22 xenograft tumor models, the effects of PSPPC on the immune function were surveyed in mice from the following aspects: the thymus glands and spleens in the H22 tumor-bearing micewere excised and weighted and the thymus gland index and spleen index were caculated, respectively, which help to indicate whether PSPPC can affect the immune organs’function or not; the effects of PSPPC on the proliferation of peripheral blood lymphocyte (PBLC)separated from spleen of the H22 tumor-bearing mice in vitro evaluated using MTT assay; the alternations of concentration of murine serum IL-2 and IL-12 were examined by ELISA.
     Results: 1. After purification, the total available components of PSPPC were obviously increased, the contents of sulfate, total polysaccharide and protein in PSPPC were 26.47%, 37.63% and 2.84% respectively. 2. PSPPC exhibited a suppressive effect on SMMC-7721 cells growth in concentration and time-dependent manners. PSPPC at concentrations (0.4,2.0 and 10.0 mg·ml-1) dose-dependently increased the cell number at G1 phase and decreased the number at S phase and G/M phase in SMMC-7721 cells,that means, PSPPC could disrupt celldivision by blocking cell cycle at the checkpoint G1à2/M, ( which resulting in the inhibitionof cell proliferation. Marked inhibitory effect of PSPPC on the transplanted hepatocellularcarcinoma H22 was observed in the tumor-bearing mice. The inhibitory rates were 33.38% and30.48%in the groups treated with high and low dosage of PSPPC, respectively (P <0.01 vs.control group). Histopathological examination revealed widespread necrosis in the tumors.Numerous apoptotic bodies were observed in the tumors under the electron microscope.3.Theresults from the free radical-scavenging systems (Superoxide Anion and Hydroxyl Radical)revealed that PSPPC had significant free radical-scavenging activity in vitro. PSPPC couldmodulate the activities of antioxidase and inhibite the production of MDA, that means, PSPPCshowed significant antioxidant activity. 4. PSPPC can induce the apoptosis of SMMC-7721cells: PSPPC dose-dependently decreased the expression of the relative apoptotic proteins(procaspase-3); The treatment of PSPPC resulted in the induction of DNA fragmentation;Annexin assay discovered , after being treated with 0.4,2.0 and 10.0 mg·ml-1 PSPPC for 48h,the cells’early stage apoptosis rate were 11.13%,26.05%and 29.56%, respectively, higherthan that of control(P <0.01).5. Moreover, PSPPC could improve the immune function intumor-bearing mice. The NK activity and proliferation ability of T lymphocytes were increasedin tumor-bearing mice.
     Conclusion: The components of sulfated polysaccharide-protein complex (SPPC) arecomplicated. It is undoubtedly a promising and singnificant work to purificate the SPPC andexplore the bioactivities of PSPPC. After purification, the total available components of thesamples were obviously increased. Collectively, the bioactivities of PSPPC were also enhanced.Our research had proved that PSPPC could significantly inhibit the proliferation of the humanhepatoma SMMC-7721 cells. Hepatocellular carcinoma cells H22 were subcutaneously injectedinto mice and PSPPC was administered to the H22 tumor-bearing mice (i.p.). The experiment inH22 tumor-bearing mice documented PSPPC had obvious effects on tumor inhibition. PSPPCshowed significant free radical-scavenging activity in vitro, and could modulate the activitiesof antioxidase and inhibite the production of MDA In vivo. PSPPC could induce apoptosis ofSMMC-7721 cells with a dose-dependent manner. Moreover, PSPPC-induced apoptosis waspartially attributed to the activation of caspase-3. Further investigation proves that PSPPCcould improve the immune function in tumor-bearing mice. Based on the conclusionsmentioned above, some possible mechanisms of antitumor activity of PSPPC can be proposedas: Inducing the apoptosis of tumor cells; scavenging free radical; modulating the activities ofantioxidases; improving the immune function.
引文
[1] Coothan Kandaswamy Veena , Anthony Josephine , Sreenivasan P. Preetha, et al.Beneficial role of sulfated polysaccharides from edible seaweed Fucus vesiculosus in experimental hyperoxaluria. Food Chemistry. 100 (2007) 1552–1559
    [2] Kuznetsova TA, Shevchenko NM, Zviagintseva TN,et al. Biological activity of fucoidans from brown algae and the prospects of their use in medicine. Antibiot Khimioter. 2004, 49(5):24-30.
    [3] Huimin Qi, Quanbin Zhang, Tingting Zhao, et al. Antioxidant activity of different sulfate content derivatives of olysaccharide extracted from Ulva pertusa (Chlorophyta) in vitro.International Journalof Biological Macromolecules 37(2005)195–199
    [4] Xiao-Ling Zhu, Alex-F Chen, Zhi-Bin Lin. Ganoderma lucidum polysaccharides enhance the function of immunological effector cells in immunosuppressed mice. Journal ofEthnopharmacology.111(2007)219–226
    [5] Xiaohua Nie,Baojun Shi, Yuting Ding, et al. Preparation ofa chemically sulfated polysaccharide derived from Grifola frondosaandits potential biological activities. International Journal of Biological Macromolecules. 39(2006)228–233
    [6] Mourao PA. Use of sulfated fucans as anticoagulant and antithrombotic agents: future perspectives. Curr Pharm Des. 2004, 10(9):967-81.
    [7] Berteau O, Mulloy B, Sulfated fucans, fresh perspectives: structures, functions, and biological properties of sulfated fucans and an overview of enzymes active toward this class of polysaccharide. Glycobiology. 2003, 13(6):29R-40R.
    [8] Li SL, ZHao J, ZHang HK, et al. Study on the isolation and purification of the fucoidan-galactosan sulfate (FGS) of Laminaria japonica root. Journal of Shandong University (Natural Science), 2004, 39(1): 107-112.
    [9] 王琪琳,曲爱琴,王海仁. 海带硫酸多糖的降解、分离纯化及理化性质分析.药物生物 技术.2004, 11 (5) :316-320.
    [10] 王春玲,张全斌.褐藻多糖硫酸酯抗凝血活性的研究.中国海洋药物.2005, 24(5): 36-38.
    [11] 张全斌,于鹏展,周革非.海带褐藻多糖硫酸酯的抗氧化活性研究.中草药.34(9): 824-826.
    [12] 苗本春,耿美玉,李静等. 海洋硫酸多糖 911 免疫增强作用的探讨.中国海洋药 物.2002, 5: 1-4.
    [13] 苗本春,李静,耿美玉.海洋硫酸多糖聚古罗糖酯(912)抗肿瘤作用机理探讨.中国海洋 药物.2003, 3: 11-15.
    [14] 田晓华,丛建波,施定基等.褐藻硫酸多糖清除活性氧自由基作用及动力学的 ESR 研 究.营养学报.1997, 19(1): 32-37.
    [15] 滕霞,丛建波,田晓华等. 海藻硫酸多糖抗氧化与抗肿瘤作用的实验研究.营养学 报.1998, 20(1):48-52.
    [16] 李妍,田晓华, 丛建波等.海藻多糖抑制白细胞呼吸爆发作用研究.生物化学与生物 物理进展. 1992, 26(2):162-164.
    [17] 魏文青,丛建波,先宏. 海藻硫酸多糖对小鼠免疫功能的调节作用.中国新药杂 志.2001,10(9): 671-675.
    [18] 魏文青,王明霞,丛建波等.海藻硫酸多糖抗乙型肝炎病毒的实验研究.中华肝脏病杂 志.10(2):112.
    [19] 先宏,丛建波,吴可等. 海藻硫酸多糖对巨噬细胞所致肿瘤细胞凋亡的调节作用.细 胞与分子免疫学杂志.2002,18(3):288-291.
    [20] 王庭欣,蒋东升,马晓彤等.海带多糖对小鼠 H22 实体瘤的抑制作用.卫生毒理学杂 志.2000,14(4):242.
    [21] Funahashi H, Imai T, Tanaka Y. Wakame seaweed suppresses the proliferation of 7, 12-dimethylbena (a)-anthracene-induced mammary tumors rats [J]. Jpn J Cancer Res,1999,90(9):922-927
    [22] GRIMM S,BAEUERLE P A.The inducible transcription factor NF- :Structure function # relationship of its protein subunits[J].J Biochem, 1993, 290:297-308.
    [23] BROWN K,PARKS,KANNO T,et al.Mutual regulation of the transcriptional activation NF- and its inhibitor-I # -#[J].Proc NatlAcad Sci USA, 1993, 90:2 532-2 536.
    [24] Bellas RE, FitzGerald MJ, Fausto N, et al. Inhibition of NF- # B D U J W J U Z J O E V D F T B in murine hepatocytes. Am J Pathol.1997,151:891-896
    [25] 静夭玉,赵晓瑜.用终止剂改进超氧化物歧化酶邻苯三酚测活法.生物化学与生物物理 进展.1995; 22(1).
    [1] Ruperez P, Ahrazem O, Leal JA. Potential antioxidant capacity of sulfated olysaccharidesfrom the edible marine brown seaweed Fucus vesiculosus. J. Agic. Food Chem. 2002,50(4):840~845.
    [2] Lee JB, Hayashi K, Hayashi T, et al. Antiviral activities against HSV-1, HCMV, andHIV-1of rhamnan sulfate monostroma latissimum. Planta. Med. 1999, 65(5):439~441.
    [3] Mauray S, De Raucourt E, Chaubet F, et al. Comparative anticoagulant activity andinfluence on thrombin generation of dextran derivatives and of a fucoidan fraction. JBiomater. Sci. Polym. Ed. 1998; 9(4)373-387.
    [4] 魏文青, 丛建波, 先宏等.海藻硫酸多糖对小鼠免疫功能的调节作用.中国新药杂志.2001;10(9):671-675.
    [5] 田晓华,丛建波,施定基等.褐藻硫酸多糖清除活性氧自由基作用及动力学的 ESR研究. 营养学报.1997, 19(1): 32-37.
    [6] 滕霞,丛建波,田晓华等.海藻硫酸多糖抗氧化与抗肿瘤作用的实验研究.营养学报.1998, 20(1):48-52.
    [7] 李妍,田晓华, 丛建波等.海藻多糖抑制白细胞呼吸爆发作用研究.生物化学与生物物理进展.1992, 26(2):162-164.
    [8] 魏文青,王明霞,丛建波等.海藻硫酸多糖抗乙型肝炎病毒的实验研究.中华肝脏病杂志.10(2):112.
    [9] 先宏,丛建波,吴可等.海藻硫酸多糖对巨噬细胞所致肿瘤细胞凋亡的调节作用.细胞与分子免疫学杂志.2002,18(3):288-291.
    [10]Black W.A.P., et al. Manufacture of algal chemicals Ⅳ. Laboratory-scale isolation offucoidan from brown marine algae. [J] Sci. Food Agr. 1952, 3:122-129.
    [11]丛建波,王长振,李妍等.褐藻硫酸多糖硫酸基含量测定—硫酸钡比浊法研究. 解放军药学学报.19(3):181-183.
    [12]杨勇杰,姜瑞芝,陈英红等.苯酚硫酸法测定杂多糖含量的研究.中成药.2005,27(6):706-708.
    [13]Yan P,Yang Q,Wang HZ, et al. Comparison of Lowry's modified assay with Bradford'sdye-binding assay for determining proteins in earthworm extract. Journal of ShanxiMedical University. 2006, 37(1): 9-11.
    [14]Black WAP, Cornhill WJ, Dewar ET, et al. Manufacture of algal chemicals, Ⅲ J ApplChem, 1951, 1: 505-517.
    [15]Black WAP, Dewar ET, Woodwarcl FN. Manufacture of algal chemicals,Ⅳ J Sci FoodAgr, 1952, 3:122-129.
    [16]张雅利,张文娟,何琼华.胰蛋白酶-Sevag 法联用脱柿多糖蛋白.食品工业科技.2005,26(5):107-109.
    [1] Itoh H, Noda H, Amano H, et al. Antitumor activity and immunological properties of marine algal polysaccharides, especially fucoidan, prepared from Sargassum thunbergii of phaeophyceaeAnticancer Res, 1993, 13:2045.
    [2] Mourao PA. Use of sulfated fucans as anticoagulant and antithrombotic agents: future perspectives. Curr Pharm Des. 2004, 10(9):967-81.
    [3] Berteau O, Mulloy B. Sulfated fucans, fresh perspectives: structures, functions, and biological properties of sulfated fucans and an overview of enzymes active toward this class of polysaccharide. Glycobiology. 2003, 13(6):29R-40R.
    [4] 滕霞,丛建波,田晓华等. 海藻硫酸多糖抗氧化与抗肿瘤作用的实验研究.营养学 报.1998, 20(1):48-52.
    [5] 田晓华,丛建波,施定基等. 褐藻硫酸多糖清除活性氧自由基作用及动力学的 ESR研究.营养学报.1997, 19(1): 32-37.
    [6] 魏文青,丛建波,先宏. 海藻硫酸多糖对小鼠免疫功能的调节作用.中国新药杂志。 2001,10(9): 671-675.
    [7] Wu Yin, Xu-Kun Deng, Fang-Zhou Yin, et al. The cytotoxicity induced by brucine from the seed of Strychnos nux-vomica proceeds via apoptosis and is mediated by cyclooxygenase 2 and caspase-3 in SMMC-7721 cells [J]. Food and Chemical Toxicology, 2007, 45:1700-1708
    [8] Xiong Zhi Wu, Dan Chen, Guang-Ru Xie, et al. Effects of Gekko sulfated polysaccharide on the proliferation and differentiation of hepatic cancer cell line [J]. Cell Biology International,2006, 30 :659-664
    [9] Chen Xiao Fang and Kai Xun Huang, et al. Mechanism of apoptosis induced by a polysaccharide, from the loach Misgurnus anguillicaudatus (MAP) in human hepatocellular carcinoma cells [J]. Toxicology and Applied Pharmacology, 2006, 210:236-245
    [10] Nicoletti, I., Migliorati, G., Pagliacci, M.C., Grignani, F, et al. Arapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry. [J]. Immunol. Methods, 1991, 139:171-279
    [11] Li QF, Ou-Yang GL, Peng XX, Hong SG. Effects of tachyplesin on the regulation of cell cycle in human hepatocarcinoma SMMC-7721 cells.World,Gastroenterol, 2003,9:454-458
    [1] 曲婷婷,金岩,柳越冬等.人参皂甙 Rb1、Rg1 与 5-氟尿嘧啶对荷瘤小鼠免疫功能 的影响.中医研究.2006,19(5):16-18.
    [2] 刘安军,尤玲玲,张国蓉等.软骨多糖对小鼠肉瘤细胞 S180 抑制作用的实验研究. 中国肿瘤.2006,11(15):772-774.
    [3] 朱彩平,张声华.枸杞多糖对肝癌 H22 荷瘤鼠的抑瘤和免疫增强作用.营养学 报.2006,28(2):182-183.
    [4] 董兰凤,刘京生,苗智慧等.附子多糖对 H22 和 S180 荷瘤小鼠的抗肿瘤作用研究. 中国中医基础医学杂志.2003,9(9):14-17.
    [5] 刘安军,陈彦彦,张国蓉等.软骨多糖抑制 H22 肝癌细胞生长的作用及机制研究. 现代食品科技.2007, 23(11).
    [6] 陈涛 胡卫,崔帮平等.珠子参对小鼠 H22 肝癌抑制作用及机制.世界华人消化杂 志.2007,15(24):2597-2601.
    [7] 王庭欣,蒋东升,马晓彤等.海带多糖对小鼠 H22实体瘤的抑制作用.卫生毒理学杂志.2000,14(4):242.
    [8] Funahashi H, Imai T, Tanaka Y. Wakame seaweed suppresses the proliferation of7,12-dimethylbena(a)-anthracene-induced mammary tumors rats[J]. Jpn J CancerRes,1999,90(9):922-927
    [1] Guo AG, Wang Z Y. Antioxidation of Pyrogallol-chemiluminescence assay for superoxidedismutase activity [J]. Plant Physiol Commun, 1989,3:54-57
    [2] Hu T X. Progress of Free Radical of Life Science (生命科学的自由基研究进展) [M].Vol 5. Beijing:Atomic Energy Publishing House, 1997
    [3] Zhang E X. Progress of Free Radical of Life Science (生命科学的自由基研究进展) [M].Vol 2. Beijing:Atomic Energy Publishing House, 1994
    [4] Yldz g, Demiryurek A T. Ferrous Iron-induced Luminol chemiluminescence: a method forhydroxyl radical study[J]. J Pharmacol Toxicol Methods, 1998, 39(3):179-184.
    [5] Dey A, Cederbaum AI. Alcohol and oxidative liver injury. Hepatology,2006;43: S63
    [6] Nohl H, Jordan W. The metabolic fate of mitochon-drial hydrogen peroxide. EurBiochem,1980; 111: 203
    [7] 刘现忠, 李相成.活性氧簇在肝脏移植缺血再灌注中的作用.世界华人消化杂志.2006;14(18):1799.
    [8] Hu T X. Free radical, lipid peroxide and antioxidant determined bu chemiluminescencemethods [J]. Preclinic Med Clin,1993,13(2):81-85
    [9] [9] Xu S H. A new chemiluminescence system for measure OH radical [J]. J InstrumAnal,2000,19(2):11-13
    [10]Xie L T.Protector protein-a new antioxidantive protein and its biologicactivity [J].Acad J Guangzhou Med Coll(广州医学院学报),1999,17(3):80-83.
    [11]Ren G P, Yu B, Li S L. Antioxidative ability of protein and ite ramification [J]. ChinLipids,1997,22(4):47-50
    [1] Yan P,Yang Q,Wang HZ,et al. Comparison of Lowry's modified assay with Bradford's dye-binding assay for determining proteins in earthworm extract.
    [2] Allen KGD,Arthur JR. Inhibition by 5-sulphosalicylic acid of the glutathione reductase recycling assay for glutathione analysis. Clin Chim Acta. 1987,162:237-239.
    [3] Smith CV, Anderson RE. Methods for determination of lipid peroxidation in biologicalsamples. Free Radic Biol Med 1987,3:341-344
    [4] Esterbauer H, Zollner H, Methods for determination of aldehydic lipid peroxidationproducts. Free Radic Biol Med. 1989,7:197-203.
    [5] Oyanagui Y. Reevaluation of assay methods and establishment of kit for superoxidedismutase activity.Anal Biochem, 1984,142:290-296.
    [6] Chatterjee U, Sanwal GG. Purification and characterization of catalase from goat (capra)lung. Mol Cell Biochem. 1993,126:125-133.
    [7] Allen KGD,Arthur JR. Inhibition by 5-sulphosalicylic acid of the glutathione reductaserecycling assay for glutathione analysis. Clin Chim Acta. 1987,162:237-239.
    [8] 刘 聪, 周 晟, 柯昌庶等.AKT、NF- O及# STAT3 在有淋巴结转移及雌激素受体阳性的乳腺癌组织中的活化及其意义.《癌症》Chinese Journal of Cancer, 2007, 26(9):929-936.
    [9] BaldwinASJr.Seriesintroduction:the transcriptionfactor NF- Oand # human disease.J ClinInvest ,2001 ,107 (1) :3 - 6
    [10] 刘现忠,李相成.活性氧簇在肝脏移植缺血再灌注中的作用.世界华人消化杂志.2006;14(18):1799.
    [11] THANOS D, MANIATIS T. NF- O: #A lesson in family values[J].Cell, 1995,80:529-532.
    [12] GRIMM S,BAEUERLE P A.The inducible transcription factor NF- O:Structure function #relationship of its protein subunits[J].J Biochem, 1993, 290:297-308.
    [13] BROWN K,PARKS,KANNO T,et al.Mutual regulation of the transcriptional activationNF- Oand# its inhibitor-I O-#[J].Proc NatlAcad Sci USA, 1993, 90:2 532-2 536.
    [1] Kittikalaywong Y, Sila-rasna M, Bunyaratvej A. Enhanced maturation and proliferation ofbeta-thalassemia/Hb Eerythroid precursor cells in culture. [J]. Southeast Asian J TropMed Public Health,2005:36(5):1298-303
    [2] Hopp B, Smausz T, Kresz N,et al. Survival and proliferative ability of various living celltypes after laser-induced forward transfer [J]. Tissue Eng,2005;11(11-12):1817-23
    [3] Wu Yin, Xu-Kun Deng, Fang-Zhou Yin, et al. The cytotoxicity induced by brucine fromthe seed of Strychnos nux-vomica proceeds via apoptosis and is mediated bycyclooxygenase 2 and caspase-3 in SMMC-7721 cells [J]. Food and Chemical Toxicology,2007, 45:1700-1708
    [4] Raynal, P. and H.B. Pollard. Annexins: The problem of assessing the biological role foragene family of multifunctional calcium and phospholipid-binding proteins. [J].Biochemica et Biophysica Acta, 1994, 1197:63-93
    [5] Vermes,I., C. Haanen, H. Steffens-Nakken,C. Reutelingsperger, et al. A novel assay forapoptosis. Flowcytometric detection of phosphatidylserine expression on early apoptoticcells using fluoresceinlabelled Annexin V. [J]. Immunl; Meth, 1995, 184:39-51
    [6] Lin, X., Cai, Li, Z.X., Chen, Q, et al. Structure determination, apoptosis induction, andtelomerase inhibition of CFP-2, a novel lichenin from Cladonia furcata. [J]. Biophys. Acta, 2003, 1622:99-108
    [7] L. Zhao, Q.L. Guo, Q.D., You, Z.Q, et al. Gambogic acid induces apoptosis and regulates expressions of Bax/bcl-2 protein in human gastric carcinoma MGC-803 cells. [J]. Biol, Pharm. Bull, 2004, 27:998-1003
    [8] Neil S. Horowitz, Jun Hua, Matthew A, et al. Novel cytotoxic agents from an unexpected source. Bile acids and ovarian tumor apoptosis. [J]. Gyncologic Oncology, 2007, 107:344-349
    [9] Kim HJ, Shin SW, Oh CJ, et al. N-t-Butyl hydroxylamine regulates heat shock-induced apoptosis in U937 cells. [J]. Redox Rep,2005;10(6):287-93telomerase inhibition of CFP-2, a novel lichenin from Cladonia furcata. [J]. Biophys. Acta, 2003, 1622:99-108
    [7] L. Zhao, Q.L. Guo, Q.D., You, Z.Q, et al. Gambogic acid induces apoptosis and regulates expressions of Bax/bcl-2 protein in human gastric carcinoma MGC-803 cells. [J]. Biol, Pharm. Bull, 2004, 27:998-1003
    [8] Neil S. Horowitz, Jun Hua, Matthew A, et al. Novel cytotoxic agents from an unexpected source. Bile acids and ovarian tumor apoptosis. [J]. Gyncologic Oncology, 2007, 107:344-349
    [9] Kim HJ, Shin SW, Oh CJ, et al. N-t-Butyl hydroxylamine regulates heat shock-induced apoptosis in U937 cells. [J]. Redox Rep,2005;10(6):287-93

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700