H_2S/CO_2体系油溶性缓蚀剂的开发
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硫化氢和二氧化碳在油气田的开采和集输系统中对钻井用具和输气管道产生严重的腐蚀,造成局部壁厚减薄或穿孔,甚至导致氢脆和突发性的应力腐蚀开裂,容易引起事故,造成重大的经济损失和人员伤亡,采取防腐措施势在必行,采用缓蚀剂可以有效地减缓腐蚀,油溶性缓蚀剂由于能更好地吸附于金属表面,且吸附时间相对较长,因此比水溶性缓蚀剂表现出更好的缓蚀性能。
     本文对合成咪唑啉缓蚀剂的有机酸和有机胺进行了系统的筛选,用碳链长度6-18的饱和脂肪酸合成了七种咪唑啉缓蚀剂,用静态失重和电化学方法研究了有机酸碳链长度对咪唑啉缓蚀性能的影响,表明当碳链长度为10时油溶性和缓蚀效果较好。通过比较合成过程中不同催化剂和脱水剂对缓蚀剂缓蚀性能的影响,得出活性氧化铝催化时缓蚀效果最好。另外在合成并评价了一系列工业脂肪酸咪唑啉后,通过静态失重法筛选出了几种缓蚀效果较好的咪唑啉缓蚀剂。
     采用动态高压釜失重试验评价了筛选出的几种缓蚀剂,并不断改进合成工艺,采用端基改性的方法合成出了一系列1#酸咪唑啉衍生物。比较1#4420120和1#4420180的缓蚀效果可知,在180℃时合成的衍生物缓蚀率高于120℃时的。经过一系列的评价比较,发现0924为缓蚀效果最好的一种,经缓蚀剂预膜后的试片在压力为3.6MPa,转速为600r/min,温度为60℃的高压釜环境中腐蚀速率仅为0.0025mm/a,它的缓蚀效果优于国外缓蚀剂CI545和ME805。秉着“腐蚀速率小且点蚀少”的原则,将油溶性缓蚀剂和水溶性缓蚀剂如喹啉、咪唑啉季铵盐以及表面活性剂等进行了复配,动态高压釜试验证明OP-15能有效地减少点蚀的发生。
     采用红外光谱谱表征了合成的缓蚀剂,谱图中有咪唑啉的特征吸收峰,同时有酰胺的特征吸收峰,说明合成的产品是咪唑啉和酰胺的混合物,采用动电位极化扫描研究了咪唑啉缓蚀剂的缓蚀机理,极化曲线的特征表明,咪唑啉缓蚀剂极大地减小了腐蚀电流密度,并使自腐蚀电位向更正的方向移动,阳极区地极化曲线特征发生了明显的变化,说明咪唑啉是一种阳极型缓蚀剂。用交流阻抗研究了缓蚀剂膜寿命,同等条件下0924缓蚀剂膜的寿命达到7天。
Hydrogen sulfide and carbon dioxide result in serious corrosion to the drilling equipment and gas pipelines. They always make the pipelines thinner or perforated, and even lead to hydrogen embrittlement and stress corrosion cracking, which easily cause severe accidents, economic losses and even injury and death. So it is imperative to take some measures to slow down or prevent corrosion.The using of corrosion inhibitors can effectively inhibite the corrosions. Oil-soluble corrosion inhibitors have better performance than the water-soluble corrosion inhibitors due to their better and longer adsorption on the metal surface.
     In this paper, seven imidazolines were synthesized by different saturated fatty acids with 6 to 18 carbon chain and diethylenetriamine. The relationships between fatty acid carbon chain length and inhibitive performance of imidazolines were studied by static weight loss test and electrochemical methods. The results showed that it had a better oil-soluble and inhibitive perfoemance when the carbon chain length of corrosion was 10. Activative alumina was proved to be the best catalysts after comparing the inhibitive perfoemance of oleic imidazolines synthesized by using different catalysts and dehydrating agent. After evaluating a series of industrial fatty acid imidazoline through the static weight loss test, several good imidazoline corrosion inhibitors such as D2,1# IM180,1# 4420180,0924,0131 etc. were selected and evaluated in dynamic autoclave.
     A series of 1# acid imidazoline derivatives were synthesized by modifying end-groups. Comparing inhibitive performance of 1# 4420180 and 1# 4420120 showed that derivative synthesized at 180℃was better than it at 120℃. After several evaluation comparasion, the 0924 was suggested to be the best inhibitor under the autoclave test environment at 3.6MPa,600r/min, and 60℃. Its corrosion inhibitive perfoemance was better than foreign corrosion inhibitors CI-545 and ME-805 as its corrosive rate was only 0.0025mm/a. Adhering to the principle of "lower corrosion rate and less pitting ", oil-soluble corrosion inhibitors were compounded with water-soluble corrosion inhibitor such as quinoline, imidazoline quaternary ammonium salts and surface active agent. It was proved OP-15 can effectively reduce the occurrence of pitting in dynamic autoclave test.
     Characterized by IR spectral indicated that the synthesis product was a mixture of imidazoline and amide. The polarization curves show that the imidazolines greatly reduces the corrosion current density, and made the corrosion potential move to the corrective direction. The anode polarization curves indicated that imidazoline is an anodic inhibitor.
引文
[1]戴金星,胡见义,贾承造.关于高硫化氢天然气田科学安全勘探开发的建议[J].石油勘探与开发,2004,31(2):1-5
    [2]中国石化发现大型整装海相天然气田[J].石油与天然气地质,2006,27(2):220-224
    [3]马永生,牟传龙,郭彤楼.四川盆地东北部长兴组层序地层与储层分布[J].地学前缘,2005,12(3):179-185
    [4]李桂变.抗硫化氢钻铤材料与工艺研究[D].西安石油大学学位论文,2008
    [5]Yan Milin. Corrosion/1999, NACE,1999:28
    [6]Lu Minxu. Corrosion/1999, NACE,1999:26
    [7]Ikeda A, Ueda M, Mukai S. CO2 behavior of carbon and Cr steels [J]. Corrosion-84[C], New Orileans USA:NACE,1984:289.
    [8]傅朝阳,罗逸,郑家,等.中原油田气井油管腐蚀因素灰关联分析[J].天然气工业,2000,20(1):74-77
    [9]Heuer J K, Stubbins J F. An XPS Characterization of FeCO3 films from CO2 corrosion [J]. Corrosion Science,1999 (41):1231-1243
    [10]徐鸿麟.油管钢高温高压CO2、H2S及CO2腐蚀行为研究[D].兰州理工大学学位论文,2005
    [11]Vedage H, Ramanarayanan T A, Mumford J D, et al. Electrochemical growth of Iron sulfide films in H2S-sat-urated chloride media [J]. Corrosion,1993,49 (2):114-121
    [12]Wu Y M. Applying process modeling to screen refining equipment for wet hydrogen sulfide service [J]. Corrosion,1998,54(2):169-173
    [13]Kimura M. Sulfide stress cracking of line pipe [J]. Corrosion,1989,45(4):340-346.
    [14]Huang H H, Tsai W T, Lee J T. Electrochemical behavior of A516 carbon steel in solutions containing hydrogen sulfide [J]. Corrosion,1996,52(9):708
    [15]Houyi Ma, Xiaoliang Cheng, Guiqiu Li etc.The nfluence of hydrogen sulfide on corrosion of iron under different conditions [J]. Corrosion science,2000,40:1669-1683
    [16]Masamura K, Hashizume S, Sakai J. Polarization behavior of high-Alloy OCTG in CO2 environment as affected by chlorides and sulfides [J]. Corrosion,1987,43(6):359-368
    [17]Srinivasan. Experiment simulation of multiphase CO2/H2S system [J]. Corrosion,1999,14: 1168-1182
    [18]周计明.油管钢在含CO2/H2S高温高压水介质中的腐蚀行为及防护技术的作用[D].西北工业大学硕士学位论文,2002
    [19]张清,白真全,李全安,等.CO2/H2S对油气管材的腐蚀规律及研究进展[J].钢铁研究学报,2004,16(4):72-74
    [20]李鹤林,白真权,李鹏亮,等.模拟CO2/H2S环境中API N80钢的腐蚀影响因素研究[A].第二届石油石化工业用材研究会论文集[C].2001:101-104
    [21]Fierro G, Ingo G M, Mancla Fi. XPS-Investigation on the corrosion behavior of 13Cr martensitic stainless steel in CO2-H2S-Cl- environment [J]. Corrosion,1989,45(10):814-821
    [22]李章亚.油气田腐蚀与防护技术手册(下册)[M].北京:石油工业出版社,1999:471-492
    [23]周卫军,严密林,王成达.N80抗硫油管钢在含C02、微量H2S及高浓度Cl-腐蚀介质中的腐蚀行为[J].腐蚀科学与防护技术,2007,19(3):192-195
    [24]周静.硫脲基咪唑啉缓蚀剂合成与研究[J].黔南民族师范学院学报,2007,17(3):125
    [25]吴荫顺,郑家燊.电化学保护和缓蚀应用技术[M].北京:化学工业出版社,2006: 660-665
    [26]周静妤.防锈技术[M].北京:化学工业出版社,1988,12
    [27]李树安,张铸勇.咪唑啉磺酸盐两性表面活性剂的合成[J].精细化工,1990,45(7):75-78
    [28]孟祥胜,牛春革.NS-3油溶性缓蚀剂的合成研究[J].精细石油化工,1999(5):17-20
    [29]何文深,谢晖,周永红.松香基咪唑啉的合成及其性能[J].腐蚀科学与防护技术,2004,16(4):247-249
    [30]刘鹤霞,郑家燊.气田气井缓蚀剂研究[J].四川化工与腐蚀控制,2003,6(2):24-25,63
    [31]Niu, Joseph·H·Y, Edmonson, James G, Leher, Scou E, Method of Inhibiting Corrosion of Metal Surface in Contact with a Corrosive Hydrocarbon Containing Medium [P].U.S.:5019341,1991,05,28
    [32]王菁辉,赵文珍.炼油厂湿硫化氢腐蚀介质缓蚀剂的研究[J].精细石油化工,2007,11,24(6):40-43
    [33]陈敏,司荣,盖玉娟,等.油酸基咪唑啉类缓蚀剂的合成及其缓蚀性能评价[J].石化技术与应用,2009,3,27(2):127-131
    [34]吴大伟,唐善法,张大椿,等.油酸咪唑啉合成条件的优选设计[J].精细石油化工进展,2009,1,10(1):48-49
    [35]张雪琴,张惠莲,彭文飞.新型油溶性缓蚀剂的合成及其缓蚀性能研究[J].广东化工,2000(1):40-43.
    [36]刘瑕,郑玉贵.咪唑啉型缓蚀剂中疏水基团对N80钢在CO2饱和的3%NaCl溶液中的缓蚀性能影响[J].中国腐蚀与防护学报,2009,29(5):333-337
    [37 孙铭勤,葛际江,张贵才,等.饱和C02盐水中咪唑啉分子结构与其缓蚀性能的关系[J].石油化工,2005,34(12):1177-1181
    [38]D.A.Lopez, W.H.Schreiner. The influence of inhibitors molecular structure and steel microstructure on corrosion layers in CO2 corrosion:An XPS and SEM characterization [J]. Applied Surface Science,2004,236:77
    [39]杨怀玉,陈家坚,曹楚南,等.H2S水溶液中腐蚀与缓蚀作用机理的研究[J].中国腐蚀与防护学报,2002,22:149
    [40]刘瑕,郑玉贵.流动条件下两种不同亲水基团缓蚀剂的缓蚀性能[J].物理化学学报,2009,25(4):713
    [41]X. Liu, P.C. Okafor, Y.G. Zheng. The inhibition of CO2 corrosion of N80 mild steel in single liquid phase and liquid/particle two-phase flow by aminoethyl imidazoline derivatives [J]. Corrosion Science,2009,51:744-751
    [42]P.C. Okafora, X. Liu, Y.G. Zheng, Corrosion inhibition of mild steel by ethylamino imidazoline derivative in CO2-saturated solution[J]. Corrosion science,2009,51:761-768
    [43]马国庆,夏湘玲.新型缓蚀剂的研制[J].新产品开发,2008(5):71
    [44]柴成文,路民旭,张玉芳,等.新型抗CO2缓蚀剂的合成与性能研究[J].山东石油学会第三届腐蚀与防护技术学术交流会论文集,专家论坛:126-132
    [45]张静,杜敏,于会华,等.分子结构对咪唑啉缓蚀剂膜在Q235钢表面生长和衰减规律的影响[J].物理化学学报,2009,25(3):525-531
    [46]梅平,陈武,王志龙,等.一种控制二氧化碳腐蚀的缓蚀剂及其制备方法[P].中国专利,1818138A,2006-08-16
    [47]郑家燊,吕战鹏,彭芳明.新型咪唑啉类缓蚀剂的合成、结构表征及缓蚀性能研究[J].油田化学,1994,6,11(2):163-167
    [48]王慧龙,韩秀丽,郑家燊,等.高级脂肪酰胺基烷基咪唑啉的合成及缓蚀研究[J].郑州 工业大学学报,2001,9,22(3):62-64
    [49]黄金营,魏慧芳,郑家燊,等.咪唑啉油酰胺的合成及在油气井产出液中的缓蚀性能[J].油田化学,2004,21(3):230-233,236
    [50]张林,邓春光,胡凡.HT01油溶性缓蚀剂的开发与应用[J].炼油设计,2007,7,30(7):54-57
    [51]宁朝辉,崔新安,赵景茂,等.咪唑啉酰胺中和缓蚀剂的成膜性能研究[J].石油化工腐蚀与防护,2005,22(1):16-19
    [52]张学元,马利民,杜元龙,等.咪唑啉酰胺在含CO2溶液中的缓蚀机理[J].应用化学,1998,15(6):21-24
    [53]李为强,李桂平,李善建,等.高效缓蚀剂HSJ-1的研究[J].化工技术与开发,2008,4,37(4):14-16
    [54]熊颖,陈大钧,郑国述,等.一种防H2S腐蚀的缓蚀剂制备与现场挂片试验研究[J].钻采工艺,2007,30(5):131-134
    [55]顾明广,苏芳.抑制CO2/H2S腐蚀的气液双相新型缓蚀剂的制备及评价[J].华中科技学院学报,2007,7,4(3):39-42
    [56]杨小平.磨溪气田的腐蚀与复合缓蚀剂CZ3-1+CZ3-3的研制及应用[J].油田化学,1998,6,15(1):132-136,140
    [57]杨小平.CZ3-1E气/液双效缓蚀剂的研制[J].天然气工业,2000,20(3):98-101
    [58]张玉芳.用于含CO2/H2S环境的缓蚀剂研制[J].石油与天然气化工,2005,34(5):407-410
    [59]陈学兵,刘洪锦,龚德胜.“BL-928”油溶性缓蚀剂在长岭一套常减压装置中的应用试验[J].石油化工腐蚀与防护,1998,15(2):29-32
    [60]储慧莉,张惠莲,单石灵,等.GAC-968新型油溶性缓蚀剂的应用[J].广东化工,1997(6):24-26
    [61]黄准.NWXH-1型油溶性缓蚀剂的合成工业试验[J].江苏化工,2004,4,32(2):45-47
    [62]唐绍儒.Ws-1炼油厂油溶性缓蚀剂[J].石油化工腐蚀与防护,1992(4):62-64
    [63]刘红卫.WS-1缓蚀剂在石油化工精制装置中的应用[J].腐蚀与防护,2007,6,28(7):312-316
    [64]高金森.IMC-2号油溶性缓蚀剂在蒸馏塔上的应用和性能评价[J].第十三届全国缓蚀剂学术讨论会论文集:95-99
    [65]李谦定.花椒籽油烷醇酰胺的合成及产物性能评价[J].西安石油学院学报(自然科学版),2002,17(6):43-45
    [66]申明周.ERI-1缓蚀剂的合成及性能评价[J].石油化工腐蚀与防护,2002,19(3):42-45
    [67]杜海燕.油酸酰胺的合成及其性能研究[J].腐蚀科学与防护技术,2006,18(5):370-373
    [68]杜海燕,刘鹤鸣,程明焱,等.棕榈双酰胺的合成及其抗CO2腐蚀的缓蚀性能[J].腐蚀与防护,2008,10,29(10):576-581
    [69]张锡波.垦西油田的井下腐蚀与化学防腐蚀[J].油田化学,2001,18(3):235-23
    [70]Yu. I. Kuznetsov, N. N. Andreev, K. A. Ibatullin, S. V. Oleinik. Protection of Low-Carbon Steel from Carbon Dioxide Corrosion with Volatile Inhibitors. I. Liquid Phase [J]. Protection of Metals.2002,38(4):322-328
    [71]Yu. I. Kuznetsov,K. A. Ibatullin. On the Inhibition of the Carbon Dioxide Corrosion of Steel by Carboxylic Acids [J]. Protection of Metals,2002,38(5):439-444
    [72]V. I. Vigdorovich, S. E. Sinyutina, L. E. Tsygankova, E. K. Oshe. Effect of Hydroxyethylated Amines on the Corrosion and Hydrogenation of Carbon Steel [J]. Protection of Metals,2004, 40(3):264-270
    [73]黄光团.新型咪唑啉衍生物油田回注水缓蚀剂的研究[J].腐蚀与保护,2004,25(2):51-52
    [74]丁林.AVMHT缓蚀剂在H2S-HCl-H2O体系中的缓蚀性能[J].腐蚀与防护,2007,28(12):613-615
    [75]廖海星,何定凯,张爱清,等.有机缓蚀剂JZH-1及其复配剂的研究[J].化学与生物工程,2008,25(11):36-39
    [76]Suzuki K. The study of inhibitor for sour gas service [J]. Corrosion,1982,7:384-389
    [77]任呈强,刘道新,白真全,等.咪唑啉衍生物在含H2S/CO2油气井环境中的缓蚀行为研究[J].钻井工程,2004,8,24(8):53-55

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700