基质供水状况对番茄、甜椒穴盘苗生长特性的影响及其适应机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
番茄(Lycopersicum esculentum Mill.),茄科番茄属一年生作物,原产热带南美洲地区,根系比较发达,分布广而深。主根受伤后,易生侧根,适应性广,是国内外工厂化穴盘育苗数量最大的蔬菜作物。
    甜椒(Capsicum annuum L.),茄科辣椒属一年生作物,原产中美及南美湿热带地区,根系不发达,根量少,入土浅,主要根群分布在土表10cm~15cm的土层内,在不良育苗及栽培条件下,根系极易遭到破坏。甜椒既不耐旱,也不耐涝,单株需水量并不太多。由于根系不太发达,因此,对水分要求更加严格。它是工厂化穴盘育苗数量仅次于番茄的蔬菜作物。
    本研究以上述两种生物学特性不同的蔬菜作物为试材,研究了不同供水下限(RWC分别为90%、75%、60%、45%、30%)对番茄、甜椒生长发育及某些生理生化特性的影响,对不同供水状况下的番茄、甜椒穴盘苗的壮苗指标、物质积累与分配、营养代谢、C、N代谢、渗透调节及光合补偿效应之间的关系进行了分析和探讨。主要结果如下:
    1. 一次性缺水-复水过程中,随基质水分减少,叶片相对含水量、渗透势、饱和渗透势均逐渐降低,相对电导率、渗透调节则逐渐增高。番茄、甜椒对基质水分变化的反应有所不同,番茄自身含水量较低,水分胁迫时RWC变化较小,而甜椒变幅相对较大,这正使得在同等水分亏缺条件下,番茄叶片能够在较高的RWC下,保持较高的代谢活性,减小质膜伤害;番茄、甜椒对水分亏缺酶反应机制有所不同,POD、SOD、CAT三种活性氧清除酶活性均随水分减少而升高,甜椒酶反应比番茄敏感。三种保护酶中,POD、SOD比CAT活性较高,SOD对水分亏缺最敏感;渗透调节物质中,游离氨基酸、脯氨酸对基质水分变化反应最敏感,随水分减少急剧上升,复水后大幅下降;可溶性蛋白在番茄叶片中以分解为游离氨基酸的形式参与渗透调节,在甜椒叶片中,可直接作为渗调物质。随着基质水分的减少,可溶性糖含量升高,虽然不像游离氨基酸那样显著,但它基数总量大,在渗透调节中也起着重要的作用。复水以后,所有处理的渗调物质含量均有不同程度下降。
    
    
    2. 基质供水减少显著降低番茄、甜椒幼苗根、冠的生长发育,改变干物质在根冠间的分配比例。不同供水状况对根冠功能及结构的影响大致可用功能平衡理论加以解释,即供水量愈少,根冠功能愈差,净光合愈少,根冠生长量愈低。而功能面积减少,进而又影响到根冠干物质生产能力及功能结构建造。
    番茄、甜椒叶、茎的生物学产量下降大于根系,叶面积和根重是对水分变化最为敏感的指标,番茄以主根为主,甜椒以侧根为主。供水减少使各种以生物学产量为基础的壮苗指数均降低,但和植株抗性相关的指标(如水力构型参数、比叶重等)呈上升趋势,30%供水下限处理,有所下降。60%供水下限处理的番茄和60%、75%供水下限处理的甜椒开花时间均比对照提早2~7天,比30%供水下限处理提早了14天左右。综合番茄、甜椒生长发育,结合主成分分析、灰色系统理论分析、通径分析,初步筛选出壮苗指数:
    番茄:1.(茎粗/株高)*总重 2. 生长函数ln(G)。
    甜椒:1.(根/冠+茎粗/株高)*总重 2.(根/冠)*总重
    3. 基质供水减少使番茄叶片N含量下降,甜椒叶、茎N含量升高,这种差异性只有45%~30%供水下限处理表现比较明显。供水减少增加了N在番茄茎中分配比例,降低了在叶、根中的分配比例。甜椒整株N素的降低主要是由于茎根总量减少所致,甜椒叶N分配比例上升,茎、根N分配比例下降;基质供水状况对番茄P的影响主要是降低了其在叶、茎、根中的含量,对甜椒主要是改变了P在叶、茎、根中的分配,对其含量影响较小。番茄叶、茎随供水减少大量积累K+,甜椒K+含量受供水影响较小,叶片、根系有轻微上升。K+可能在番茄渗透调节中起着重要作用,且这种渗调作用主要发生在叶、茎。基质供水减少主要促进番茄K+由根系向地上部运输,造成K+在叶、茎中大量积累;番茄、甜椒Ca含量随供水减少而降低,但变化幅度不大。供水减少使番茄、甜椒Ca倾向于叶、根分配;除30%供水下限处理番茄叶片Mg含量显著升高外,番茄茎、根Mg含量随供水减少呈现先增高,后降低的趋势,轻中度缺水有利于茎、根Mg含量提高,较为严重的缺水反而促进叶片Mg含量提高,甜椒Mg含量受水分影响较小。30%的供水下限处理番茄叶、茎、根Fe含量急剧上升,甜椒叶片、茎Fe含量随供水减少呈下降趋势,较为严重的缺水条件下,甜椒根系有积累Fe的现象。番茄、甜椒Mn、Cu、Zn含量随供水减少均呈下降趋势,其中Zn下降比例最大。缺水使番茄Mn倾向于茎、根分配,而Cu较多向叶片分配。严重缺水条件下,番茄、甜椒根系有积累Mn、Cu、Zn的现象,可能与向上运输受阻或抗氧化酶促系统启动有关。
    4. 番茄、甜椒叶片可溶性糖、还原糖含量均随供水减少而上升,二者既可作为C代谢原料,又可以作为渗透调节物质调控细胞内渗透势,其含量增加可以增强逆境适应能力,维持正常代谢。番茄叶片淀粉含量随供水减少而增加,甜椒减少,同总碳水化合物变化趋势一致,很大程度上反映了碳水化合物的积累状况,并且对壮苗有着直接的正向作用。
    番茄、甜椒非蛋白氮含量随基质供水减少而上升,蛋白氮含量则下降。蛋白氮?
Tomato (Lycopersicum esculentum Mill.), belongs to Solanaceae, Lycopersicon,annual vegetable, originates from tropical South America. Its root is strong, extensive, widespread and deep. The lateral root easily regenerates after basal root injured, therefore, tomato has high acclimatization to environment. Tomato nursery area in potting seedlings is the most.
    Sweet Pepper (Capsicum annuum L.), belongs to Solanaceae, Capsicum, also annual vegetable, originates from Central America and tropical South America. Sweet pepper root is relatively weak, little, and shallow, and mainly allocates 10~15cm deep layer in soil. Under bad nursery and cultural surroundings, root is readily injured. Sweet pepper neither endures drought nor waterlog, not too much water need as well. Since sweet pepper root is not strong enough, consequently strict in water supply. Its nursery area is only less than that of tomato.
    This experiment used the above two vegetables(tomato and Sweet paper)as material, which are largely different in biological characteristics. We investigated the changes of growth, development, and some physiological, biochemical characteristics under different floor level of water supply in media (RWC is 90%, 75%, 60%, 45%, 30% respectively), and discussed the relation among vigorous index, material accumulation and allocation, nutrition metabolism, carbon and N metabolism, osmotic adjustment and photosynthesis of tomato and sweet pepper seedlings, The main results are as below:
    1. During transient stress-rewatering, the less water supply, the lower RWC, osmotic potential, saturated osmotic potential, the higher osmotic adjustment and injury degree at the same time. Tomato and sweet pepper had different reaction towards water changes in media. Water content in tomato leaf was relatively lower, so that RWC change was less than sweet
    
    pepper towards water deficit, which made tomato keep higher metabolic activity, and reduced injury degree; Enzyme reaction metabolism had some difference between tomato and sweet pepper. The activity of POD、SOD、CAT in tomato increased with decrease of water supply, and of which were more sensitive in sweet pepper. Among the above three protective enzymes, POD and SOD had higher activity than CAT, and SOD was the most sensitive to water deficit; Of all the osmotic solutes, free amino acid and proline were the most sensitive to water change, and their content sharply increased with less water supply, then rapidly reduced after rewatering, basically recovered to the level of CK; Soluble protein might be replaced by free amino acid in tomato to play osmotic role, but it directly worked in sweet pepper. Unlike amino acid, soluble sugar content was basally higher; therefore it possibly made a more important role to osmotic adjustment. After rewatering, osmotic solutes in all treatments reduced to some extent differently.
    2. Less water supply significantly inhibited growth and development of tomato and sweet pepper seedlings, and changed attribution percentage of dry mass between root and crown. The effect of different status of water supply on function and structure in root and crown could be explained with Function Balance Theory. Namely the less water, the worse function of root and crown, the less net photosynthesis, which led to worse growth and development, and more affected dry matter productivity and function creation. The dry matter of leaf, shoot reduced more than of root. Root and leaf area were the most sensitive indexes to water change, and tomato give priority to basal root, pepper to lateral root. Less water supply reduced all the vigorous indexes based dry matter, but increased endurance indexes (for instance, water architecture features, specific leaf weight et al), and yet in T5 had a little reduction. The anthesis of T3 tomato and T2, T3 sweet pepper was earlier 2~7 days than CK, 14 days than T5. Considering both growth and development, synthesized major constitutes, path analysis, gray systemic theory, we preliminarily screened the vigorous indexes:
     Tomato: 1.
引文
1. 柏成寿,陆帼一.水分胁迫对番茄生长影响的研究[J].园艺学报,1991,18(4):340-344
    2. 柴成林,李绍华,徐迎春.水分胁迫期间及胁迫解除后桃树叶片中的碳水化合物代谢[J].植物生理通讯,2001,37(6):495~498
    3. 程宪国,汪德水,张美荣等.不同土壤水分条件对冬小麦生长及养分吸收的影响[J].中国农业科学,1996,29(4):67~74
    4. 陈殿奎.发展穴盘育苗推进蔬菜种植业现代化.发展中的中国工厂化农业[M].北京:北京出版社,2000,167~171
    5. 陈立松,刘星辉.水分胁迫对荔枝叶片氮和核酸代谢的影响及其与抗旱性的关系[J].植物生理学报,1999,25(1):49~56
    6. 陈立松,刘星辉.作物抗旱性鉴定指标的种类及综合评价[J].福建农业大学学报,1997,26:48~55
    7. 陈晓远,罗远培.开花期复水对受旱冬小麦的补偿效应研究[J].作物学报,2001,27,(4):512~516
    8. 陈晓远,罗远培.水分胁迫后复水对冬小麦叶面积的激发作用[J].中国农业科学,2001,34(4):422~428
    9. 陈晓远,罗远培.不同生育期复水对受旱冬小麦的补偿效应研究[J].中国生态农业学报,2002,10(1):35~37
    10. 陈有强等.植物体内单线态氧的产生及其猝灭[J].植物生理学通讯,1987,23:1~8
    11. 陈有强,朱锦懋,叶冰营.水分胁迫对芒果幼叶细胞活性氧伤害的影响[J].生命科学研究,2000,4(1):60~64
    12. 崔秀敏,王秀峰.黄瓜穴盘育苗基质特性及其育苗效果的研究[J].山东农业大学学报(自然科学版),2001,32(2):124~128
    13. 党承林.植物群落的冗余结构—对生态系统稳定性的一种解释[J].生态学报,1998,18(6):665~672
    14. 党承林等.生态系统的冗余与营养结构模型[J].生态学杂志,1997,164(4):39~46
    15. 邓聚龙.灰色系统基本方法[M].武汉:华中理工大学出版社,1987
    16. 邓西平,山仑,苏珮等.作物对多变低水环境的适应性调节[C].植物环境生理学学术讨论会论文汇编.昆明:1999,5:16~21
    17. 董永华,史吉平.干旱对玉米幼苗PEP羧化酶活性的影响[J].玉米科学,1995,3(2):54~57
    18. 冯彩平,薛菘,张殿忠.水分胁迫与植物氮代谢的关系.水分与高温胁迫对谷子叶片组分I蛋白的影响[J].干旱地区农业研究,1995,13(2):88~93
    19. 冯广龙,罗远培,刘建利等.不同水分条件下冬小麦根与冠生长及功能间的动态消长关系[J].干旱地区农业研究,1997,15(2):73~79
    20. 冯广龙,罗远培.土壤水分与冬小麦根、冠功能均衡关系的模拟研究[J].生态学报,1999,19(1):96~103
    21. 葛晓光.蔬菜育苗大全[M].中国农业出版社,1995,15~20
    22. 葛晓光.蔬菜生态学[M].中国农业出版社,1996
    23. 关义新,戴俊英,林艳.水分胁迫下植物叶片光合的气孔和非气孔限制[J].植物生理学通讯,1995,31(4):293~297
    24. 郭仕贤.谷子旱后的补偿效应研究[J].应用生态学报,1999,10(5):563~566
    25. 郭连旺,沈允钢.高等植物光合机构避免光破坏的保护机制[J].植物生理学通讯,1996,32(1):125~130
    26. 韩艳丽,康绍忠.根系分区交替灌水对玉米吸收养分影响的初步研究[J].农业工程学报,2002,18(1):57~59
    27. 贺铁,李世俊.肥料结构对水稻磷营养和有机磷组分的影响[J].华中农业大学学报,1986,5(2):132~139
    
    
    28. 何军贤,傅家瑞.种子Lea蛋白的研究进展[J].植物生理学通讯,1996,(32):241~246
    29. 何维明,董鸣.不同气温条件下旱柳(Salix matsudana Koidz)幼苗的水分和构型特征[J].生态学报,2001,21(7):1084~1090
    30. 黄丹枫,牛庆良.育苗基质对甜瓜幼苗质量的影响研究[J].西南农业大学学报,1998,20(6):618~623
    31. 蒋明义,杨文英,徐江等.渗透胁迫诱导水稻幼苗的氧化伤害[J].作物学报,1994,20(6):733~738
    32. 蒋明义,郭绍川.水分亏缺诱导的氧化胁迫和植物的抗氧化作用[J].植物生理学通讯,1996,32(2):144~150
    33. 姬谦龙.不同基因型黑核桃对干旱胁迫的适应机制研究[D].山东农业大学博士论文,2002
    34. 贾虎森.干旱胁迫下苹果叶片光抑制与活性氧代谢的关系[D].山东农业大学博士论文,2001
    35. 康绍忠,史文娟,胡笑涛等.调亏灌溉对与玉米生理指标及水分利用效率的影响[J].农业工程学报,1998,14(4):83~87
    36. Kang-ShaoZhong, Shi-Wenjuan,Zhang-jianhua .An improved water-use efficiency for maize grown under regulated deficit irrigation[J]. Field-Crops-research. 2000,67(3): 207~214
    37. 李德全,邹琦,程炳嵩.土壤水分胁迫对小麦叶片的渗透调节与延伸生长的影响[J].植物学报,1992,34(2):75~90
    38. 李德全,邹琦,程炳嵩.植物在逆境下的渗透调节[J].山东农业大学学报,1989,3:765~80
    39. 李伏生,陆申年.灌溉施肥的研究和应用[J].植物营养与肥料学报,2000,6(2):233~240
    40. 李合生主编.植物生理生化实验原理和技术[M].高等教育出版社,北京,2001
    41. 李建明,邹志荣.番茄苗期灌溉最佳土壤含水量上限指标的研究[J].河北农业技术师范学院学报,1998,12(4):26~29
    42. 李绍华.果树生长发育、产量和果实品质水分胁迫反应的敏感期及节水灌溉[J].植物生理学通讯,1993,29(1):10~16
    43. 李连朝,王学臣.水分亏缺对植物细胞壁的影响及其与细胞延伸生长的关系[J].植物生理学通讯,1996,32(5):321~327
    44. 李连朝,王学臣.水分亏缺下细胞延伸生长与细胞壁膨压和细胞壁特性的关系[J].植物生理学通讯,1996,34(3):161~167
    45. 李生秀,高亚军,李世清等.澄城低肥力田块小麦的水肥耦合效应[M].见:汪德水主编.旱地农田肥水关系原理与调控技术.北京:中国农业科技出版社,1995:221~234
    46. 李世清,田宵鸿,李生秀.养分对旱地小麦水分胁迫的生理补偿效应[J].西北植物学报,2000,20(1):22~28
    47. 缪颖.缺钙诱发大白菜干烧心与细胞壁结构组分变化的关系[J].植物生理学报,2000,26(2):111~116
    48. 梁宗锁,康绍忠,邵明安等.土壤干湿交替对玉米生长速度及其耗水量的影响[J].农业工程学报,2000,16(5):38~40
    49. 梁铮,驼爱玲,赵原等.干旱和盐胁迫诱导甜菜叶中甜菜碱脱氢酶的积累[J].植物生理学报,1996,22(2):161~164
    50. 林其谁.Ca2+与细胞代谢[J].生命的化学.1994,14(5):22~23
    51. 凌世瑜.硝酸盐和硫酸盐的同化过程[J].生物学通讯,1994,29(7):7~9
    52. 刘晓英,罗远培,石元春.水分胁迫后复水对冬小麦叶面积的激发作用[J].中国农业科学,2001,34(4):422~428
    53. 陆帼一,张和义,周存田.番茄壮苗指标的初步研究[J].中国蔬菜,1984(1):13~175
    54. 卢从明等.干旱、高温和光抑制对光抑制对光系统II光化学的影响[C].全国植物光合作用、光生物学及其相关的分子生物学学术研讨会论文汇编.2001,11
    
    
    55. 孟繁静.植物花发育的分子生物学[M].北京:农业出版社,2002,12
    56. 孟兆江,刘安能,庞鸿彬等.夏玉米调亏灌溉的生理机制与指标研究[J].农业工程学报,1998,14(4):88~92
    57. 马瑞昆等.供水深度与冬小麦根系发育的关系[J].干旱地区农业研究.1991,(3):1~9
    58. 潘瑞炽,董愚得.植物生理学[M].北京:高等教育出版社,1984
    59. 曲桂敏,李兴国,赵飞等.水分胁迫对苹果叶片和新根显微结构的影响[J].园艺学报,1999,26(3):147~151
    60. 饶立华.植物矿质营养及其诊断[M].北京:农业出版社,1993
    61. 山仑.节水农业及其生理生态基础[J].应用生态学报,1991,2(1):70~76
    62. 上官周平,邵明安.改善旱区作物水分利用的生理调控机制[J].水利学报,1999,10:33~38
    63. 上官周平.冬小麦对有限水分高效利用的生理机制[J].应用生态学报,1999,10(1):567~569
    64. 盛承发.防治棉铃虫的新策略[M].北京:科学出版社,1987,114
    65. 石谷学,荒川圭太,高倍铁子.植物耐盐性の分子机构[J].植物の化学调节(日),1990,25:149~152
    66. 石岩,林琪,李素美等.土壤水分胁迫对小麦养分分配及产量的影响[J].植物营养与肥料学报,1998,4(1):50~56
    67. 司亚平,何伟明.蔬菜穴盘育苗技术[M].北京:中国农业出版社,1999
    68. 宋纯鹏,梅慧生,储钟稀等.Ca2+对叶绿体中超氧化物自由基产生以及由ACC形成乙烯的影响[J].植物生理学报,1992,18(1):55~62
    69. 孙存普等著.自由基生物学导论[M].合肥:中国科技大学出版社,1999,275~290
    70. 汤学军,傅家瑞.植物胚胎发育后期富集(LEA)蛋白的研究进展[J].植物学通报,1997,14(1):13~19
    71. 汤章城.植物对水分胁迫的反应和适应性[J].植物生理学通讯,1983,4:1~7
    72. 汤章城.逆境条件下植物脯氨酸的累积及其可能的意义[J].植物生理学通讯,1984 (1):15~21
    73. 唐连顺,李广敏.水分胁迫下玉米叶肉细胞超微结构的变化及其与膜脂过氧化伤害的关系[J].1991,36(增刊):43~49
    74. 王邦锡,何军贤,黄久常.水分胁迫导致小麦叶片光合作用下将的非气孔因素[J].植物生理学报,1992,18(1):77~84
    75. 王凤仙,李韵珠.土壤水分利用效率与氮素水平的关系[M].石元春,刘昌明,龚元石.节水农业应用基础研究进展.北京:中国农业出版社,1995,124~130
    76. 汪洪,金继运,周卫.不同水分状况下施锌对玉米生长和锌吸收的影响[J].植物营养与肥料学报,2003,9(1):91~97
    77. 王红,简令成,张学仁.低温胁迫下水稻幼叶细胞内Ca2+水平的变化[J].植物学报,1994,36(8):587~591
    78. 汪良驹,刘友良,马凯.钙在无花果细胞盐诱导脯氨酸积累中的作用[J].植物生理学报,1999,25(1):38~42
    79. 王玮,张枫,李德全.外源ABA对渗透胁迫下玉米幼苗根系渗透调节的影响[J].作物学报,2002(1):121~126
    80. 王万里.植物对水分胁迫的响应[J].植物生理学通讯,1981(5):55
    81. 王朝辉,李生秀.不同生育期缺水和补充灌水对冬小麦氮磷钾吸收与分配的影响[J].植物营养与肥料学报,2002,8(2):265~270
    82. 魏安红,魏虹,李凤民.土壤水分亏缺对春小麦根系干物质积累和分配的影响[J].生态学报,1999,14(2):179~184
    83. 吴平,陈昆松,邹琦.植物对水分胁迫的响应及其在旱作农业和抗旱育种中的应用[M].植物分子生理学进展.浙江大学出版社,2000,207~215
    
    
    84. 向曙光,刘思俭,朱万洲等.应用苯酚法测定植物组织中的碳水化合物[J].植物生理学通讯,1984,(4):42~44
    85. 夏乃斌,屠泉洪,宋长义等.油松林对油松毛虫危害的补偿与超补偿的研究[J].生态学报,1993,13(2):121~129
    86. 徐世昌,沈秀瑛,顾惠连.土壤水分后玉米叶细胞膜质过氧化和膜磷脂脱脂化反应以及膜超微结构的变化[J].作物学报,1994,20(5):564~569
    87. 徐仰仓,王静,山仑.H2O2胁迫锻炼对小麦幼苗抗旱性的影响[J].西北植物学报,2000,20(3):382~386
    88. 徐迎春,李绍华,柴成林等.水分胁迫期间及胁迫解除后苹果树源叶碳同化物代谢规律的研究[J].果树学报,2001,18(1):1~6
    89. 姚允聪,张大鹏,王有年等.水分胁迫条件下苹果幼苗叶绿体抗氧化代谢研究[J].果树学科,2000,17(1):1~6
    90. 杨洪强,贾文锁,张大鹏.植物水分胁迫信号识别与转导[J].植物生理学通讯,2001,37(2):149~154
    91. 乙引,汤章城.渗透胁迫对高粱根K+吸收的影响[J].植物生理学报,1996,22(2):191~196
    92. 于叔文,汤章城主编.植物生理与分子生物学[M].北京:科学出版社,1998,366~389
    93. 原保忠,王静.植物补偿作用机制探讨[J].生态学杂志,1998,17(5):45~49
    94. 斋藤隆,片冈节男著.王海廷等译.番茄生理基础[M].上海:上海科学技术出版社,1981
    95. 张殿忠,汪沛洪.水分胁迫与植物氮代谢的关系I~Ⅱ:水分胁迫时氮素对小麦叶片氮代谢的影响[J].西北农业大学学报,1988,16(3~4):15~21
    96. 张福锁,江荣风.植物氮素和水分相互作用的机理[M].李韵珠,陆锦文等.土壤水和养分的有效利用.北京:北京农业大学出版社,1994,149~155
    97. 张慧,汪沛洪.渗透胁迫下小麦叶片蛋白质合成和降解的示踪研究[J].植物生理学报,1991,17:259~266
    98. 张菊平,张兴志.辣椒壮苗指数与苗期性状的关系分析[J].河南农业大学学报,1999(33):120~122
    99. 张明生,谢波,谈锋等.甘薯可溶性蛋白、叶绿素及ATP含量变化与品种抗旱性关系的研究[J].中国农业科学,2003,30(1):13~16
    100. 张振贤主编.蔬菜生理[M].北京:中国农业科技出版社,1993
    101. 张振清.植物材料中可溶性糖的测定.上海植物生理学会编,植物生理学实验手册[M].上海:上海科学技术出版社,1985,134~138
    102. 张宪政等编.植物生理学实验技术[M].沈阳:辽宁科学技术出版社,1989,6
    103. 赵炳梓,徐富安.水肥条件对小麦、玉米N、P、K吸收的影响[J].植物营养与肥料学报,2000,6(3):260~266
    104. 赵福庚,刘友良.胁迫条件下高等植物体内积累脯氨酸代谢及调节的研究进展[J].植物学通报,1999,16(5):540~546
    105. 赵福庚,孙诚,刘友良.盐胁迫激活大麦幼苗脯氨酸合成的鸟氨酸途径[J].植物学报,2001, 43(1):36~45
    106. 赵发清.作物的生长冗余和生命体的节约原则[J].生态学杂志,1996,15(1):32~34
    107. 赵庚义,车力华,孟淑娥.茄果类蔬菜前期产量与秧苗质量关系的研究[J].园艺学报,1992,19(2):157~160
    108. 赵可夫,冯立田,张圣强.黄河三角洲不同生态型芦苇对盐度适应生理的研究I: 渗透调节物质及其贡献[J].生态学报,1998,18(5):463~469
    109. 赵瑞,马健,李飞等.番茄穴盘育苗苗龄的研究[J].中国蔬菜,2000(6):6~9
    110. 赵世杰,刘华山,董新纯.植物生理学实验指导[M].北京:中国农业科学技术出版社,1998
    
    
    111. 邹邦基,何雪晖编著.植物的营养[M].北京:农业出版社,1985
    112. 邹琦.植物生理生化实验指导[M]..北京:中国农业出版社,1995
    113. 周苏玫,王晨阳,张重义等.土壤渍水对冬小麦根系生长及营养代谢的影响[J].作物学报,2001,27(5):673~679
    114. 周苏玫,马元喜,王晨阳等.干旱胁迫对冬小麦根系生长及营养代谢的影响[J].华北农学报,2000,15(2):57~62
    115. 宗会,李明启.钙信使在植物适应非生物逆境中的作用[J].植物生理学通讯,37(4):330~334
    116. Acevedo E., Hsiao T.C. Henderson D.W. Immediate and subsequent growth responses of maize leaves to changes in water status[J]. Plant physio,1971, 48:631~636
    117. Allison EM, Walsby AE. The role of K+ in the control of turgor pressure in a gas-vacuolate blue-green alga[J]. J Exp Bot., 1984,32:241~248
    118. Alscher RG,Donahue JL,Camer CL. Reactive oxygen species and antioxidants: relationship in green in green cells[J].. Pjysiol Plant,1997,100:224~233
    119. Arndt, S.K, Clifford, S.C, Wanek, W et al. physiological and morphological adaptations of the fruit tree Ziziphus rotundifolia in response to progressive drought stress[C].Tree Physiol Victorria Canada:Heron Pub, July, 2001,21(11):705~715
    120. Asada K, Production and action of active oxygen species in photosynthetic tissues. In: FOYER CH,Mullineaux PM, eds, Causes of Photooxidative Stress in Plants and Amelioration of Defence System[J]. CRC Press, Florida,1994:77~104
    121. Assmann SM.Signal transduction in guard cells. Annu Rev Cell Biol, 1993,7:345~375
    122. Bohoert HJ, Nelson DE, Jensen RG. Adaptations to environmental stresses[J]. Plant Cell, 1996,7:1099~1111
    123. Boyer, JS. Water deficit and photosynthesis. In: T.T.Kozlowski.eds. Water deficits and plant growth NP[J]. Academic Press, 1976,New York:154~191
    124. Bressan RA et al. In Paleg LG, Aspinall D(eds). The Physiology and Biochemistry of Drought Resistance in Plants[M]. Academic Press, Sydney,1981, 205
    125. Bussis,D and Heineke D. Acclimation of potato plants to polyethylene glycol-induced water deficit. II. Contents and subcellular distribution of organic solutes[J]. J-exp-bot. Oxford University Press. Aug 1998,325(49):1361~1370
    126. Chandler PM, Robertson M. Gene Expression Regulated By Abscisic Acid and its Relation to Tolerance[J]. Ann Rev. Plant Physiol. Plant Mol. Biol., 1994,45:113~141
    127. Chrispeels MI,Agre P. Aquaporinss: water channel protein of plant and animal[J]. Trends Biochem Sci. 1994,19:421~425
    128. Cornic G. and Briantais JM. Portioning of photosynthetic electron flow between CO2 and O2 reduction in a C3 leaf at different CO2 concentrations and during drought stress[J]. Planta,1991, 183:178~184
    129. Epstein W, Wieczorek Z, Soeners A et al. Potassium transport in E.coli: genetic and biochemical characterization of the K+- translocating ATPase[J]. Biochem Soc.Trans, 1984, 12:235
    130. .Fapohunda H.O,HossainMM. Water and Fertilizer interactions with irrigated maize[J]. Agricultural Water Management,1990,18:49~61
    131. Farquhar ,GD,Sharkey TD.Stomatal conductance and photosynthesis[J]. Annu Rev Plant Physiol, 1982,33:317~345
    132. Fernandez Ballester G. Martinez V., Ruiz D. et al. Changes in inorgainic and organic solutes in citrus growing under saline stresses[J]. Journal of plant nutrition. 1998,21(12):2497~2514
    133. Fisher,K. J. and Mackay,B.R.The nutrition of tomato cell transplants[J]. Acta Hort.1990,267:225~234
    
    
    134. Flowers TJ. Ion relations of plants under drought and salinity[J]. Aust J Plant Physiol, 1986,13:75~91
    135. Franco,J.A.,P.J., Perez-Saura, J.A.Fermandez et al .Effects of two irrigation rates on yield, incidence of blossom-end rot, mineral content and free amino acid levels in tomato cultivated under drip irrigation using saline water[J]. J.Hort. Sci. Biotechnol. 1999,74:430~435
    136. Frank HA, Cogdell RT. The photochemistry and function of carotenoids in photosynthesis[J]. In: Yong A, Britton G, eds, Carotenoids in photosynthesis, Chapman Hall, London, 1993,252~326
    137. Fry SC., Renwich KF et al. Xyloglucan endotransglycosylase a new wall loosening enzyme activity from plants[J]. Biochem J, 1992,28(2):821~830
    138. Fry SC., A new enzyme, which cuts and then reforms glycosidic bounds in the cell wall, may hold the key to plant cell growth[J]. Curr Biol, 1993,3:355~362
    139. Ginnopolitis CN, Ries SK. Superoxide dismutases. I. Occurrence in higher plants[J]. Plant Physiol.1977, 59:309~314
    140. Gowing DJ,Davie WJ,Johes HG. A positive root-sourced signal as an "indicator" of soil drying in apple, Malus×dornestica Borkh[J]. J Exp Bot, 1990,41(23):1535~1540
    141. Hamblin, A., Tennant, D., Perry, MW., The cost of stress: dry matter partitioning changes with seasonal supply of water and nitrogen to dry land wheat[J]. Plant and Soil, 1990, 122:47~58
    142. Hare,P.D,Cress,W.A. Metabolic implications of stress-induced proline accumulation in plant[J]. Plant growth regulation. 1997,21(2):79~102
    143. Higgins CF, Cairney J, Stirling DA et al. Osmotic regulation of gene expression: ionic strength as an intracellular signal? [J]. 1987, 12:339~345
    144. Hsiao T.C.,Plant response to water stress[J]. Ann .Rev. Plant Physio. 1973,75(2): 338~341
    145. Hsiao T.C, Jing J-H. Leaf and root expansive growth in response to water deficit. In Cosgrove DJ,Knievel DP(eds).Physiology of cell expansion during plant growth [J. Rockville, MD: The American society of plant physiologists. 1987,180~192
    146. Hsiao T.C, O'Toole JC, Yambao FB. and Tuene NC. Influence of osmotic adjustment on leaf rolling and tissue death in rice[J]. Plant Phtsiol, 1984,75(2):338~341
    147. Ingranm J.Bartels D. The molecular basis of dehydration tolerance in plant[J]. Ann. Rev. Plant Physiol. Plant Mol Biol,1996, 47:377~403
    148. Jackson MB. Are plant hormones involved in the root to shoot communication? [J]. Adv Bot Res, 1993,19:103~187
    149. Jone, M.M,Osmnd,C.B Turner, N.C. Accumulation of solutes in leaves of sorghum and sunflower in reponse to water deficit[J]. AUST.J. Plant Physiol 1980,7: 193~205
    150. Jose A. Franco. Root dynamics of Muskmelon transplants as affected by nursery irrigation[J]. J.Amer.Soc.Hort. Sci.2002, 127(3): 337~342
    151. J.R.Stansell..Effect of irrigation on photoperiodic response in onion plant[J]. J Japan Soc.Hort.sic, 1980,43(3):375~382
    152. Kaiser H, Kappen L. In situ observations of stomatal movements in different light-dark regimes: the influence of endogenous rhythmicity and long-term adjustments[J]. Journal of Experimental Botany,1997,48,1583~1589
    153. Karakas,-B, Ozias-Akins,-P, Shutoff,-C,Suefferheld,-M.; Rieger,-M.TI: Salinity and drought tolerance of mannitol-accumulating transgenic tobacco[J]. Plant-cell-environ. Oxford, U.K:Blackwell Science Ltd.1997,20 (5):609~615
    154. Kochke carbohydrate modulated gene expression in plants[J]. Ann Rev.Plant Physiol Plant Mol. Bio.1996, 47:509~540
    
    
    155. Kochian, L V and Lucas W J., K transport in stomatal movement[J]. Adv Bot Res, 1988,15:93~178
    156. Kramer,J.P. Water deficits and plant growth. In: water relations of plant[J]. Academic Press, New York London, 1983,354~359
    157. Kuchenbuch R, Classen N and Jungk A . Potassium availability in relation to soil moisture[J]. Plant and soil, 1986, 95:221~231
    158. Kumer PJ,Gupta PK. Influence of different leaf water potential on photosynthetical carbon metablolism in Sorghum[J]. Photosynthetica, 1986,20:391~396
    159. Liptay-A,Sillema-P,Fonteno-W. Transplant growth control through water deficit stress-a review[J]. Hortcchnology, 1998,8:4540~543
    160. Lockert J.A. Cell extension[M]. In Bonner J, Varner JE, eds. Plant biochemistry. New York: Academic Press, 1965,826~849
    161. Munns R and Weir R. Contribution of sugars to osmotic adjustment in engongation and expanded zones of wheat leaves during moderate water deficits at two light levels[J]. Aust. J. Plant Physio.1981,8:93~105
    162. Morgan JM. Osmoregulation and water stress in higher plant[J]. Ann. Rew. Plant Physiol. 1984,35:299~319
    163. Mengel K. and Braunschweig Von L.C. The effect of soil moisture upon the availability of Potassium and its influence on the growth young maize plants (Zea mays L)[J]. Soil Sci, 1972,114:142~148
    164. Minorsky P V, .An heuristic hypothesis of chilling injury on plants. A role for calcium as the primary physiological transducer of injury[J]. Plant Cell Environ. 1985,8:75~82
    165. Miriam S.Rurt, Donald T.Krizek, And Roman M.Mirecki. Restricted Root Zone Volume: Influence on Growth and Development of Tomato[J]. J.Amer.Soc.Hort. Sci.1987, 112(5):763~769
    166. Nicola,S.and Basoccu.L. Nitrogen, P, K relation affect tomato seedlings growth yield and earliness[J]. Acta. Hort. 1994,357, 95~102
    167. Nishizawa, T, Saito,K. Effects of rooting volume restriction on plant growth and carbohydrate concentration in tomato plants[J]. American.Society for.Horticultural Sicence, 1998,123(4):581~585
    168. Nolte K D, Hanson AD, Cage D A. Proline accumulation and methylation to proline betaine in Citrus: implication for genetic engineering of stress resistance[J]. J Am Hortic Sci,1997,122(1):8~13
    169. N.Suzanne Robbins and Davia M. Pharr. Effect Of Restricted Root Growth On Carbohydrate Metabolism And Whole Plant Growth Of Cucumis Sativus L[J]. Plant Physiol. 1988,87:409~413
    170. Omran RG. Peroxide levels and the activities of catalase, peroxidase, and indoleacetic acid oxidase duirng and after chilling[J]. Plant Physiol.1980, 65:407~408
    171. Prichard J.The control of cell expansion in roots[J]. New Physiol., 1994,1,27~31
    172. Ranney, T.G., Bassuk,N.L. and Whitlow,T.M. Osmotic adjustment and solute constituent in leaves and root of water stressed cherry prunus trees[J]. J.Amer. Soc.Hort.Sci, 1998,116(4):684~688
    173. Rathinasabapathi B,Cage DA,Mackill DJ.Cultivated and wild rices do not accumulate glycinebetaine due to deficiencies in two biosynthesic steps[J]. Crop Sci. 1993,33(3):534~538
    174. Rego T J, Comparison of the effect of continuous and relative water stress on nitrogen nutrition of sorghum[J]. Aust.J.Agric.Res.1988, 39:773~782
    175. Rickauer M, Tanner W, Effect of Ca2+on amino acid transport and accumulation in roots of Phaseolus vulgaris[J]. Plant Physiol. 1986, 83:41~47
    176. Saab IN, Sharp RE.Non-hydraulic signals from maize roots in drying soil: inhibition of leaf elongation but not stomatal conductance[J]. Planta, 1989,179:466~474
    Sakurai N, Tanaka S, Kuraishi S. Changes in wall polysaccharides of squash (Cucurbita maxima
    
    177. Duch.)hypocotyls under water stress condition. I: Wall sugar composition and growth as affected by water stress[J]. Plant Cell Physiol, 1987,28:1051
    178. Scandaliol JG. Oxygen stress and superoxide dismutases[J]. Plant Physiol, 1993,101:7~12
    179. Seel WE, Hendry GAF, Lee JA. Effect of deccication on some activated oxygen processing enzymes and anti-oxidants in mosses[J]. J Exp Bot, 1992,43:1031~1037
    180. Sen Gupta A et al [J]. 1993 Plant physiol,103:949~953
    181. Shen B, Jense RG, Bohnert H J. Mannitol protects against oxidation by hydroxyl radicals[J]. Plant Physiol. 1997,115: 527~532
    182. Shinozaki K, Yamaguchi-Shinazaki K. Molecular responses to drought and cold stress[J]. Current Opinion in Biotechnology, 1996,7:161~167
    183. Singh NK, Bracker CA,Hasegawa PM et a.l Characterization of osmotin.A thaumatin-like protein associated with osmotic adaptation in plant cells[J]. Plant Physiol. 1987,198,85:529~536
    184. Skriver K, Mandy J. Gene expression in response to abscisic acid and osmotic stress[J]. Plant Cell, 1990,2:1503~1512
    185. Smimoff N, Cumbesl QJ.Hydroxyl radical scavenging activity of compatible solutes[J]. Phytochemistry,1989,28:1057~1060
    186. Spollen WG, Sharp IN et al. Regulation of cell expansion in roots and shoots at low water potentials. In Smith JAC,Giffiths H(eds). Water deficit, Plant responses from cell to community[J]. Oxford: Bios Scientific Publishers Limited, 1993:37~52
    187. Stefania De Pascale, Celestino Ruggiero, and Giancarlo Barbieri. Physiological Responses of Pepper to Salinity and Drought[J]. J Amer Soc. Hort.Sci.2003, 128(1): 48~53
    188. Stevens RG, Gressen GP, Mullineaux PM. Cloning and characterisation of a cytosolic glutathione reductase cDNA from pea and its expression in response to stress[J]. Plant Mol Biol, 1997,35(5):641~654
    189. Stewart CR,In: Adaption of plantsto water and high temperature stress[J]. New York,1980,173~189
    190. Stitt, M. and U.Sonnewald. Regulation of metabolism in transgenic plants[J]. Annu..Rev.Plant Physio. Plant Mol.Biol. 1995,46:341~368
    191. Strong W M and Barry G. The availability of and fertilizer phosphorous to rape at different water regimes[J]. Aust.J.Soil Res., 1980, (18): 353~362
    192. Suchila Techawongstien, Eiji Nawata and Shoji Shigenaga. Responses of chili pepper cultivars to transient water stress[J]. J. Japan. Soc.Hort. Sci, 1992, 61(1): 85~92
    193. Suzanne Robbins and David M, Pharr. Effect of restricted root growth on carbohydrate metabolism and whole plant growth of Cucumis sativus L [J]. Plant Physiol. 1988,87:409~413
    194. Takashi Nishizawa and Kenji Saito. Effects of Rooting Volume Restriction on the Growth and Carbohydrate Concentration in Tomato Plants [J]. J.Amer. Soc. Hort.Sci.1998, 123(4): 581~583
    195. Theodore C, Hsiao and Liu-Kuang Xu. Sensitivity of growth of roots versus leaves to water stress: biophysical analysis and relation to water transport [J]. Journal of experimental botany, 2000, 350, Special issue, (51): 1595~1616
    196. Tramontano WA, Jouve D. Trigonelline in salt-stressed legumes and the role of other osmoregulators cell cycle controlagents[J]. Phytochem,1997, 44(6):1037~1040
    197. Turner NC. Crop water deficits: A decade of progress[J]. Advances in Agronomy. 1989,39,1~51
    198. Van Keulen H. Modeling the interaction of water and nitrogen In John Monteith and Colin Webb (eds.) Soil water and nitrogen in Mediterranean-type environments[J]. Martinus Nijhoff/Dr W.Junk Publishers, 1981,205~229
    
    
    199. Webb AAR,Mcainsh MR,Taylor JE et al. Calcium ions as intracellular second messengers in higher plants [J]. Adv Bot Res, 1996,22:45~97
    200. Wenker W., Lemon E.R., Sinclair T.R [J]. Agronomy Journal, 1978,70:761~764
    201. William R.Argo and John A. Biernbaun Irrigation Requirements, Root-Medium PH, And Nutrient Concentrations of Easter Lilies Growth in Five Peat-Based Media with and Without an Evaporation Barrier[J]. J.Amer.Soc.Hort. Sci. 1994, 119(6): 1151~1156
    202. Wilson J.B. A review of evidence on the control of shoot/root ratio, in relation to models[J]. Ann of Botany, 1988,61:433~449
    203. W.J.Davies and Jianhua Zhang.Root Signals and The Regulation of Growth and Development of Plants in Drying Soil[J].Annu.Rev Physiol.Plant Mol.Biol.1991.42: 55~76
    204. Wu Y,Spollen WC, Sharp RE et al. Root growth maintenance at low water potentials, increase activity of xyloglucan endotransglycosylase and its possible regulation by abscisic acid[J]. Plant Physiol., 1994,106:607~615
    205. Zhang J Davie WJ. Does ABA in the xylem sap control the rate of leaf growth in soil-dried maize and sunflower plants? [J]. J Exp Bot. 1990,41(230): 1125~1132
    206. Zhang J Davie WJ. Changes in the concentration of ABA in the xylem sap as a function of changing soil water status can account for changes in leaf conductance and growth[J]. Plant Cell Environ.1990, 13:277~285
    207. Zimmermann. U.and Steudle E. Physical aspects of water relations of plant cell[J]. Adv Bot Res, 1978,76:45~117
    208. Palmroth S, Beminger F, Nikinmaa E. Correlation of pope model parameters with climatic variables and stand characteristics. In:Mohren GMJ, Kramer K,Sabate S eds. Impacts of global change on tree physiology and fordst ecosystems. Dordrecht:Kluwer[M]. Academic Publishers, 1997,287~291
    209. Kutschera U. Growth , in vivo extensibility and tissue tention in mung bean seedlings subjected to water stress[J]. Plant Sci 1989, 61:1~7
    210. Reed RH,Borowitzka LJ, Mackay MA et al. Organic solute accumulation in osmotically cyanobacteria[J]. FEME Microbciol Rev,1987, 39:51

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700