管线钢腐蚀的材料因素与环境因素关联性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于某气田单井集输管线腐蚀穿孔现象,调研了集输工况,在此基础上开展了不同管材的腐蚀行为研究,得到了各自的腐蚀速率变化规律,并采用电化学方法分析它们的腐蚀机理,结合正交实验方法、金相分析、物相分析和形貌分析等手段,探讨了管线钢腐蚀的材料因素与环境因素的关联性,为以后该气田在单井集输管线的材料选择和防腐措施工作提供思路。
     在模拟该气田集输系统的腐蚀介质中,对20G、15CrMo、20#三种钢进行了典型环境因素的正交实验和单因素实验。结果表明:影响20G、15CrMo、20#钢的环境因素排序存在差异,影响管线钢C02腐蚀最显著的四个因素分别是温度、pH值、HC03-和Cl-。HC03-和C02含量较高时,有利于促进钝化,15CrMo钢比20G钢耐蚀,而变化其它因素时,20G钢比15CrMo钢耐蚀,20#钢的腐蚀速率最高。并结合实际环境讨论了环境因素的作用机制。
     交流阻抗和极化曲线测试结果表明,20G、15CrMo、20#三种钢在该实验环境中的腐蚀电化学机理是一致的,其腐蚀速率主要受阴极过程控制,腐蚀产物对腐蚀速率也有着重要影响。XRD分析表明三种钢的腐蚀产物的物相均为FeC03,但SEM分析发现腐蚀产物的形貌存在差异。20G钢的腐蚀产物微观取向性很强,对基体的保护性较好;15CrMo钢腐蚀产物覆盖致密,但是裂痕的存在一定程度上削弱了产物本身的保护性;而20#钢腐蚀产物形貌缺陷较多,故对腐蚀介质的阻挡作用最小。
     研究发现,三种钢的显微组织和成分对其腐蚀速率也有直接的影响。因此,材料因素和环境因素共同决定了管线钢的腐蚀行为。故实验条件下在C02和HC03-含量较高时可选用15CrMo钢,其它环境中选用20G钢,为了更好地控制腐蚀,建议添加缓蚀剂防腐。
Based on the failure analysis of the single well gathering pipeline, corrosion tests were carried out to simulate single gathering pipeline environment in order to obtain corrosion rates of different types of pipeline steels. The polarization curves and impedance spectroscopy were also adapted to analyze corrosion mechanisms of different materials by means of electrochemical methods. Orthogonal test, matellographic analysis, components analysis, feature analysis were used to discuss the relevance between material factors and environmental factors during the course of corrosion. It is hoped to offer the reference for the material selection of single gathering pipeline in oil and gas fields.
     Orthogonal and single factor experiments were carried out on 20G,15CrMo,20# in a simulated gathering pipeline environment. Differences was founded in ranking of the different environmental factors. Temperature,pH,HCO3- and Cl- play most important role on the corrosion. With the increasing of the concentration of HCO3-and CO2, the corrosion resistance of 15CrMo was better than that of 20G, for it was easy to be passive, while 20G was better than 15CrMo when other factors were changed. The corrosion rate of 20# was the highest one among the steels. Field environment conditions were combined to discuss the role of environmental factors.
     The polarization curves and impedance spectroscopy shows the electrochemical reaction mechanism of the 20G,15CrMo,20# were same in the experiment environment, and the corrosion rate of was mainly controlled by the cathodic process. It also found the corrosion products play an important influence on the corrosion rate.
     XRD shows the corrosion products on the three steels were FeCO3, but the morphology of corrosion products was different by SEM. The corrosion products of 20G were orderly relative,so the corrosion products of 20G could provide the best protection to the matrix. Although the corrosion products of 15CrMo were closed, but there were cracks in the morphology, so the protection to the matrix was poorer than 20G. There are many defects in the morphology of corrosion film on 20#. It can be infer that it could not block off the corrosion medium, so the protection is the worst one.
     Comprehensive studies showed the microstructure and alloy element of materials had a direct effect on the corrosion resistance of the materials. Data showed that the corrosion rate of pipeline steel was both determined by environmental factors and material factors.15CrMo was suggested to be used in the condition containing the higher concentration of CO2 and HCO3-, otherwise 20G was proposed. Corrosion inhibitors should be added in order to reduce the corrosion rate furtherly.
引文
[1]柯伟.中国腐蚀调查报告[M].北京:化学工业出版社,2003.
    [2]姜炳威等.塑料合金多层复合防腐管材及其在油田原油输送中的应用[J].全面腐蚀控制,2001,15(1):27.
    [3]路民旭等.油气采集储运中的腐蚀现状及典型案例[J].腐蚀与防护.2002.23(3):105.
    [4]闫亮.我国天然气发展进入快车道分析[J].现代商贸工业,2010,13:21.
    [5]路剑,徐荆安,石磊.石油天然气长输管道质量事故调查[J].中国船检,2010,7(1):81-83.
    [6]高洪斌.二氧化碳对油田集油管线腐蚀的预测[J].石油天然气学报,2006,28(4):410-413.
    [7]梁平,李晓刚,杜翠薇等.X80和X70管线钢在NaHC03溶液中钝化膜的电化学性能[J].石油化工高等学校学报,2008,21(2):1-5.
    [8]Zhang L, Li X G, Du C W, et al. Corrosion and Stress Corrosion Cracking Behavior of X70 Pipeline Steel in a CO2-Containing Solution[J]. Journal of Materials Engineering and Performance,2009, 18(3):319-323.
    [9]张忠铧,郭金宝.C02对油气管材的腐蚀规律及国内外研究进展[J].宝钢技术,2000,(4):54-58.
    [10]马能平.影响石油长输管道二氧化碳腐蚀的因素分析与控制措施[J].化学工程与装备,2010,2:81-83.
    [11]陈立强,孙雨来,陈长风等.N80油管在模拟凝析气田多相流环境中的C02腐蚀行为研究[J].石油矿场机械,2010,39(10):55-59.
    [12]张学元.二氧化碳腐蚀与控制[M].北京:化学工业出版社,2000.
    [13]卢绮敏.石油工业中的腐蚀与防护[M].北京:化学工业出版社,2001:38-70.
    [14]S Nesic, L Lunde. Carbon dioxide corrosion of carbon steel in two-phase flow [J].Corrosion,1994, 50(9):717.
    [15]Ramanchandran S,Campbell S,Ward M B. The Inter & actions and Properties of Corrosion Inhibitors with Byproduct Layers [C]//corrosion/2000,Paper No.25.Houston:National Association of Corrosion Engineers,Texas,2000.
    [16]Linter B R,Burstein G T.Reaction of Pipeline Steels in Carbon Dioxide Solutions[J].Corrosion Science.1999,42(2):117-139.
    [17]Schmitt G, Bosch C, PankakeU. Evaluation of Critical Flow Intersites for File in Sour Gas Production[C]. Corrosion Paper, NACE,1998,No.46.
    [18]Schmitt G,Mueller M,Critical WaUs Hears Tressesin CO2 Corrosion of Carbon Steel[C].Corrosion Paper.NACE,1998,No.44.
    [19]Szklarska-Smialowska Z, Suaceptibility of low alloy carbon steel to pitting and stream corrosion cracking in stream generator condition. Corrosion,1994,50(4):279-289.
    [20]Ogundele G I, White W E. Some Observation on Corrosion of Carbon Steel in A queou s Environments Containing Carbon Dioxide[J]. Corrosion,1986,42(2):71-76.
    [21]李国敏,刘烈伟,郑家燊.碳钢在含硫化氢及高压二氧化碳饱和的Nacl溶液中的腐蚀行为[J].中国腐蚀与防护学报,2000,20(4):204-209.
    [22]W aard C D,M illiam s D E.Production of CO2 Corrosion of Carbon Steel [R].Houston:NACE,1994.
    [23]Davies D H, Burstein G T.The Effects of Bicarbonate on the Corrosion and Passivation of Iron [J]. Corrosion,1980,36(8):416-422.
    [24]Nesic S,Thevenot N,Crolet J L,Drazie D.Electrochemical Properties of Iron Dissolution in the Presence of CO2-Basics Revisited [R]. Houston:NACE,1996.
    [25]Nesic S,Olsen S. An Electrochemical Model for Prediction of Corrosion of Mild Steel in Aqueous Carbon Dioxide Solutions[J].Corrosion,1996,52 (4):280-294.
    [26]黄金营,魏慧芳.油井腐蚀因素探讨[J].湖北化工,2003,2:41-42.
    [27]周琦,何力力,黄淑菊.X70钢在不同温度下的CO2腐蚀行为[J].石油机械,2005,33(11):7-10.
    [28]周琦,杨新田,徐鸿麟.X60钢在不同温度下的CO2腐蚀行为[J].兰州理工大学学报,2005,31(4):27.
    [29]林冠发,郑茂盛,白真权等.高温CO2腐蚀产物膜的结构特征与磨损性能[J].材料热处理学报,2005,26(5):80-83.
    [30]林冠发,白真权,赵新伟等.温度对二氧化碳腐蚀产物膜形貌特征的影响[J].石油学报,2004,25(3):101-105.
    [31]朱世东,尹志福,白真权等.温度对P110钢腐蚀行为的影响[J].中国腐蚀与防护学报,2009,29(6):493-497.
    [32]李党国,冯耀荣,白真权等.温度对N80碳钢CO2腐蚀产物膜性能的影响[J].中国腐蚀与防护学报,2008,28(6):369-373.
    [33]俞芳,高克玮,乔利杰等.温度对N80钢CO2腐蚀产物膜结构和力学性能的影响[J].腐蚀与防护,2009,30(3):145-148.
    [34]张学元,王凤平,杜元龙.铁在二氧化碳溶液中的腐蚀电化学行为研究[J].中国腐蚀与防护学报,1999,19(2):72-77.
    [35]魏爱军,霍富永,程世宝等.C02对碳钢腐蚀影响的模拟实验及缓蚀剂评价[J].腐蚀与防护,2008,29(7):378-388.
    [36]姜放,戴海黔等.油套管在CO2和H2S共存时的腐蚀机理研究[J].石油与天然气化工.2005,34(3):213~215.
    [37]张军,慕立俊,赵文轸.HC03-对J55钢在1%NaCl溶液中腐蚀行为的影响[J].腐蚀科学与防护技术,2010,22(3):188-191.
    [38]张军,赵文轸,来维亚.HC03-对J55钢腐蚀行为的影响[J].材料保护.2010,43(2):26-28.
    [39]郭昊,杜翠薇,李晓刚.X70钢在碳酸氢钠溶液中的腐蚀行为研究[J].装备环境工程,2007,4(3):40-44.
    [40]柳伟,陈东,路民旭.不同CO2压力下形成的N80钢腐蚀产物膜特征[J].北京科技大学学报,2010,32(2):213-218.
    [41]费小丹,李明齐,许红梅等.碳酸钠浓度对X70钢腐蚀行为的影响[J].腐蚀与防护,2006,27(12):624-626.
    [42]龙凤乐,郑文军,陈长风等.温度、CO2分压、流速、pH值对X65管线钢CO2均匀腐蚀速率的影响规律[J].腐蚀与防护,2005,26(7):290-293.
    [43]李建平,赵国仙,郝士明.几种因素对油套管钢CO2腐蚀行为的影响[J].中国腐蚀与防护学报,2005,25(4):241-244.
    [44]赵景茂,顾明广,左禹.碳钢在二氧化碳溶液中腐蚀影响因素的研究[J].北京化工大学学报,2005,32(5):71-74.
    [45]王志龙,艾俊哲,梅平等.二氧化碳对钢腐蚀的影响因素研究[J].油气田环境保护,2004,11(1):48-50.
    [46]朱世东,白真权,林冠发等.影响油气田CO2腐蚀速率的因素研究[J].内蒙古石油化工,2008,12(5):6-10.
    [47]孙丽,李长俊,彭善碧等.CO2腐蚀影响因素研究[J].管道技术与设备,2008,12(6):35-48.
    [48]Zhang X Y, Yu G, Wang F P, etal. Influence of Cl" on corrosion behavior of API P105 steel in the CO2 saturated solution [J].Chem. J. Chin. Univ.,1999,20(7):1115-1118.
    [49]张雷,国大鹏,路民旭.Cl-含量对J55钢腐蚀行为的影响[J].中国腐蚀与防护学报,2009,29(1):64-68.
    [50]李党国,冯耀荣,白真权.Cl-对N80钢在CO2水溶液中腐蚀行为的影响[J].腐蚀科学与防护技术,2007,19(5):329-332.
    [51]郝献超,苏鹏,肖葵.不同NaCl浓度对耐候钢腐蚀产物的影响[J].腐蚀与防护,2009,30(5):297-299.
    [52]张震,梁煜武.铁在不同pH值的NaCl溶液中的腐蚀行为[J].腐蚀科学与防护技术,2008,20(4):260-264.
    [53]刘会,赵国仙,韩勇.Cl-对油套管用P110钢腐蚀速率的影响[J].石油矿场机械,37(11):44-48.
    [54]梁平,杜翠薇,李晓刚.SO42-对X80管线钢在含Cl-的NaHC03溶液中点蚀行为影响[J].腐蚀与防护,2010,31(5):362-364.
    [55]马宗耀,田伟.16Mn钢油气集输管线弯管失效分析[J].金属热处理,2009,34(3):89-91.
    [56]黄天杰,王峰,殷安会等.N80钢在二氧化碳饱和的模拟油田液中的高温高压腐蚀行为研究[J].腐蚀科学与防护技术,2009,21(5):486-488.
    [57]翟文,郑茂盛.09Cr2AlMoRE钢和N80油套管钢的CO2腐蚀电化学行为[J].理化检验,2008,44(5):226-230.
    [58]杨建炜,张雷,丁睿明等.管线钢在湿气介质中的H2S/CO2腐蚀行为研究[J].材料工程,2008,11:49-53.
    [59]周兰花,董玉华,陈长风等.常用集输管线钢在CO2多相流中的腐蚀行为[J].腐蚀与防护,2009,30(8):538-541.
    [60]陆原,刘鹤霞,赵景茂.几种材料在模拟油田环境中的CO2腐蚀行为[J].腐蚀与防护,2007,28(7):345-348.
    [61]刘鹤霞,张高林,赵景茂等.四种钢材在含CO2盐水溶液中的腐蚀行为[J].腐蚀与防护,2007,28(4):202-204.
    [62]周建龙,李晓刚,杜翠薇等.X80管线钢在NaHC03溶液中的阳极电化学行为[J].金属学报,2010,46(2):251-256.
    [63]陈浩,苏莹莹,王艳丽.15CrMo材质余热锅炉省煤器的腐蚀实验研究[J].腐蚀与防护,2010,13(2):57-60.
    [64]夏翔鸣.20钢在H2S溶液中的应力腐蚀开裂行为研究[J].材料保护,2007,40(7):15-17.
    [65]芦金柱,王斌,张德芬等.20G钢在高含Cl-乙二醇溶液中的腐蚀机理研究[J].压力容器,2010,27(2):19-23.
    [66]GB/T13298-91,金相显微组织检验方法[S].北京:国家标准局,1991.
    [67]JB/T 7901-1999,金属材料实验室均匀腐蚀全浸实验方法[S].国家标准局,1999.
    [68]SY/T 0546-1996,腐蚀产物的采集与鉴定[S].国家标准局,1996.
    [69]李言涛,张玲玲,侯保荣.正交实验研究离子浓度CO2腐蚀的影响[J].腐蚀与防护,2010,31(6):434-454.
    [70]Sun W, Nesic S. Basics revisited:kinetics of iron carbonate scale precipitation in CO2 corrosion [C]//NACE International, NACE Corrosion/2006, Houston, Texas,2006. paper No 365.
    [71]Yamashita M, Miyuki H, Matsuda Y, et al.The long term growth of the protective rust layer formed on weathering steel by atmospheric corrosion during a quarter of a century [J].Corrosion Science, 1994,36(2):283-299.
    [72]NESIC S. Key issues related to modelling of internal corrosion of oil and gas pipelines-A review[J]. Corrosion Science,2007,49 (12):4308-4338.
    [73]Chen D, LiuW, LuM X, et al. Influence of CO2 partial pressure on the protection property of corrosion scale formed on N80 steel, Univ Sci Technol B eijing,2007,29 (3):288.
    [74]李少坡,郭佳,杨善武,等.碳含量和组织类型对低合金钢耐蚀性的影响[J].北京科技大学学报,2008,30(1):16-20.
    [75]Rogne T, Eggen T G, Steinsmo U. Corrosion of CrMn steel and 0.5% Cr steel in flowing CO2 saturated brines[C]. Corrosion/1996, paper no.33.
    [76]Al-hassan S, Mishra B, Olson D L, et al. Effect of microstructure on corrosion of steels in aqueous solution containing carbon dioxide[J]. Corrosion,1988,54(6):480-493.
    [77]Srdjan Nesic. Key issues related to modelling of internal corrosion of oil and gas pipelines-A review[J]. Corrosion Science,2007,49(12):4308-4309.
    [78]L. G. S. Gray, B. G. Anderson, M. J. Danysh, et al. Effect of pH and temperature on the mechanism of carbon steel corrosion by aqueous carbon dioxide[C] Corrosion/90, paper no.40.
    [79]樊治海,吕祥鸿,赵国仙等.常压条件下N80钢的CO2腐蚀的电化学特性[J]腐蚀科学与防护技术.2005.17(2):75-78.
    [80]王春泉.雅克拉气田集输管材的CO2腐蚀研究[D].中国石油大学硕士学位论文,2009.
    [81]Dugstad Arne. Mechanism of protective film formation during CO2 corrosion of carbon steel [C]. Corrosion/98, NACE,1998:31.
    [82]Masakat su Ueda, Hideki Takabe.Effect of environmental factor and microstructure on morphology of corrosion products in CO2 environments[C].Corrosion/99, NACE,1999:13.
    [83]韩顺昌.金属腐蚀显微组织图谱[M].北京:国防工业出版社,2008.11.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700