锂离子电池正极材料球形LiNi_(0.7)Co_(0.15)Mn_(0.15)O_2的制备及表面包覆改性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,LiNixCoyMnzO2三元材料由于具有电压高、比能量密度高、价格较LiCoO2低廉等优点,一直被认为是LiCoO2的最佳替换材料。本文详细考查了三元材料的研究进展,并以LiNi0.7Co0.15Mn0.15O2为研究对象,对三元材料前驱体共沉积过程的机理和工艺条件、LiNi0.7Co0.15Mn0.15O2的合成以及表面包覆改性进行了研究。
     (1)通过对比分析Me(Ⅱ)-OH--H2O体系与Me(Ⅱ)-NH3-OH--H2O体系中三种金属离子的共沉积机理得知:加入氨水络合剂,使得三种金属离子在同一pH值范围内达到同时沉降,在热力学上保证了三元前驱体在化学组成上的均一性。考察了pH值、氨水浓度等对Ni0.7Co0.15Mn0.15(OH)2前驱体物理和化学性能的影响,发现制备球形Ni0.7Co0.15Mn0.15(OH)2前驱体的最佳工艺条件为:pH=10.5,氨水浓度为0.4M。
     (2)以球形Ni0.7Co0.15Mn0.15(OH)2为前驱体,用固相合成技术制备了高密度球形LiNi0.7Co0.15Mn0.15O2正极材料。研究了不同焙烧制度、焙烧温度和配锂量对合成材料性能的影响。确定了最佳合成条件为:Li/Me=1.05,在500℃下预烧6h,再于750℃烧结12h。得到的LiNi0.7Co0.15Mn0.15O2正极材料表现了良好的物理性能和电化学性能:粒度分布均匀;振实密度高达2.32 g/cm3;在3.0-4.3V电压区间的初始放电容量为185.2 mAh/g;循环50轮后,容量保持率为94.77%。
     (3)研究了LiCoO2/LiAlO2包覆对LiNi0.7Co0.15Mn0.15O2性能的影响。结果表明,LiCoO2/LiAlO2包覆后材料的首轮充放电容量几乎没有改变,但包覆有效地抑制了电解液对LiNi0.7Co0.15Mn0.15O2材料的侵蚀,从而改善了材料的循环性能。同时,包覆LiCoO2/LiAlO2后,LiNi0.7Co0.15Mn0.15O2材料在高电压区间的循环性能也得到了明显的提高。LiCoO2的包覆量为3%,LiAlO2的包覆量为0.7%时,包覆后的LiNi0.7Co0.15Mn0.15O2材料表现出了最佳的电化学性能。
The LiNixCoyMnzO2 system was reported to be the best choice to replace LiCoO2 as Li-ion battery cathode materials due to its high voltage, high energy density and lower cost at present. The research development of LiNixCoyMnzO2 system was summarized, this dissertation emphasizes on layered LiNi0.7Co0.15Mn0.15O2 cathode material. The mechanism and conditions of NixCoyMnz(OH)2 co precipitation process, the preparation of LiNi0.7Co0.15Mn0.15O2 and coating performance were studied.
     (1) The mechanism of three metal ion co precipitation propcess in Me(Ⅱ)-OH--H2O system and Me(Ⅱ)-NH3-OH--H2O system were contrastively analyzed. The results show that three metal ion would be co precipitated in a same pH range by introduce NH4OH chelating agent, which assured the precursor have a uniform chemical composition. This paper represents details of the optimized spherical Ni0.7Co0.15Mn0.15(OH)2 formation process by control pH, amount of chelating agent. The results indicated that the optimum conditions for spherical Ni0.7Co0.15Mn0.15(OH)2 were that the pH of the aqueous solution is 10.5, and the concentration of NH4OH is 0.4M.
     (2) Spherical LiNi0.7Co0.15Mn0.15O2 cathode materials with high tap-density were successfully synthesized by mixing uniform co-precipitated spherical Ni0.7Co0.15Mn0.15(OH)2 and LiOH·H2O followed by heat-treatment. The effects of calcination method, temperature and the ratio of Li/Me on layered LiNi0.7Co0.15Mn0.15O2 cathode materials were studied. On this basis, the best synthesis conditions were obtained: Li/Me=1.05, the mixed materials were calcined at 500℃for 6h and then calcined at 750℃for 12h. The obtained LiNi0.7Co0.15Mn0.15O2 cathode material exhibits good physical and electrochemical performance with uniform particle size distribution, high tap-density (2.32 g/cm3), Initial discharge capacity is 185.2 mAh/g in 3.0-4.3V and the capacity retention is 94.77% after 50 cycles.
     (3) With LiCoO2 or LiA102 coated, coating effects on the performance of layered cathode material LiNi0.7Co0.15Mn0.15O2 were studied. The results showed that the initial charging/discharging capacity almost has no charged after LiCoO2 or LiA102 coated. However, the LiCoO2 or LiA102 coated materials effectively restrain the erosion between electrolyte and LiNi0.7Co0.15Mn0.15O2 cathode material, accordingly, the cycling performance was enhanced. At the same time, the cycling performance in high voltage range of LiNi0.7Co0.15Mn0.15O2 cathode material has been improved by coating LiCoO2 or LiAlO2. The sample coated with 3% LiCoO2 or 0.7% LiAlO2 exhibit good electrochemical properties.
引文
[1]郭炳煜,李新海,杨松青.化学电源.电池原理及制造技术[M].长沙:中南大学出版社,2000:288
    [2]陈立泉.混合电动车及其电池[J].电池,2000,30(3):98-100
    [3]Armand M, Tarascon J.-M. Building better batteries[J]. Nature,2008,451(7179): 652-657
    [4]黄可龙,王兆翔,刘素琴.锂离子电池原理与关键技术[M].北京:化学工业出版社,2008:6,342.
    [5]吴宇平,万春荣,姜长印等.锂离子二次电池[M].北京:化学工业出版社,2002:2-5
    [6]任学佑.锂离子电池及其发展前景[J].电池,1996,26(1):38-40
    [7]赵健,杨维芝,赵家明.锂离子电池的应用开发[J].电池工业,2000,5(1):31-36
    [8]Scrosati B. Challenge of portable power[J]. Nature,1995,373(6515):557-558
    [9]杨晓婵.2007年度全球锂离子电池产量达24.5亿个[J].现代材料动态,2008,2008(4):18
    [10]戴永年,杨斌,姚耀春等.锂离子电池的发展状况[J].电池,2005,35(3):193-195
    [11]胡信国,王殿龙,戴长松.动力锂离子电池及其正极材料的研究进展[J].电池工业,2008,13(1):44-49
    [12]赵灵智.锂离子电池概述及负极材料研究进展[J].广东化工,2009,36(5):106-107
    [13]张颖,张海芳,韩恩山等.锂离子电池氧化物负极材料的研究进展[J].无机盐工业,2009,41(1):1-4
    [14]赵铁鹏,高德淑,李朝晖等.锂离子电池硅基负极材料改性研究进展[J].电源技术,2009,33(1):65-68
    [15]李霞,骆宏钧,赵世勇等.锂离子电池用电解液添加剂最新进展[J].电池工业,2008,13(3):199-202
    [16]许杰,王周成,杨勇.锂蓄电池有机电解液添加剂研究进展[J].电源技术,2008,32(11):800-803
    [17]高阳,谢晓华,解晶莹等.锂离子蓄电池电解液研究进展[J].电源技术,2003,27(5):479-483
    [18]郑雪萍,刘胜林,曲选辉.锂离子电池正极材料的研究现状[J].稀有金属与硬质合金,2005,33(3):42-45
    [19]张世超.锂离子电池关键材料产业技术现状与发展趋势[J].新材料产业,2006,5(7):32-36
    [20]Yoon W S, Lee K K, Kim K B. Synthesis of LiAlyCo1-yO2 using Acrylic acid and its electrochemical properties for Li rechargeable batteries [J]. J. Power Sources, 2001,97-98(72):303-307
    [21]D'Epifanio A, Croce F, Ronic F, et al. Thermal, electrochemical and structural properties of stabilized LiNiyCo1-y-zMzO2 Lithium-ion cathode material prepared by a chemical route[J]. Phys.Chem.Chem.Phys.,2001,3:4399-4403
    [22]Armstrong A R, Robertson A D, Gitzendanner R, et al. The layered intercalation compounds Li(Mn1-yCoy)O2:positive electrode materials for lithium-ion batteries [J]. J. Solid State Chem.,1999,145:549-556
    [23]Holzapfel M, Dchreiner R, Ott A. Lithium-ion conductors of the system Li(Co1-xFex)O2:a first electrochemical investigation [J]. Electrochim. Acta,2001,46: 1063-1070
    [24]Madhavi S, Subba Rao G V, Chowdari B V R., et al. Effect of Cr dopant on the catholic behavior of LiCoO2[J]. Electrochim.Acta,2002,48:219-226
    [25]吴宇平,方世壁,刘昌炎等.锂离子电池正极材料氧化钴锂的进展[J].电源技术,1997,21(5):208-209
    [26]Alcantara R, Lavela P, Tirado J L. Structure and electrochemical Properties of Boron-Doped LiCoO2 [J]. J. Solid State Chem.,1997,13:265-273
    [27]Levasseur S, Menetrier M, Delmas C. On the LixCo1-yMgyO2 system upon deintercalation: electrochemical, electronic properties and 7Li MAS NMR studies [J]. J. Power Sources,2002,112:419-427
    [28]Cao H, Xia B J, Zhang Y, et al. LiAlO2-coated LiCoO2 as cathode materials for lithium for batteries [J]. Solide State Ionics,2005,176:911-914
    [29]Oh S, Lee J K, Byun D, et al. Effect of Al2O3 coating on electrochemical performance of LiCoO2 as cathode materials for secondary lithium batteries[J]. J. Power Sources,2004,132:249-255
    [30]Kim J, Amine K. A comparative study on the substitution of divalent, trivalent and tetravalent metal ions in LiNi1-xMxO2 (M= Cu2+, Al3+ and Ti4+)[J]. J. Power Sources,2002,104:33-39
    [31]Pouillerie C, Croguennec L, Biensan P, et al. Synthesis and characterization of new LiNi1-yMgyO2 positive electrode materials for lithium-ion batteries[J]. J. Electrochem. Soc.,2000,147:2061-2069
    [32]Ohzuku T, Knakura K, Aoki T. Comparative study of solid-state redox reactions of LiCo1/4Ni3/4O2 and Li Al1/4Ni3/4O2 for lithium-ion batteries[J]. Electrochim. Acta, 1999,45:151-160
    [33]Nishida Y, Nakane K, Satoh T. Synthesis and properties of gallium doped as the cathode material for lithium secondary batteries [J]. J. Electrochem. Soc.,1997,68: 561-564
    [34]Ying J R, Wan C R, Jiang C Y, et al. Preparation and characterization of high-density spherical LiNi0.8Co0.2O2 cathode material for lithium secondary batteries[J]. J. Power Sources,2001,99:78-84
    [35]Hu G R, Deng X R, Peng Z D, et al. Preparation of spherical and dense LiNi0.8Co0.2O2 lithium-ion battery particles by spray pyrolysis[J]. J. Cent. South Univ. Technol.2008,15:29-33
    [36]万福成,田建坤,张海朗.尖晶石LiMn204改性的研究与进展[J].化学世界,2007,11:697-701
    [37]李萍,李琪,徐宏志等.锂离子二次电池正极材料锰酸锂的研究进展[J].无机盐工业,2008,40(1):1-4
    [38]刘烈炜,田炜,赵新强等.尖晶石LiMn2O4的掺杂研究进展[J].材料导报,2003,17(6):44-46
    [39]陈前火,童庆松,连锦明.掺杂尖晶石型锂锰氧化物的合成与电化学性能研究[J].无机材料学报,2004,19(5):1045-1050
    [40]Tarascon J M, Guyomard D. Li metal-free rechargeable batteries based on Li1+xMn2O4 cathodes (0    [41]Wang X R, Iltchev N, Nakamura H, et al. A 5V region electrochemical behavior of nonstoichiometric Li1+xMnz-xO4±z spinels[J]. Electrochem. Solid-State Lett.,2003, 6(6):A99-A101
    [42]Hayashi N, Kkuta H, Wakihara M. Cathode of LiMgyMnz-yO4 and LiMgyMnz-yO4-δ spinel phases for lithium secondary batteries[J]. J. Electrochem. Soc., 1996,143(1):178-182
    [43]Du K, Xie J Y, Wang J L, et al. LiMn2-xCrxO4 spinel prepared by a modified citrate route with combustion[J]. J. Power Sources,2003,119~121:130-133
    [44]Amatucci G G, Blyr A, Sigala C, et al. Surface treatment of Li1+xMn2-xO4 spinel for improved elevated temperature performance[J]. Solid State Ionics,1997,104: 13-25
    [45]Zheng Z S, Tang Z L, Zhang Z T, et al. Surface modification of Li1.03Mn1.97O4 spinels for improved capacity retention[J]. Solid State Ionics,2002,148:317-321
    [46]Park S C, Kim Y M, Kang Y M, et al. Improvement of the rate capability of LiMn2O4 by surface coating with LiCoO2[J]. J Power Sources,2001,103:86-92
    [47]姚素薇,张绍丽,徐宁等.锂离子蓄电池层状锰系正极材料的研究进展[J].电源技术,2003,27(6):554-557
    [48]钟辉,周燕芳,许惠.层状LiMnO2研究进展[J].化学通报,2003,7:449-453
    [49]Paulsen J M, Larcher D, Dahn J. R. A new layered cathode material for rechargeable lithium batteries[J]. J. Electrochem. Soc.,2000,147(8):2862-2867
    [50]Myung S T, Komaba S, Kumagai N. Hydrothermal synthesis of orthorhombic LiCoxMn1-xO2 and their structural changes during cycling[J]. J. Electrochem. Soc., 2002,149(10):A1349-A1357
    [51]Shaju K M, Subba Rao G V, Chowdar B V R. Layered Manganese oxide with O2 structure, Li2/3+x(Ni1/3Mn2/3)O2 as cathode for Li-ion batteries[J]. Electrochem. Commun.,2002,4:633-638
    [52]Hwang S J, Park H S, Choy J H. Variation of chemical bonding nature of layered LiMnO2 upom delithiation/relithiation and Cr substitution[J]. Solid State Ionics,2002, 151:275-283
    [53]Kang B, Ceder G. Battery materials for ultrafast charging and discharging[J]. Nature.2009,458:190-193
    [54]Anderson A S, Kalska B, Haggstrom L, et al. Lithium extraction/insertion in LiFePO4:an X-ray diffraction and Mossbauer spectroscopy study[J]. Solid State Ionics,2000,130:41-52.
    [55]Yamada A, Chung S C, Hinokuma K, Optimized LiFePO4 for lithium battery cathodes[J], J. Electrochem. Soc.,2001,148 (3):A224-A229.
    [56]Hu Y Q, Deeff M M, Kostecki R, et al. Electrochemical performance of sol-gel synthesized LiFePO4 in lithium batteries[J]. J. Electrochem. Soc.,2004,151(8): A1279-A1285
    [57]Yamada A, Chung S C. Crystal chemistry of the olivine type Li(MnyFe1-y)PO4 and (MnyFe1-y)PO4 as possible 4V cathode materials for lithium batteries[J]. J. Electrochem. Soc.,2001,148(8):A960-A967
    [58]Wang G X, Bewlay S, Yao J, et al. Characterization of LiMxFe1-xPO4 (M=Mg, Zr, Ti) cathode materials prepared by the sol-gel method[J]. Electrochem. Solid-State Lett.,2004,7(12):A503-A506
    [59]Koyama Y, Tanaka I, Adachi H, et al. Crystal and electronic structures of superstructural Li1-x[Co1/3Ni1/3Mn1/3]O2 (0≤x≤1) [J]. J. Power Sources,2003,119-121: 644-648
    [60]Sun Y K., Kang S H, Amine K. Synthesis and electrochemical behavior of layered Li(Ni0.5-xCo2xMn0.5-x)O2 (x=0 and 0.025) materials prepared by solid-state reaction method [J]. Mater. Res. Bull.,2004,39:819-825
    [61]Lee M H, Kang Y J, Myung S T, et al. Synthetic optimization of Li[Ni1/3Co1/3Mn1/3]O2 via co-precipitation[J]. Electrochim. Acta,2004,50:939-948
    [62]Zhang Y, Cao H, Zhang J, et al. Synthesis of LiNi0.6Co0.2Mn0.2O2 cathode material by a carbonate co-precipitation method and its electrochemical characterization[J]. Solid State Ionics,2006,177:3303-3307
    [63]Li X, Wei Y J, Ehrenberg H, et al. Characterizations on the structural and electrochemical properties of LiNi1/3Mn1/3Co1/3O2 prepared by a wet-chemical process[J]. Solid State Ionics,2008,178:1969-1974
    [64]Ding Y H, Zhang P, Long Z L, et al. The morphology, structure and electrochemical properties of LiNi1/3Mn1/3Co1/3O2 prepared by electrospun method [J]. J. Alloys Compd.,2008,462:340-342
    [65]Park S H, Yoon C S, Kang S G, et al. Synthesis and structural characterization of layered LiNi1/3Mn1/3Co1/3O2 cathode materials by ultrasonic spray pyrolysis method [J]. Electrochim. Acta,2004,49:557-563
    [66]Myung S T, Lee M H, Komab S, et al. Hydrothermal synthesis of layered LiNi1/3Mn1/3Co1/3O2 as positive electrode material for lithium secondary battery[J]. Electrochim. Acta,2005,50:4800-4806
    [67]Liu D T, Wang Z X, Chen L Q. Comparison of structure and electrochemistry of Al-and Fe-doped LiNi1/3Co1/3Mn1/3O2[J]. Electrochim. Acta,2006,51:4199-4203
    [68]Kim G H, Myung S T, Kim H S, et al. Synthesis of spherical Li[Ni(1/3-z)Co(1/3-z)Mn(1/3-z)Mgz]O2 as positive electrode material for lithium-ion battery[J]. Electrochim. Acta,2006,51:2447-2453
    [69]Fujii Y, Miura H, Suzuki N, et al. Structural and electrochemical properties of LiNi1/3Co1/3Mn1/3O2-LiMg1/3Co1/3Mn1/3O2 solid solutions[J]. Solid State Ionics,2007, 178:849-857
    [70]Sun Y, Xia Y, Noguchi H. The improved physical and electrochemical performance of LiNio.35Co0.3-xCrxMn0.35O2 cathode materials by the Cr doping for lithium ion batteries[J]. J. Power Sources,2006,159:1377-1382
    [71]Park S H, Shin S S, Sun Y K. The effects of Na doping on performance of layered Li1.1-xNax[Ni0.2Co0.3Mn0.4]O2 materials for lithium secondary batteries[J]. Mater. Chem. Phys.,2006,95:218-221
    [72]Na S H, Kim H S, Moon S I. The effect of Si doping on the electrochemical characteristics of LiNixMnyCo(1-x-y)O2[J]. Solid State Ionics,2005,176(3-4):313-317
    [73]Kim G H, Kim M H, Myung S T, et al. Effect of fluorine on Li[Ni1/3Co1/3Mn1/3]O2-zFz as lithium intercalation material[J]. J. Power Sources,2005, 146:602-605
    [74]Kim G H, Myung S T, Bang H J, et al. Synthesis and electrochemical properties of Li[Ni1/3Co1/3Mn(1/3-x)Mgx]O2-yFy via coprecipitation[J]. Electrochem. Solid-State Lett.,2004,7(12):A477-A480
    [75]Huang Y J, Gao D S, Lei G T, et al. Synthesis and characterization of Li(Ni1/3Co1/3Mn1/3)0.96Si0.04O1.96F0.04 as a cathode material for lithium-ion battery[J]. Mater. Chem. Phys.,2007,106:354-359
    [76]Xiang J F, Chang C X, Yuan Li J, et al. A simple and effective strategy to synthesize Al2O3-coated LiNi0.8Co0.2O2 cathode materials for lithium ion battery[J], Electrochem. Commun.,2008,10:1360-1363
    [77]Jang S B, Kang S H, Amine K, et al. Synthesis and improved electrochemical performance of Al(OH)3-coated Li[Ni1/3Mn1/3Co1/3]O2 cathode materials at elevated temperature[J]. Electrochim. Acta,2005,50:4168-4173
    [78]Cho J, Kim T J, Kim J, et al. Synthesis, thermal, and electrochemical properties of AlPO4-coated LiNi0.8Co0.1Mn0.1O2 cathode materials for a Li-ion cell[J]. J. Electrochem. Soc.,2004,151(11):A1899-A1904
    [79]Zhang Z R, Liu H S, Gong Z L, et al. Electrochemical performance and spectroscopic characterization of TiO2-coated LiNi0.8Co0.2O2 cathode materials[J]. J. Power Sources,2004,129:101-106
    [80]Zhecheva E, Stoyanova R, Tyuliev G, et al. Surface interaction of LiNi0.8Co0.2O2 cathodes with MgO[J]. Solid State Sci,2003,5:711-720
    [81]Ha H W, Jeong K H, Yun N J, et al. Effects of surface modification on the cycling stability of LiNi0.8Co0.2O2 electrodes by CeO2 coating[J]. Electrochim. Acta, 2005,50:3764-3769
    [82]Lee S M, Oh S H, Cho W Il, et al. The effect of zirconium oxide coating on the lithium nickel cobalt oxide for lithium secondary batteries[J]. Electrochim. Acta,2006, 52:1507-1513
    [83]Kim Y, Kim H S, Martin S W. Synthesis and electrochemical characteristics of Al2O3-coated LiNi1/3Co1/3Mn1/3O2 cathode materials for lithium ion batteries[J]. Electrochim. Acta,2006,52:1316-1322
    [84]Kim H S, Kim Y, Kim S Il, et al. Enhanced electrochemical properties of LiNi1/3Co1/3Mn1/3O2 cathode material by coating with LiAlO2 nanoparticles[J]. J. Power Sources,2006,161:623-627
    [85]Sun Y K, Myung S T, Park B C, et al. High-energy cathode material for long-life and safe lithium batteries[J]. Nature Materials,2009,8:320-324
    [86]Hideki K, Toyoki F, Kazuhisa T, et al. High-temperature storage performance of Li-ion batteries using a mixture of Li-Mn spinel and Li-Ni-Co-Mn oxide as a positive electrode material[J]. Electrochem. Solid-State Lett.,2005,8(2):A87-A90
    [87]Lundblad A, Bergman B, Synthesis of LiCoO2 starting from carbonate precursors I. The reaction mechanisms[J]. Solid State Ionics,1997,96:173-181
    [88]Li H J, Chen G, Zhang B, et al. Advanced electrochemical performance of Li[Ni(1/3-x)FexCo1/3Mn1/3]O2 as cathode materials for lithium-ion battery[J]. Solid State Commun.,2008,146:115-120
    [89]Ding Y H, Zhang P, Gao D S. Synthesis and electrochemical properties of layered Li[Ni1/3Co1/3Mn1/3]0.96Ti0.04O1.96F0.04 as cathode material for lithium-ion batteries[J]. J. Alloys Compd.,2008,456:344-347
    [90]Li W, Reimers J N, Dahn J R. In situ x-ray diffraction and electrochemical studies of Li1-xNiO2[J]. Solid State Ionics,1993,67(1-2):123-130
    [91]Liu J, Wen Z Y, et al. Synthesis and characterization of LiCoO2 cathode materials [J]. Journal of Inorganic Materials,2002,17(6):1157-1162
    [92]Morales J, Perez-Vicentea C, Tirado J L. Cation distribution and chemical deintercalation of Li1-xNixO2[J]. Mater. Res. Bull,1990,25(5):623-630
    [93]Shaju K M, Subba Rao G V, Chowdari B V R. Performance of layered LiNi1/3Co/3Mn/3O2 as cathode for Li-ion batteries[J]. Electrochim. Acta,2002,48: 145-151
    [94]Zou Z G, Mai L Q, Chen H Y, et al. Preparation of LiNixCo1-xO2 cathode material for Li-ion cells[J]. Journal of WuHan University of Technology,2001,16(4): 6-11
    [95]Todorov Y M, Numata K. Effects of the Li:(Mn+Co+Ni) molar ratio on the electrochemical properties of LiMn1/3Co1/3Ni1/3O2 cathode material[J]. Electrochim. Acta,2004,50:495-499
    [96]Kim J M, Kumagai N, Kadoma Y, et al. Synthesis and electrochemical properties of lithium non-stoichiometric Li1+x(Ni1/3Co1/3Mn1/3)O2+δ prepared by a spray drying method[J]. J. Power Sources,2007,174:473-479
    [97]Sun Y K, Myung S T, Kim M H, et al. Synthesis and Characterization of Li[(Ni0.8Co0.1Mn0.1)0.8(Ni0.5Mn0.5)0.2] O2 with the Microscale Core Shell Structure as the Positive Electrode Material for Lithium Batteries[J]. J. Amer. Chem. Soc.,2005, 127(38):1341-1348.
    [98]赵方辉,应皆荣,何向明等.LiNi0.8Co0.2O2表面包覆MgO及其性能[J].电源技术,2003,27(1):14-16
    [99]Tan K S, Reddy M V, Subba Rao G V, et al. Effect of AlPO4-coating on cathodic behaviour of Li(Ni0.8Co0.2)O2[J]. J. Power Sources,2005,141(1):129-142
    [100]Sun Y K, Myung S T, Shin H S, et al. Novel Core Shell-Structured Li[(Ni0.8Co0.2)0.8(Ni0.5Mn0.5)0.2]O2 via Coprecipitation as Positive Electrode Material for Lithium Secondary Batteries[J]. J. Phys. Chem. B,2006,110(13):6810-6815
    [101]Liu L J, Wang Z X, Li H, et al. Al2O3-coated LiCoO2 as cathode material for lithium ion batteries[J]. Solid State Ionics,2002,152-153:341-346.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700