肿瘤靶向载阿霉素超声敏感纳米泡的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为解决微米级超声造影剂只能进行肿瘤血管内成像或治疗及现存纳米级超声造影剂成像效果差、不能治疗的问题,本课题在微泡及纳米泡超声造影剂研究基础上,进行了肿瘤靶向超声敏感纳米泡的研究。
     首先进行成膜材料聚乳酸-羟基乙酸聚乙二醇单甲醚共聚物(PLGA-PEG)的合成,并对其性质进行考察。然后以抗肿瘤药阿霉素(DOX)为模型药物,具有两亲性的PLGA-PEG为成膜材料,具有气液相变性质(相变温度29℃)全氟戊烷(PFP)为成像气体,制备得到载DOX纳米泡,并对其体内外行为进行考察,具体研究内容如下:
     1.成膜材料的合成以生物相容性好、可生物降解的聚乳酸-羟基乙酸(PLGA)为疏水段,聚乙二醇单甲醚(mPEG)为亲水段,通过选择合适的反应条件及分离纯化条件合成得到两嵌段共聚物PLGA-PEG,并对其结构进行确证。
     2.成膜材料的性质对PLGA-PEG的溶解性能进行了测定,其不溶于水及醇类溶剂如甲醇和乙醇等,易溶于卤代烷烃如氯仿和二氯甲烷等,溶于四氢呋喃、乙酸乙酯和丙酮。用Langmuir膜天平对PLGA-PEG单分子膜性质进行了考察,PLGA-PEG有很好的形成单分子膜的能力,表明其有很好的两亲性。DOX(一定量三乙胺碱化)在pH=7.4 PBS表面能很好的形成单分子膜,DOX可插入到PLGA-PEG的单分子膜中,DOX与PLGA-PEG混合后形成的单分子膜有很好的静动态稳定性。
     3.DOX胶束的制备及结构特点建立了HPLC体外分析方法,以胶束粒径分布、溶液外观、载药量、包封率等为评价指标,进行了DOX胶束的制备方法选择及处方工艺优化,用低温丙酮注入法制备得到了粒径分布均匀、载药量、包封率均较高的DOX胶束,工艺重现性好。负染法透射电镜观察其结构为球形的以疏水区为核、亲水区为壳的核—壳结构,平均粒径为61 nm左右。
     4.DOX纳米泡的制备及结构特点以纳米泡粒径分布、粒径随温度变化为评价指标,进行DOX纳米泡制备方法的选择及处方工艺优化,用超声注入法制备得到粒径均匀的DOX纳米泡(室温下以纳米乳形式存在),工艺重现性好,激光粒度分析仪测其平均粒径为168nm,光学显微镜观其50℃孵育后纳米泡融合形成外观为圆形表面较红的微泡,荧光显微镜观其结构为中空的壳—核结构,DOX载在壳壁的疏水区。
     5.DOX纳米泡相关性质考察以粒径为评价指标对DOX的温度敏感性、超声敏感性、超声合并性、超声释药性、稀释稳定性、放置稳定性等进行考察,结果表明DOX纳米泡的粒径能随温度变化而变化,纳米泡在超声下可合并成微泡,微泡在继续超声时可破裂快速释放药物,且在PH=6.5 PBS中比PH=7.4 PBS中更易释放药物。纳米泡在4℃保存短期内稳定性较好,稀释50倍后粒径不变,稀释后在37℃pH=7.4 PBS中孵育15min DOX仅释放0.79%,稳定性很好。
     6.DOX纳米泡在动物体内的药代动力学和组织分布建立了小鼠右侧腋窝皮下接种H_(22)肝癌模型,建立了准确、快速、灵敏的HPLC体内分析方法。对DOX纳米泡静脉注射后在正常鼠与荷瘤鼠体内药代动力学与组织分布分别进行了研究。DOX纳米泡在荷瘤鼠体内半衰期(t_(1/2))要比正常鼠明显短,荷瘤鼠t_(1/2)为570±148min,而正常鼠t_(1/2)为1019±655min。DOX纳米泡在正常鼠肝脏中分布最多(2.77%),荷瘤鼠肿瘤部位分布最多(1.11%),在正常鼠与荷瘤鼠其余组织中均有少量分布(0~0.27%),结合药动数据,证明DOX纳米泡有很好的肿瘤靶向性。
     7.DOX纳米泡荷瘤鼠药效学建立了小鼠右侧腋窝皮下接种H_(22)肝癌模型,对DOX纳米泡静脉注射后荷瘤小鼠药效学进行了研究,实验组与对照组间瘤重有显著性差异(P<0.01),药效显著,超声组与未超声组间也有显著性差异(P<0.01),超声更有助于DOX发挥药效。证明DOX纳米泡有被动靶向性且在超声下能快速释药进入肿瘤细胞内发挥药效。
     本文制备得到了粒径分布均匀,低温保存短期内稳定性好的肿瘤靶向超声敏感的纳米泡,证明了纳米泡的壳—核结构,DOX载在泡壁上,在荷瘤鼠体内有很好的肿瘤靶向性,且在超声下能更好地发挥药效。
Microbubble ultrasound contrast agent (UCA)can only image and exert therapy within tumor vessel and there existed many problems of nanoscale ultrasound contrast agent such as poor imaging and can't therapy. To solve the problem mentioned above, in the base of microbubble and nanobubble UCA, tumor-targeted nanobubble which was sensitive to ultrasound was investigated in this paper.
     First, the amphipathic polymer, poly (D,L-lactide-co-glycolide) -block-monomethoxy poly(ethylene glycol) (PLGA-PEG) was synthesized and its properties were also investigated. Second, tumor targeted nanobubble was prepared with doxorubicin (DOX) as the model drug, PLGA-PEG as film-former, perfluoropentane(PFP)(boiling point 29℃)as the imaging gas. Then its behavior in vitro and in vivo was investigated The main contents were described in details as follows:
     1. Synthesis of film-former. The diblock PLGA-PEG was synthesized using poly(D,L-lactide-co-glycolide) (PLGA) as a hydrophobic segment and monomethoxy poly(ethylene glycol) (mPEG) as a hydrophilic segment. By selecting appropriate reaction and purification conditions, PLGA-PEG was obtained and purified.
     2. Characteristics of film-former. The solubility of PLGA-PEG was determined. PLGA-PEG can dissolve easily in alkylogen, such as dichlormethane(DCM)and chloroform, and dissolve in tetrahydrofuran(THF), acetone, acetoacetate. But it can't dissolve in water and alcohol sovent, such as methanol and ethanol. Monomolecular film properties of PLGA-PEG was determined by Langmuir balance. The results showed that PLGA-PEG had good ability to form monomolecular film and thus certificated that it was amphiphilic. DOX(alkalinized by triethylamine)can form monomolecular film in pH=7.4 PBS and DOX can insert into the monomolecular film of PLGA-PEG. The mixing monomolecular film of DOX and PLGA-PEG had good static and dynamic stability.
     3. Preparation and Characterization of DOX micelles. HPLC analysis method in vitro of DOX was established. The formulation and preparation methods of DOX micelles were optimized with the particle size distribution, loading amount and encapsulation efficiency as the evaluation index. Finally, the DOX micelles were prepared by acetone injection method at low tempture. The size distribution of DOX micelles obtained was uniform, loading amount and encapsulation efficiency high. The technique reproducibility was very good. Negative staining TEM imaging showed the structure of micelles was globular and core-shell, with hydrophobic domain forming core and hydrophilic domain forming shell. The average size was 61nm.
     4. Preparation and Characterization of DOX nanobubbles. The preparation methods and technique of DOX nanobubbles were optimized with the size distribution, size change with temperature as the evaluation index. The DOX nanobubbles were prepared by the ultrasound injection method. Its size distribution was uniform, the technique reproducibility good, average size 168nm. After incubated in 50℃water, the structure was observed by light microscope, and the results showed that it was round with red surface. And the fluorescence microscope showed it was core-shell and DOX was localized in the outward hydrophobic compartment.
     5. Characteristics of DOX nanobubbles. The temperature sensibility, ultrasound sensibility, ultrasound incorporation, ultrasound-induced releasing drug, diluting stability was investigated with the size change as the evaluation index. The results showed that the size of DOX nanobubbles changed with the temperature. Ultrasound could make nanobubbles incorporate into microbubbles, and microbubbles disrupted when ultrasound power was increased, thus releasing DOX rapidly, more easily in pH=6.5 PBS. Nanobubble was stable in short term when stored in 4℃, and could stand dilution of 50 times. Nanobubble was incubated in 37℃water for 15 min after diluted and only 0.79% DOX was released. The stability was very good.
     6. Pharmacokinetics and tissue distribution of DOX nanobubbles. Subcutaneous tumors model was established using Kunming mice. HPLC analysis method in vivo was established. Pharmacokinetics and tissue distribution of DOX nanobubbles in normal and tumor-bearing mice were investigated, respectively. The elimination t_(1/2) in normal and tumor-bearing mice was 1019±655 min and 570±148 min, respectively. DOX nanobubbles were distributed in heart, liver, spleen, lung and kidney in two model animals after iv 0.5h, some in heart,spleen, lung and kidney(0~0.27%), the most in liver(2.77%)of normal mice and tumor(1.11%)of tumor-bearing mice, respectively. Combined with pharmacokinetics results, it demonstrated that DOX nanobubbles had good tumor targeting.
     7. Pharmacodynamics of DOX nanobubbles. Subcutaneous tumors model was established using Kunming mice. Pharmacodynamics of DOX nanobubbles were investigated using tumor-bearing mice. The tumor weight differentiated significantly between the control and experimental group(p<0.01). There were distinguished differences between the ultrasound and non-ultrasound group (p<0.01). The results showed that DOX nanobubbles had good passive targeting action and ultrasound can facilitate it into tumor cells.
     Tumor targeting and ultrasound-sensible DOX nanobubbles with uniform size distribution and good stability when stored in 4℃were prepared in this paper. Its core-shell structure was demonstrated and DOX was localized in the hydrophobic wall of the nanobubbles. It had good tumor targeting for tumor- bearing mice after iv, and also exerted good pharmacodynamic action when using ultrasound.
引文
[1]Deng CX,FL.L.A review of physical phenomena associated with ultrasonic contrast agents and illustrative clinical applications.Ultras Med Biol.2002,28(3):277- 286.
    [2]Gramiak R,PM.S.Echocardiography of aortic root Invest Radiol.1968,3:356-366.
    [3]Herman B,Einav S,Z.V.Feasibility of mitral flow assessment by echo-contrast ultrasound.PartⅠ.Determination of the properties of echo-contrast agents Ultrasound Med Biol 2000,26(5):787-795.
    [4]Dayton PA,KW.F.Targeted imaging using ultrasound.J Magn Reson Imaging 2002,16(4):362-377.
    [5]AL K.ligand-carrying gas-filled microbubbles:ultrasound contrast agents for targeted molecular imaging.Bioconjug Chem.2005,16:9217.
    [6]李奇林,全学模.超声微泡造影剂的临床应用及研究进展.国外医学临床放射学分册.2006,29(6):419-421.
    [7]伍星,王志刚.靶向超声微泡造影剂与超声分子显像.中国医学影像技术.2005,21:1299-1301.
    [8]王志刚.超声微泡造影剂在疾病诊断与治疗中的研究进展.中国医学影像技术.2005,21:1148-1150.
    [9]罗狄锋.微泡型超声造影剂制备及其靶向应用研究进展.国际生物医学工程杂志.200730(2):120.
    [10]晏春根,夏国园.超声微泡造影剂与靶向治疗.现代实用医学.2005,17(11):723-724.
    [11]张琰,汪长春,杨武利等.聚合物胶束作为药物载体的研究进展.高分子通报.2005,2:42.
    [12]伍善广,杨帆,吴和谋等.药物胶束嵌段共聚合物的研究进展.现代食品与药品杂志.2007,17(2):14-17.
    [13]杨可伟,杨卓理,孙玉峰等.大分子胶束作为药物载体的应用.中国新药杂志.2006,15(19):1630-1634.
    [14]Nobuhiro Ni,Ka.K.Current state,achievements,and future prospects of polymeric micelles as nanocarriers for drug and gene delivery.Pharm Thera.2006,112:630-648.
    [15]Natalya Rapoport,Zhonggao Gao,Kennedy.A.Multifunctional Nanoparticles for Combining Ultrasonic Tumor Imaging and Targeted Chemotherapy.oxfordjournals.2007,99(14):1095-1106
    [16]Apfel RE,CK.H.Gauging the likelihood of cavitation from short-pulse,low-duty cycle diagnostic ultrasound.Ultrasound Med Biol.1991,17(2):179-185.
    [17]Kobayashi N,Yasu T,Yamada S,etal.Endothelial cell injury in venule and capillary induced by contrast ultrasonography.Ultrasound Med Biol.2002,28(7):949-956.
    [18]许川山,王志刚,杨春江等.肿瘤靶向声学造影剂的研究现状及发展构想.中国医学影 像技术2005,21(11):1776-1777.
    [19]马立康,徐军明,侯方高等.超声微泡造影剂的肿瘤靶向治疗研究进展.临床超声医学杂志.2007,,9(3):166-168.
    [20]Lanza GM,SA.W.Targeted ultrasonic contrast agents for molecular imaging and therapy.Curt Probl Cardiol.2003,28(12):625-653.
    [21]靳刚.纳米生物技术和纳米医学.纳米科技.2005,2(3):2-6.
    [22]Oeffinger BE,MA.W.Development and characterization of a nano-scale contrast agent.Ultrasonics.2004,42(1-9):343-347.
    [23]Lanza GM,Abendschein DR,Hall CS,.ca.In vivo molecular imaging of stretch-induced tissue factor in carotid arteries with ligand-targeted nanoparticles.Am Soc Echocardiogr.2000,13(6):608-614.
    [24]徐辉碧,杨祥良.纳米医药.北京:清华大学出版社.2004:9-12.
    [25]张勇,王志刚.纳米级超声造影剂的研究进展.临床超声医学杂志.2007,9(2):105-106.
    [26]伍星,王志刚,许川山.纳米级造影剂在超声分子显像与靶向治疗中的研究进展.中华超声影缘学杂志.2006,15(7):539-540.
    [27]Huang SL,Hamilton AJ,Nagaraj A,.ca.Improving ultrasound reflectivity and stability of echogenic liposomal dispersions for use as targeted ultrasound contrast agents.J Pharm Sci.2001,90(12):1917-1926.
    [28]Marsh JN,Hall CS,Scott MJ ca.Improvements in the ultrasonic contrast of targeted perfluorocarbon nanoparticles using an acoustic transmission line model IEEE Trans Ultrason Ferroelectr Freq Control.2000,49(1):29 -38.
    [29]周红雨,陈寿田.亲肿瘤靶向超声造影剂的制备及研究进展.实用医学影像杂志.2006,7(2):133-135
    [30]许川山,王志刚.肿瘤的分子靶确认与超声纳米分子影像学.临床超声医学杂志.2006,8(4),2,9D-234.
    [31]Cosgrove.D.Ultrasound contrast agents:An overview.European Journal of Radiology.2006,60:324-330.
    [32]Sledge G,Miller K.Expoliting the hallmarks of cancer:the future conquest of breast cancer.Eur J Cancer.2003,39(12):1668-1675.
    [33]Yeicher BA.Molecular targets and cancer therapeutics:discovery,development and clinical validation.Drug Resist Update.2000,3(2):67-73.
    [34]吴诚,靳浩,梅兴国.盐酸多柔比星制剂研究进展.中国医院药学杂志.2007,27(5):658
    [35]YOKO,M.Y.Drug targeting with nano-sized carrier systems.J Artif Organs.2005,8(2):77-84.
    [36]YOO HS,LEE EA,TG.P.Doxorubicin-conjugated biodegradable polymeric micelles having acid-cleavable linkages.J Controlled Release.2002,82(1):17-27.
    [37]ALAKHOV V,KLNSKIE,LIS ca.Block copolymer-based formulation of doxorubicin from cell screen to clinical trials.Colloids Surf B.1999,16(1-4):113-134.
    [38]江虹虹,李安华.肿瘤血管生成与超声造影成像相关性研究进展.中国医学影像技术2007,23(3):466-468.
    [39]Yoo HS,Park TG.Biodegradable polymeric micelles composed of doxorubicin conjugated PLGA-PEG block copolymer.Journal of Controlled Release.2001,70:63-70.
    [40]J.H.Jeong,D.W.Llm,al DKHe.Synthesis,characterization and protein adsorption behaviors of PLGA/PEG di-block co-polymer blend films.Colloids Surf B.2000,18:371-379.
    [41]刘兆民,常亮,秦莉.可降解温敏型共聚物PLGA-PEG-PLGA的合成及辐照分子量调整.辐射研究与辐射工艺学报,2006,24(6):351-355.
    [42]王晶,周庆颂,袁悦.生物降解聚合物PLGA-PEG-PLGA的合成及表征.沈阳药科大学学报,2005,22(5).
    [43]Gouin S,X.X.Zhu.Synthesis of 3 α- 3β dimers from selected bileacids.Steroids.1996,61:664-669.
    [44]Jong Hwa Jung,Seiji Shinkai,Shimizu T.Spectral Characterization of Self-Assemblies of Aldopyranoside Amphiphilic Gelators:What is the Essential Structural Difference between Simple Amphiphiles and Bolaamphiphiles.Chem EurJ.2002,8:2684-2690.
    [45]Ikuo Nakazawa,Mitsutoshi Masuda,Yuji Okada ea.Spontaneous Formation of Helically Twisted Fibers from 2-Glucosamide Bolaamphiphiles:Energy-Filtering Transmission Electron Microscopic Observation and Even-Odd Effect of Connecting Bridge.Langmuir.1999,15:4757-4764.
    [46]Khamnei S,F.Torrence.R Neighboring Group Catalysis in the Design of Nucleotide JMedChem.1996,,39:4109-4115.
    [47]廖工铁.靶向给药制剂:四川科学技术出版社1997:393-394.
    [48]周祖康,顾惕人,马季铭.胶体化学基础.北京:北京大学出版社1996:36-47.
    [49]Knobler CM,DK.S.Langmuir and self-assembled monolayers.Curr Opin Colloid Interface Sci.1999,4(1):46-51.
    [50]方堃,邹纲,何平笙.十八胺单分子膜的研究.化学物理学报.2002,15(4):312-316.
    [51]Louise Desche^nes,Bousmina M,Ritcey AM.Micellization of PEO/PS Block Copolymers at the Air/Water Interface:A Simple Model for Predicting the Size and Aggregation Number of Circular Surface Micelles.Langmuir.2008,24:3699-3708.
    [52]杨红伟,朱谱新,姚永毅等.两亲性嵌段聚醚酯在空气-水界面上的Langmuir单分子膜.高分子学报.2007,1:93-9s.
    [53]Jiao T,Liu M.Supramolecular nano-architectures and two-dimensional/three-dimensional aggregation of a bolaamphiphilic diacid at the air/water interface.Thin Solid Films.2005,479269- 276.
    [54]Guangzhao Mao,Yi-Hua Tsao,al MTe.Monolayers of Bolaform Amphiphiles:Influence of Alkyl Chain Length and Counterions.Langmuir.1994,10:4174-4184.
    [55]Meister A,Weygand MJ,Brezesinski G.Evidence for a Reverse U-Shaped Conformation of Single-Chain Bolaamphiphiles at the Air-Water Interface.Langmuir 2007,23:6063-6069.
    [56]Gao P,Liu M.Compression Induced Helical Nanotubes in a Spreading Film of a Bolaamphiphile at the Air/Water Interface.Langmuir.2006,22:6727-6729.
    [57]A.Papra,F.Penacorada,J.Reiche.Structure and stability of Langmuir monolayers and Langmuir-Blodgett films of bisaroyl azide bolaamphiphiles,supramolecular science.1997,4:423-426.
    [58]何平笙,邹纲,方垫.Langmuir单分子膜的动态稳定性.化学物理学报,2001,14(3):374-375.
    [59]陆彬.北京:人民卫生出版社1998:115-116.
    [60]VP TL.Structure and design of polymeric surfactant-based drug delivery systems,J Controlled Release.2001,73(2/3):137-172.
    [61]YOKOYAMA M,FUKUSH MA S,UEHARA R ea.Characterization of physical entrapment and chemical conjugation of adriamycin in polymeric micelles and their design for in vivo delivery to a solid tumor.J Controlled Release.1998,50(1/3):79-92.
    [62]NEW.R.Preparation of liposomes:a practical approach.OxfordIRL Press.1989:62-64.
    [63]张宏娟,张灿,平其能.聚合物胶束作为药用载体的研究与应用.药学进展.2002.26(6):326-327.
    [64]金义光,艾萍,李淼等.阿昔洛韦药质体的制备和性质.中国医药工业杂志,2005,36:617-621.
    [65]苏德森,王思玲.物理药剂学.北京:化学工业出版社2004:21.
    [66]H T.Sterility assurance of microspheres.J Control Release.1999,62:51.
    [67]Shameem M,Lee H,Burton K,Thanoo BC,Deluca PP.Effect of irradiation on peptide-containing hydrophilic poly(d,l-lactide-co-glycolide)microspheres.PDA JPharm SciTechnol.1999,53:309.
    [68]杨卓理,杨可伟,李馨儒等.两性霉素B的聚乙二醇-聚乳酸胶束的制备及其体外释放动力学.中国药学杂志,2007.42(7):522.
    [69]童珊珊,余江南,徐希明等.反相高效液相色谱法测定阿霉素在小鼠血清中的含量.江苏大学学报,2002,12(6):563-565.
    [70]李海燕,方肇勤,粱尚华.小鼠移植性肝癌(H22)模型的研究及在中医药抗肿瘤中的应用.中国中医基础医学杂志,2000,6(1):27-29.
    [71]王剑锋,凌茂英,初海鹰.小鼠腹水型肝癌细胞系(H22 2FoPL)的建立及其生物学特性.中华病理学杂志.1991,20(1):65-68.
    [72]陈润涛,陈秉,夏源等.性别对荷H22肝癌小鼠肿瘤生长的影响.中国职业医学.2008,35(4):382.
    [73]翟光林,藻姜,巍吴.超声辐射微泡对小鼠皮下H22肝癌移植瘤血管生成及VEGF表达的影响.现代菝学,2006,34(3):751.
    [74]陈新谦,金有豫,汤光.新编药物学:人民卫生出版社,678.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700