阿拉善特有植物长叶红砂耐盐机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物的耐盐机制的研究一直是植物研究领域的一个热点问题。植物的耐盐机理相当复杂,不同的植物在适应环境的过程中,形成了自己独特的适应性特征。本实验对东阿拉善-西鄂尔多斯特有双子叶植物---长叶红砂(Reaumuria trigyna Maxim.)的耐盐机理进行了研究和探讨,所得结论如下:
     1.长叶红砂在非盐渍化土壤(盐分<0.1%)、盐渍化土壤(盐分在0.1~0.3%之间),重盐土中(盐分在0.5~1.0%之间)都能完成生活史,且长叶红砂的叶片和嫩茎上均具有盐腺,说明长叶红砂是一种泌盐盐生植物。
     2.长叶红砂的盐腺属典型的多细胞盐腺,由8个细胞组成,基部2个属收集细胞,外侧6个属分泌细胞,6个分泌细胞两两成对紧密排列,形成3列,内层的2个分泌细胞与2个收集细胞相连接,收集细胞从叶肉细胞中收集盐分并运送到分泌细胞,盐腺腺体除最内部细胞和基层下部细胞之间的渗入区域一小部分外,几乎全部被有一层厚的角质层。长叶红砂通过叶片的肉质化、叶表角质化、叶肉细胞排列为环形栅栏组织和茎、叶气孔下陷等形态结构的适应而降低蒸腾作用,通过茎、叶上的盐腺将侵入体内的多余的盐分排出体外,使其在盐渍化土壤或重盐土中生活。
     3.盐腺分泌特点表现为:盐腺分泌的离子种类与生存的土壤环境、植物体内离子种类一致,但Na~+、Cl~-的分泌量大,K~+、Mg~(2+)等的分泌量小;分泌的日变化表现为上午高于下午,白天高于夜间,而且白天中受大气相对湿度的影响,从早到晚分泌量表现出降低的趋势。这些结果说明在外界环境因素的调节下,长叶红砂通过盐腺的选择性分泌使植物体内保持适当的盐分和养分浓度以适应盐渍生境。
     4.种子萌发实验显示:种子萌发的适宜温度为20~25℃。温度高于25℃时,温度越高,萌发率越低;在25℃下,浓度低于100 mM的NaCl对种子萌发的影响不大,但高于150 mM时,NaCl下种子的萌发率随NaCl浓度的增高而下降,直至0,说明长叶红砂种子萌发期间对土壤含盐量有一定要求,在土壤盐分含量高的生境中,植物的更新会受到一定的影响;NaCl溶液处理9 d的未萌发种子转移至蒸馏水中后,经高浓度NaCl胁迫(200~500 mM)处理的种子萌发恢复率约为90%,且在1~2 d内即迅速萌发。利用这个特点,先用高浓度的盐溶液处理种子,之后播种,可提高种子的萌发速度和整齐度。
     5.以不同浓度NaCl溶液胁迫30天的长叶红砂植株为材料,对其生长发育的研究结果显示:一定浓度的NaCl可以促进长叶红砂幼苗的牛长,200 mM浓度的NaCl是长叶红砂幼苗生长的最适浓度,比种子的耐盐半致死浓度148.107 mM要高,显示长叶红砂幼苗耐盐的能力比种子要强。说明盐渍环境对幼苗生长的影响不大,使长叶红砂成为残遗种、局限分布和更新速度缓慢主要与长叶红砂种子萌发阶段对盐分的要求低,而盐渍环境造成种子萌发困难有关。
     6.对不同浓度NaCl溶液胁迫30天的长叶红砂植株的抗氧化系统的活动和渗透调节能力的研究显示:(1)长叶红砂的相对耐盐力与高的抗氧化酶活性和谷胱甘肽含量,低的MDA含量、相对电导率相关。说明对长叶红砂的抗盐能力而言,限制氧化性的损害是重要的;(2)长叶红砂主要通过Na~+和Cl~-、可溶性糖、脯氨酸及可溶性蛋白等进行渗透调节,而不依赖游离氨基酸、有机酸及K~+、Ca~(2+)、Mg~(2+)等离子进行渗透调节。
     7.利用mRNA差异显示(DDRT-PCR)技术,将正常生长和用400mM NaCl处理48 h的长叶红砂的mRNA逆转录合成cDNA,然后在6%变性聚丙烯酰胺凝胶上分离。从凝胶上回收到了80个差异条带的克隆,经Reverse Northern斑点杂交验证,获得了5个阳性克隆,对其进行测序,使用blast工具将测序结果与GenBank数据库中的资料进行序列比对。初步结果为:得到5条长叶红砂特异表达基因的cDNA序列,长度分别为386bp,481bp,495bp,369bp和278bp,它们都与已知序列同源性低,可能是与长叶红砂耐盐相关的新基因,耐盐相关cDNA片段的获得,将为分离全长耐盐基因,搞清该基因表达调控的机理提供条件。
     根据以上研究结果认为长叶红砂体内具有多种耐盐途径,主要可以归纳为:1)盐腺的分泌活动;2)适应盐渍环境的茎、叶结构特征;3)良好的生理适应性;4)盐胁迫相关基因的表达。综合以上结果分析认为长叶红砂的耐盐绝不仅仅是盐腺的泌盐作用,而是多种耐盐途径综合作用而使长叶红砂能够适应荒漠盐渍的生存环境。
Salt-tolerant mechanism of plants had been a hot issue in plant research field.Salt-tolerant mechanisms was rather complicated,different plants formed its own unique characteristics of adaptability in their adaptation to salt environment.Reaumuria trigyna Maxim,derived from Mediterranean Sea and endemic to Alashan-Erdos Desert of China,is an endangered shrubby perennial plant.This experiment aimed to study salt-tolerant mechanisms of Reaumuria trigyna. The main results were as follows:
     1.Reaumuria trigyna could complete life cycle in the non-saline soil(salt<0.I%),salinization of the soil(salt at 0.1~0.3%),and in re-saline soil(salt at 0.5~1.0%),has salt glands in the leaves and soft stem.Reaumuria trigyna is an Exo-reorto halophytes.
     2.Salt glands of Reaumuria trigyna belonged to typical multicellular salt gland.Salt gland originates in specialized epidermal cells,is composed of 8 cells.Among these cells,2 are collecting cells which are similar to the ordinary mesophyll cell with obvious vacuole,surrounding 6 cells are secretory cells which have thick cytoplasm,form 3 rows,2 secretion cells in the most outer layer are big,cells in the middle secretory and secretion cell in the inner layer connecting with 2 collecting cells are small.The collecting cell collects the salinity from the mesophyil cell and ships to the secretory cell,simultaneously may see a thick cuticle besides lower part of the internal cell and the basic unit between a cell's permeating region small part.Reaumuria trigyna decreased transpiration and adapted to salt environment by succulent leaves,sunking stoma and salt glands which removed excessively absorbed ions and reduce the salt concentrations of active tissues.
     3.The types of icons was same in the soil solutions,plant tissues and excretion from salt gland,but the excreted ions amount from salt gland was obviously different.Among the excreted ions from salt gland,Na~+ and Cl~- was higher,K~+,Mg~(2+) was lower.The changes of salt gland secretion in the day showed decreasing trend which had very significantly or significantly positive correlation with the relative humidity of the atmosphere from morning to night.In addition,the excretion rate was higher during the day and in the morning than during the night and in the afternoon respectively.The above described findings showed that such high selectivity for Na~+,Cl~-in absorption and excretion of Reaumuria trigyna is of high significance to the plant in balancing nutrition in Reaumuria trigyna and adapting to the wild habitat.
     4.The optimal temperature for germination was 20~25℃.When the temperature was over 25℃,the germination percentages decreased.NaCl at concentration below 100 mM had no effect on seed germination.When NaCl concentration was over 100 mM,the seed germination obviously decreased until 0.After treatment with NaCI solution for 9 days,then transferred in distilled water, recovery germination percentages of seed treated with high concentration of NaCl(200~500 mM) was about 90%.We can improve seed germination rate and uniformity by treating seed with high concentration of NaCl before sowing.
     5.Reaumuria trigyn was treated with NaCl of different concentrations(0,100,200,300 and 400 mM).A study about its growth in the different conditions showed that the suitable NaCl concentration of Reaumuria trigyna seedlings growth was 200 mM which was higher than 148 mM --- the seed's tolerance of half-lethal salt concentration.These results suggested that the reasons leading to Reaumuria trigyna for the endangered was saline environment which caused seed germination difficulties.
     6.A study on antioxidative activities and osmotic ability of Reaumuria trigyn with NaCl was conducted and its result demonstrated:(1) Under NaCl stress,the activities of SOD and POD in Reaumuria trigyna all increased significantly,CAT activity had no distinct difference(P>0.05). Glutathione and O_2 production rate significantly increased,ascorbic acid salt content decreased, increased significantly,while MDA and the relative conductivity appeared to decrease first and then increase as salinity increase.As a whole,these data suggest that the capacity to limit oxidative damage is important for salt tolerance of Reaumuria trigyna;(2) osmotic adjustments of Reaumuria trigyna mainly relied on Na~+ and Cl~-,soluble sugar,free amino acid,proline and soluble protein, rather than relied on organic acids,K~+,Ca~(2+) and Mg~(2+).
     7.In order to check out whether there exists specific expression in the Reaumuria trigyna treated by 400mM NaCl,mRNA was extracted the total RNA from the leaves of Reaumuria trigyna treated by 400raM NaCl and the control,cDNA fragments were generated by reverse transcription polymerase Chain reaction(RT-PCR).80 differentially displayed fragments were separated on 6% polyacrylamide gel electrophoresis(PAGE),and five of them were confirmed as positive clones by reverse northern blot hybridization.These fragments were then cloned into vectors for sequencing. The cDNA fragment sequences were compared with data in GenBank using basic local alignment search tool(blast).Our preliminary results showed that five eDNA fragments were expression in Reaumuria trigyna treated by 400mM NaCl.The five cDNA fragments were 386,481,495,369 and 371base pairs,respectively.After searching in GenBank,there were no similar sequences reported about these fragments.
     In conclusion,salt-tolerant mechanism of Reaumuria trigyna can be summarized with the following features:(1) salt gland secretion;(2) stems,leaves structural characteristics adapting to saline environment;(3) physiological adaptation;(4) salt stress-related gene expression.All these study results showed that salt tolerance of Reaumuria trigyna can adapt to the desert and saline environment for the survival by above ways.
引文
[1]赵一之.鄂尔多斯高原维管植物[M].内蒙古大学出版社,2006,47
    [2]杨持,王迎春,刘强,等.四合木保护生物学[M].科学出版社,2002,147
    [3]张韬,王炜,安慧君,等.东阿拉善-西鄂尔多斯地区特有濒危植物种群斑块变化与优先保护级相关分析[J].干旱区资源与环境,2005,19(5):179-184
    [4]李博.内蒙古鄂尔多斯高原的自然资源与环境研究[M].北京:科学出版社,1990
    [5]刘果厚,周世权,张力,等.内蒙古特有植物四合木生态环境及濒危原因的研究[J].内蒙古林学院学报,1993,2:33-38
    [6]王迎春.内蒙古西鄂尔多斯古老残遗物种生活史适应机制的比较研究[D].内蒙古大学,2000
    [7]马毓泉.内蒙古植物志(第三卷)[M].呼和浩特:内蒙古人民出版社,1989,4(2):519-522
    [8]中国科学院内蒙古宁夏综合考察队.内蒙古植被[M].北京:科学出版社,1985,650-662
    [9]赵一之.1996.长叶红沙(Reaumuria trigyna)植物区系地理分布研究[J].内蒙古大学学报(自然科学版),1996,27(3):369-370
    [10]张鹏云,张耀甲.中国植物志[M].北京:科学出版社,1979,50(2):142-143
    [11]刘媖心.中国沙漠植物志(第二卷)[M].北京:科学出版社,1987
    [12]杨瑞丽.荒漠旱生小灌木劈裂生长的形态发生及其适应机制的比较研究[D].2004
    [13]张敏,王迎春.长叶红沙种子在萌发过程中细胞内营养物质动态研究[J].内蒙古大学学报(自然科学版),2006,37(5):535-539
    [14]Breckle S W.Salinity tolerance of different halophyte types.In:Brassam NEI,Dambrodt M,Loughman BC(eds)[J].Genetic Aspects of Plant Mineral Nutrient.Netherland:Kluwer Academic Pubishers,1990.167-175
    [15]郗金标,张福锁,田长彦,等.新疆盐生植物[M].科学出版社,2006,86-87
    [16]Goham J,Mc Donnell E,Budreuicz E,el al.Salt tolerance in the Triticeae:Growth and solute accumula-tion in leaves of Thinopyrum bessarabicum[J].Journal of Experimental Botany,1985,36:1021-1031
    [17]Arisz WH,Camphuis IJ,Heikens H,et al.The secretion of the salt glands of Limonium latifolium Ktze[J].Acta Bot Neerlandica,1955,4(3):321-338
    [18]Ziegler H,Luttge U.Die Salzdrusen Von Limonium Vulgare Ⅱ:Die Lokalisierung des.Chloride[J].Planta,1967,74:1-17
    [19]Shimony C,Fahn A.Light and electron microscopical studies on the structure of salt glands of Tarnarix aphylla L[J].J Linn Soc.,1968,60:282-288
    [20]Levering CA,Thomson W W.The ultrastructure of the salt gland of Spartinafoliosa[J].Planta,1971,97:183-196
    [21]Levering CA,Thomson W W.Studies on the ultrastructure and mechanism of secretion of the salt gland of the grass Spartina[J].In:Proc.30th Electron Microscope Soc.of America,1972,222-223.
    [22]赵可夫,李法曾.中国盐生植物[M].北京:中国科学技术出版社,1999
    [23]余叔文,汤章城.植物生理与分子生物学[M].北京:科学出版社,2000,752-769
    [24]Paul M.Hasegawa Ray A.Plant cellular and colecular responses to high salinity[J].Plant Physiol Mol Biol,2000,51(2):463-499
    [25]Yeo AR.Salt tolerance in the haiophyte Suaeda maritima L.Dum:Intracellular compartmentation of ions[J].Journal of Experimental Botany,1981,32,487-497
    [26]Dracup MN,Greenway H.A procedure for isolating vacuoles from leaves of the halophytes Suaeda maritime[J].Plant Cell Environ,1985,8:149-154
    [27]Rodriguez H G,Roberts K G,ordan W R,et al.Growth water relations and accumulation of organic and inorganic solutes in roots of maise seedlings during salt stress[J].Plant Physiol,1997,113:881-893
    [28]张新春,庄炳昌。李自超.植物耐盐性研究进展[J].玉米科学,2002,10(1):50-56
    [29]苏金,朱汝财.渗透胁迫调节的转基因表达对植物抗旱耐盐性的影响[J].植物学通报.2001,18 (2):129-136
    [30]Niu X,Bressan R A,Hasegawa P M,et al.Ion homeostasis in NaCI stress environments[J].Plant Physiol,1995,109:735-742
    [31]龚明.盐胁迫下大麦和小麦等叶片脂质过氧化伤害与超微结构变化的关系[J].植物学报,1989,31(11):841-846.
    [32]马焕成,王沙生.胡杨膜系统的盐稳定定性及盐胁迫下的代谢调节[J].西南林学院学报,1998,18(1):15-23
    [33]郑海雷,林鹏.培养盐度对海莲和木榄幼苗膜保护系统的影响[J].厦门大学学报,1998,37(2):278-282
    [34]Ericson MC,Alfinito SH.Proteins produced during salt stress in tobacco cell culture[J].Plant Physoil,1984,74:506-509
    [35]卢青.植物耐盐性的分子生物学研究进展[J].生物学杂志,2000,17(4):9-11
    [36]舒卫国,陈受宜.植物在渗透胁迫下基因表达及信号传递[J].生物工程进展.2000,20(3):3-6
    [37]Dure L,Crouch M.Developmental biochemistry of cotton seed embryogenesis and germination:changing messenger ribonucleic acid populations as shown by in vitro and in vivo protein synthesis[J].Biochemistry,1981,20:4162-4168
    [38]Close TJ.Dehydrins:emergence of a biochemical role of a family of plant dehydration proteins[J].Physiol Plant,1996,97:795-803
    [39]Xu D.Expression of a late embryogenesis abundand protein gene,HVAI,from barely confers tolerance towater deficit and salt stress in transgenic rice[J].Plant Physiol.,1996,110:249-257
    [40]Liang P,Pardee A B.Differential display of eukaryotic messenger RNA by means of the poly-merase chain reaction[J].Science,1992,257(14):967-971
    [41]Lisitsyn N,Wigler M.Cloning the differences in mRNA expression by representational difference analysis of eDNA[J].Nucleic Acids Res.,1994,(25):5640
    [42]Diatchenko L,Lau Y F,Chenchik A,et al.Suppression subtractive hybridization:a method for generating differentially regulated or tissue-specific eDNA probes and libraries[J].Proc Natl Acad Sci,USA,1996,93(12):6025-6030
    [43]Velculescu V E,Zhang L,Vogeislein B,et al.Serial analysis of gene expression[J].Science,1995,270(5235):484
    [44]Fodor S P,Read J L,Pirrung LS,et al.Light-directed,spatially addressable parallel chemical synthesis[J].Science,1991,251(4995):767-773
    [45]Arnold A M,Anderson G W,Mciver B,et al.A novel dynamin Ⅲ isoform is up-regulated in the central nervous system in hypothyroidism[J].lnt J Deve Neuroscience,2003,21:267-275
    [46]Bobe J,Goetz F W.A S_(100) homologue mRNA isolated by differential display PCR is down-regulated in the brook trout(Salvelinusfontinalis)Post-ovary[J].Gene,2000,257:187-194
    [47]Zegzouti H,Marry C,Jones B,et al.Improved screening of cDNAs generated by mRNA differential disply enables the selection of true positives and the isolation of weakly expressed messages[J].Plant Molecular Biology Reporter,1997,15:236-245
    [48]Liu C,Raghothama K G.Practical methods for cloning cDNAs generated in an mRNA differential display [J].Biotechniques,1996,20:576-580
    [49]Bertioli D J,Schlichter U H,Adams M J,et al..An analysis of diferential display shows a strong bias towards high copy number mRNAs[J].Nucleic Acids Res.,1995,23(21):4520-4523
    [50]Callard D,Lescure B,Mazzolini L.A mothod for the elimination of false positives generated by mRNA differential display technique[J].Biotechniques,1994,16:1096-1103
    [51]Ito T,Kito K,Adati N,et al.Fluorescent diferential display:arbitrarily primes RT-PCR fingerprinting on an automated DNA sequencer[J].FEBS Letters,1994,351(2):231-236
    [52]Bauer D,Muller H,Reich J,et al.Identification of differentially expressed mRNA species by an improved display technique(DDRT-PCR)[J].Nucleic Acids Res.,1993,21(18):4272-4280
    [53]Zhao S,Qoi S L,Pardee A B.New primer strategy improves precision of differential display[J].Biotechniques,1995,18(5):842-846,848,850
    [54]Lauren S,Stephen J.Overcoming Limitation ofmRNA Differential Display[J]..Biotechniques,1995,18(5):842-850
    [55]肖华胜,黄文晋.降低差异显示PCR假阳性和提高重复性的几种策略[J]..生物化学与物理进展,1999,26(5):437-438
    [56]Lohmann J,Schickle H,Bosch TCG.REN display,a rapid and efficient method for nonradioactive differential display and mRNA isolation[J].Biotechniques,1995,18(2):200-202
    [57]Chen J J,Peck K.Non-radioisotopic diferential display method to directly visualize and amplify differential bands on nylon membrane[J].Nucleic Acids Res.,1996,24:793-794
    [58]孟祥文,李钰,张贵寅,等.应用mRNA差异显示技术克隆人肺腺癌转移相关基因[J].中华遗传学杂志,1997,14(3):129-133
    [59]Smith N R,Alderley M,Li A,et al.Automated differential display using a fluorescently labeled universal primer[J].Biotechniques,1997,23(2):274-279
    [60]张驰,陈受宜.利用DDRT-PCR技术分析在盐肋迫下水稻耐盐突变体中特异表达的基因[J].中国科学(C辑),1995,25:840-847
    [61]Rippmann J F,Michalowskl C B,Nelson D E,et al.Induction of a ribosome-inactivating protein upon environmental stress[J].Plant Molecular Biology,1997,35:701-709
    [62]Wei W,Bilsborrow P,Hooley P,et al.Variation between two near isogenic bade(Hordeum vulgate)cuitivars in expression of the B subunit of the vacuolar ATPase in response to salinity[J].Hereditas,2001,135(2-3):227-231
    [63]周涵韬,林鹏.利用mRNA差别显示技术分离盐胁迫下红树植物白骨壤耐盐相关cDNA[J].生物工程学报,2002,18(1):51-54
    [64]王振英,郑坚瑜.用mRNA差别先是方法分析黑麦盐胁迫下应答基因cDNA片段的表达特性[J].作物学报,2001,27(6):851-856
    [65]王振英,彭永康,郑坚瑜.黑麦中与耐盐性相关的cDNA片段的克隆与序列分析[J].植物研究,2005,25(4):427-431
    [66]陆一鸣,李彦舫,白杰英,等.利用荧光mRNA差异显示技术克隆短芒大麦盐胁迫相关基因的ESTs[J].第二军医大学学报,2004,25(2):203-206
    [67]Zhu JK.Plant salt tolerance[J].Trend Plant Sci,2001,6(2):66-71
    [68]Zouhaier B,Wahbi D,Abderrazzak S,et al.Contribution of NaCI excretion to salt resistance of Aeluropus littoralis(Willd) Parl[J].Journal of Plant Physiology,2007,164:842-850
    [69]Li NY,Chen SL,Zhou XY,et al.Effect of NaCI on photosynthesis,salt accumulation and ion compartmentation in two mangrove species,Kandelia candel and Bruguiera gymnorhiza[J].Aquatic Botany,2008,88:303-310
    [70]朱馨蕾,马艳,张高春.盐胁迫下胡杨cDNA文库的构建及其nhx基因的克隆[J].植物研究,2007,27(1):82-88
    [71]Banzai T,Hershkovits G,Katcoff D J,et al.Identification and characterization of mRNA transcripts differentially expressed in response to high salinity by means of differential display in the mangrove,Bruguiera gymnorrhiza[J].Plant Science,2002,162:499-505
    [72]王宝山,赵可夫,邹琦.作物耐盐机理研究进展及提高作物抗盐性对策[J].植物学通报,1997.14:25-29
    [73]赵福庚,何龙飞,岁庆云.植物逆境生理生态学[M].北京:化学工业出版社,2004
    [74]南京农业大学.土壤农化分析[M].北京:农业出版社,1996,29-123
    [75]张道远,尹林克,潘伯荣.柽柳泌盐腺结构、功能及分泌机制研究进展[J].西北植物学报,2003,23(1):190-194
    [76]朱俊义,杨光字,赵凤娟,等.野生大豆抗盐解剖结构研究[J].东北师大学报自然科学版,2003,35(4):105-108
    [77]Marilyn C.Salinity tolerance in the Mangroves,4egiceras corniculatum and,4viceennia marina I.Water use in relation to growth,carbon partitioning and salt balance[J].Plant Physiology,1988,15:447-464
    [78]Gerdol R,Bragazza L,Marchesini R,et al.Use of moss(Tortulamuralis Hedw.) for monitoring organic and inorganic air pollution in urban and rural sites in Northern Italy[J].Atmospheric Environment,2002,136:4069-4075
    [79]Glenn EP,Watson MC,O'eary JW.Comparison of salt tolerance and osmotic adjustment 0flow-sodium and highsodium subspecies of the C4 halophyte,Atriplex canescens[J].Plant Cell Environ,i 992,i 5:711-718
    [80]Pollak G,Waiset Y.Ecophysiolgy of salt excretion in Aeluropus litoralis(Graninae)[.1].Physiol plant.1979,47:177-184
    [81]Ramadan T.Ecophysiology of salt excretion in the xero-halophyte reaumuria hirtella[J].New Phytoi,1998,139:273-281
    [82]Cramer GR,Epstein E,Lauchli A.Effects of sodium,potassium and calcium on salt-stressed barley.11.Element analysis[J].Plant Physiol,1991,81:197-202
    [83]Khan MA,Ungar IA.Germination of salt tolerant shrub Suaedafrutieosa from Pakistan:salinity and temperature response[J].Seed Sciences and Technology,1998,26(3):657-667
    [84]杨期和,宋松泉,叶万辉,等.种子感光的机理及影响种子感光性的因素[J].植物学通讯,2003,20(2):238-247
    [85]黄振英,Yitzchak G,胡正海,等.白沙蒿种子萌发特性的研究Ⅱ 环境因素的影响[J].植物生态学报,2001,25(2):240-246
    [86]黄振英,张新时,Yitzchak G,等.光照、温度和盐分对梭梭种子萌发的影响[J].植物生理学报,2001,27(3):275-280
    [87]王学敏,易津.驼绒藜属植物种子萌发条件及其生理特性的研究[J].草地学报,2003,11(2):96-102
    [88]孙卫邦,孔繁才,Lam-Wing-Hime M(2002).光温对皱叶醉鱼草种子萌发的影响.植物生理学通讯,38(6):557-558
    [89]曾彦军,王彦荣,张宝林,等.红砂和猫头刺种子萌发生态适应性的研究[J].草业学报,2000,9(3):36-42
    [90]Zheng YR,Xie ZX,Gao Y,et al.Effects of light,temperature and water stress on germination of Artemisia sphaerocephala[J].Annals of Applied Biology,2005,146:327-335
    [91]Gulzar S,Khan MA.Seed germination of balophytic grassAeluropus lagopoides[.I].Annals of Botany,2001,87:319-324
    [92]Ahmed D,Karim Ben Hamedl,Claude Gdgnon,et al.Salinity effects on germination,growth,and seed production of the halophyte Cakile maritime[J].Plant and Soil,2004,262:179-189
    [93]梁云媚,李燕,多立安,等.不同盐分胁迫对苜蓿种子萌发的影响[J].草业科学,1998,15(6):21-25
    [94]阎秀峰,孙幽荣,那守海,等.盐分对星星草种子萌发的胁迫作用[J].草业科学,1994,11(3):58-60
    [95]沈禹颖,阎顺国,余玲.盐分浓度对碱茅草种子萌发的影响[J].草业科学,1991,8(3):68-71
    [96]Ungar IA.Effect of salinity on seed germination,growth,and ion accumulation of Atriplexpatula (Chenopodiaceae)[J].Amer J Bot,1996,83:604-607
    [97]王征宏,杨起,张亚冰,等.盐胁迫下紫花苜蓿种子的萌发特性[J].河南科技大学学报(自然科学版),2006(27):67-69
    [98]M.Ajmal K,Bilquees G,Darrell JW.Influence of salinity and temperature on the germination of Kochia scoparia[J].Wetlands Ecology and Management,2001,9:483-489
    [99]高俊风.植物生理学实验技术.西北农林科技大学:世界图书出版公司,2000,57
    [100]李艳华,杨敏生,王海英,等.树木抗盐生理研究进展[J].河北林果研究,2000,15(2):189-193
    [101]Brownell P.E.Sodium as an essential micronutrient for a hibber plant(Atreplex vesicaria)[J].Plant Physiol,1965,40:460-468
    [102]Brownell P.E.,Crossland C.J.The requirement for sodium as a micronutrient by species having C4diacarboxylic photosynthetic pathway[J].Plant Physiology,1972,49:794-797
    [103]Mandak B.,Pysek P.Effects of plant density and nutrient levels on fruit polymorphism in A rtiplex S agittata.Oecologia,1999,119:63-72
    [104]Flowers TJ,Troke PF,Yeo AR.The mechanism of salt tolerance in halophytes[J].Annu.Rev.Plant Phys,1977,28:89-121
    [105]Shalhevet,J.,Huck,M.G.,Schroeder,B.P.,1995.Root and shoot growth responses to salinity in maize and soybean.Agron.J.87,512-516
    [106]Bernstain N,loffe M,Zilberstaine M.Salt-stress effects on avocado rootstock growth I.Establishing critera for determination of shoot growth sensitivity on the stress[J].Plant Soil,2001,233:1-11
    [107]Elizamar Cir'1aco da Silva,Rejane Jurema Mansur Cust'odio Nogueira,Francisco Pinheiro de Ara'ujo.Physiological responses to salt stress in young umbu plants[J].Environmental and Experimental Botany,2008,63:147-157
    [108]惠红霞,许兴,李前荣.NaCl胁迫对枸杞叶片甜菜碱、元绿素荧光及叶绿素含景的影响[J].干旱地区农业研究,2004,22(3):109-114
    [109]Wang Y.Photosynthetic adaptation to salt stress in three-color leaves of a C4 plant Amaranthus tricolor[J].Plant Cell Physiol,1999,40:668-674
    [110]Willekens H,CampWV,Lnze D.Ozone,sulfur dioxide,and ozone ultraviolet B have similar effect on mRNA accumulation ofantioxidant genes in Nicotianaplum Baginifolia L.[J].Plant Physiol,1994,106:1007-1014
    [111]Burton GW,lngold K U.β-carotene:an unusual type of lip id antioxidant[J].Science,1984,224:569-573
    [112]刘祖祺,张石城.植物抗性生理学[M].北京:中国农业出版社,1994
    [113]Rao G G,Rao G R.Pigment composition & chlorophyllase activity in pigment pea(Cajanus indicus Sp reng) & gingelley(Seam un indicum L.) under NaCI salinity[J].India J Exp Biol,1981,19:768-770
    [114]Santos C,Caldeira G.Comparative responses of Helianthus annuus plants and calli exposed to NaCI:I.Growth rate and osmotic regulation in intact plants and calli[J].J Plant Physiol,1999,155:769-777
    [115]Santos C,Azevedo H,Caldeira G.In situ and in vitro senescence induced by KCI stress:nutritional imbalance,lipid peroxidation and antioxidantmetabolism[J].J Exp Botany,2001,52:351-360
    [116]李青云,葛会波,胡淑明,等.钠盐和钙盐胁迫对草莓光合作用的影响[J].西北植物学报.2006.26(8):1713-1717
    [117]吴雪霞,朱月林,朱为民,等.外源一氧化氮对NaCl胁迫下番茄幼苗生长和光合作用的影响[J].西北植物学报,2006,26(6):1206-1211
    [118]McCord JM,Fridovich 1.Superoxide dismutase:An enzymic function for crythrocuprein(hemocuprein)[J].J.BioI.Chem.1969,244:6049-6055
    [119]惠红霞.许兴,李前荣.NaCI胁迫对枸杞叶片甜菜碱、叶绿素荧光及叶绿素含量的影响[J].干旱地区农业研究,2004,22(3):109-114
    [120]许大全.沈允钢.植物光合作用效率的日变化[J].植物生理学报,1997,23(4):410-416
    [121]李合生.现代植物生理学[M].北京:高等教育出版社,2006
    [122]Dhindsa RS,Matowe W.Drought tolerance in two mosses:correlated with enzymatic defense against lipid oeroxidationIJ].J Exp Bot,1981,32.79-88
    [123]刘祖棋,张石城.植物逆境生理学[M].北京:农业出版社,370-372
    [124]Rao MV,Paliyath G,Ormrod DP,et al..Influence of salicylic acid on H2O_2 production,oxidativestress,and H2O2-metabol izing enzymes.Plant Physiol,1997,115:137-149
    [125]阮海华,沈文飚,叶茂炳,等.一氰化氮对盐胁迫下小麦叶片氰化损伤的保护效应[J].科学通报.2001,46(23):1993-1997
    [126]Anderson JV,Chevone B1,Hess JL.Seasonal variation in the antioxidant system of eastern white pine needles[J].Plant Physiol,1992,98:501-508
    [127]Tanaka K,Suda Y,Kondo N.Ozone tolerance and the ascorbate-dependent hydrogen peroxide decomposing system in chloroplasts.Plant Cell Physiol,1985,26:1425-1431
    [128]Okamura M.An improved method for determination of L-Ascorbic-Acid and 1-dehydroascorbic acid in blood-plasma[J].Clinica Chimica Acta,1980,103:259-268
    [129]王爱国,罗广华.植物的超氧物自由基与羟胺反应的定量关系[J].植物生理学通讯,1990,(6):55-57
    [130]林植芳,李双顺,林桂珠,等.水稻叶片的衰老与超氰化物歧化酶活性及膜脂过氧化作用的关系[J].植物学报,1984,26(6):605-615
    [131]刘宁,高玉葆,贾彩霞,等.渗透胁迫下多花黑麦草叶内过氧化物酶活性和脯氨酸含量以及质膜相对透性的变化[J].植物生理学通讯,2000,36(1):11-14
    [132] 西北农业大学植物生理系生化教研组. 植物生理学实验指导[M]. 西安:陕西科技出版社,1986:122-124
    
    [133] 张志良,瞿伟菁.植物生物学实验指导(第二版) [M]. 北京:高等教育出版社,2000
    
    [134] Ahmed S,Nawata E,Hosokawa M,et al. Alterations in photosynthesis and antioxidant enzymatic activities of mungbean subjected to waterlogging[J]. Plant Science, 2004, 163: 117—12
    [135] Bandeoglu E,Eyidogan F,Yucel M,et al. Antioxidant responses of shoots and roots of leitil to NaCl-salinity stress [J]. Plant Growth Regul, 2004,42: 69-77
    [136] Rout NP, Shaw BP. Salt tolerance in aquatic macrophytes: possible involvement of the antioxidative enzymes [J]. Plant Sci. 2001, 160: 415-423
    [137] Arbona V, Flors V, Garcia-Agustin P, et al. Enzymatic and non-enzymatic antioxidant responses of Carrizo citrange, salt-sensitive citrus rootstock, to different levels of salinity [J]. Plant Cell Physiol, 2003, 44: 388—394
    [138] Shalata A, Mittova V, Volokita M, et al. Response of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennelli to salt-dependant oxidative stress: the root antioxydative system [J]. Physiol. Plant, 2001, 112:487-494
    [139] Ashraf M, Harris PJC. Potential biochemical indicators of salinity tolerance in plants [J]. Plant Science, 2004,166:3-16
    [140] A. Muscolo, M. Sidari, M.R. Panccio, Tolerance of Kikuyu grass to long term salt stress in associated with induction of antioxidant defences[J]. Plant Growth Regul., 2003,41: 57—62
    [141] Marschner H. Mineral Nutrition of Higher Plants [M]. Academic Press, London, 1995
    [142] Broetto F, Luttge U, Ratajczak R. Influence of light intensity and salt-treatment on mode of photosynthesis and enzymes of the antioxidative response system of Mesembryanthemum crystallinum[J]. Funct. Plant Biol., 2002,29:13-23
    [143] Liang YC,Chen Q,Liu Q,et al. Exogenous silicon(si) increases antioxidant enzyme activity and reduced liquid peroxidation in roots of salt-stressed barly(Hordeum uulgare L.)[J]. J. Plant Physiology, 2003, 160:1157-1164
    [144] Bowler C, Van Montagu M, Ine D. Superoxide dismutase and stress tolerance [J]. Annu Rev Plant Physiol Plant Mol Biol.,1992,43:86-116
    [145] Jime'nez A, Herna'ndez JA, del Ri'o LA, et al.Evidence for the presence of the ascorbate-glutathione cycle in mitochondria and peroxisomes of pea leaves[J]. Plant Physiol, 1997, 114: 275—284
    [146] Noctor G, Foyer C. Ascorbate and glutathione: keeping active oxygen under control [J]. Annu Rev Plant Physiol Mol Biol, 1998, 49: 249-279
    [147] Puppo A, Groten K, Bastian F, et al. Legume nodule senescence: roles for redox and hormone signalling in the orchestration of the natural aging process [J]. New Phytol, 2005, 165: 683—701
    [148] Foyer CH, Trebst A, Noctor G. Protective and signaling functions of ascorbate, glutathione and tocopherol in chloroplasts[M]. In: Demmig-Adams B, Adams WW (eds)Advances in Photosynthesis and Respiration, Vol 19.Photoprotection, Photoinhibition, Gene Regulation, and Environment. Kluwer Academic Publishers, Dordrecht, The Netherlands, 2005, 241-268
    [149] Shalata A, Mittova V, Volokita M,et al. Response of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii to salt-dependent oxidative stress: the root antioxidative system [J]. Physiol Plant, 2001,112:487-494
    [150] Herna'ndez JA, Jime'nez A, Mullineaux P, et al. Tolerance of pea (Pisum sativum L.) to long-term salt stress is associated with induction of antioxidant defenses [J]. PlantCell Environ, 2000,23: 853—862
    [151] May MJ, Leaver CJ. Oxidative stimulation of glutathione synthesis in Arabidopsis thaliana suspension cultures [J]. Plant Physiol,1993, 103:621-627
    [152] Go'mez JM, Hema'ndez J A, Jime'nez A, et al. Differential response of antioxidative enzymes of chloroplasts and mitochondria to long-term NaCl stress of pea plants [J]. Free Radic Res, 1999,31: S11 —S18
    [153] Hema'ndez JA, Ferrer MA, Jime'nez A, et al. Antioxidant systems and O_2~-/H_2O_2 production in the apoplast of pea leaves: its relation with salt-induced necrotic lesions in minor veins [J]. Plant Physiol,2001, 127:817-831
    [154] Uchida A, Jagendorf AT, Hibino T, et al. Effects of hydrogen peroxide and nitric oxide on both salt and heat stress tolerance in rice[J]. Plant Science, 2002, 163: 515—523
    [155] Mittova V, Tal M, Volokita M, et al. Up-regulation of the leaf mitochondrial and peroxisomal antioxidative systems in responses to salt-induced oxidative stress in the wild salt-tolerant tomato species Lycopersicon pennellii[J].Plant Cell Environment,2003,26:845-856
    [156]Chaparzadeh N,D'Amico ML,Khavari-Nejad RA,et al.Antioxidative responses of Calendula officinalis under salinity conditions[.i].Plant Physiol Bioehem,2004,42:695-701
    [157]Amor NB,Jime'nez A,Megdiche W,et al.Response of antioxidant systems to NaCI stress in the halophyte Cakilc maritime[J].Physiologia Plantarum,2006,126:446-457
    [158]赵可夫,李法曾.中国盐生植物[M].北京:科学出版社,1999.48-62
    [159]汪良驹,马凯,姜卫兵,等.NaCl胁迫下石榴和桃植株Nacl、K含量与耐盐性的研究[J].园艺学报.1995,22(4):336-340
    [160]刘友良,毛才良,汪良驹.植物耐盐性研究进展[J].植物生理学通讯。1987,23(1):1-7
    [161]Bay EA,Bailey-Serres E,Weretilnykl E.Responses of plant to abiotic stress.In:Buchanan BB,Gruissem W,Jones RL(eds).Biochemistry & Molecular Biology of Plants[M].Beijing:Science Press,2004,956-965
    [162]王锁民,朱兴运,赵银.渗透调节在碱茅属幼苗适应盐逆境中的作用初探[J].草业学报,1993,2(3):40-46
    [163]冯立田,赵可夫,邓振旭.NaCl对菜豆叶片片光合CO2和水分交换效应的研究.山东师范大学学报,1999,14(2):180-183
    [164]张海燕,赵可夫.盐分和水分胁迫对盐地碱蓬幼苗渗透调节效应的研究[[J].植物学报,1998,40(1):56-61
    [165]姜卫兵,马凯,王业遴.无花果耐盐性生理指标的探讨[[J].江苏农业科学,1991,7(3):29-33
    [166]王劲.杜世章,刘抖蓉.植物耐盐机制中的渗透调节[J].绵阳师范学院学报,2006,25(5):56-61
    [167]Serrano R,Gaxiola R.Microbial models and salt stress tolerance in plants[J].Cret Rev Plant Sci.1994,13(2):121-138.
    [168]Sanada Y Veda H,Kuribayashi K,et al.Novel light-dark change of proline levels in halophyte (Meserrcbryautherrcurrc crystalliuurrc L.) and glycophytes(llordeurrc vulgare L.and Triticurrc aestivurrc L.)leaves and roots under salt stress[J].Plant Cell Physiol,1995,36(6):965-970
    [169]Lin CC,Kao CH.Proline accumulation is associated with inhibition of rice seeding root growth caused by NaCl[J].Plant Sci.1996,114:121-128
    [170]Sarvesh A,Anuradha M,Puiliah 1,et al.Salt stress and antioxidant response in high and low praline producing cultivars of niger,Guizatia abyssiuica(L.f) Cass[J].Indian J Exp Biol.,1996,34:252-256.
    [171]Santa-Cruz A,Acosta M,Rus A,et al.Short-term salt tolerance mechanisms in differentially salt tolerant tomato species[J].Plant Physiol Biocherrc,1999,37(1):65-71
    [172]李西平,钱新华,姚英民,等.聚丙烯酰胺凝胶电泳银染方法的选择[J].第一军医大学学报,2004,24:1072-1074
    [173]黄培堂译.分子克隆实验指南(第3版)[M].北京:科学出版社.2002
    [174]Benson DA,Karsch-Mizrachi I,Lipman DJ,et al.GenBank[J].Nucleic Acids Research,2005,33(Database issue):D34-D38
    [175]Wheeler DL,Chappey C,Lash AE.Database resources of the National Center for Biotechnology Information[J].Nucleic Acids Research,2000,28(1):10-14

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700