孕鼠暴露于炎症、免疫刺激剂诱发子代高血压机制研究:发病相关候选基因的筛选
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
原发性高血压(essential hypertension,EH)是最常见的心血管疾病,其并发症是造成人类死亡的主要原因之一。探索EH的发病机制、寻找EH的防治方法有极其重要的意义。炎症在心血管疾病发病中重要作用的认识是近年来该领域最重要的进展之一。更为有趣的是,越来越多的临床流行病学调查结果提示高血压在某些方面也与炎症密切相关。我室近年研究发现,孕鼠暴露于炎症刺激剂LPS或免疫刺激剂zymosan后,可导致仔鼠出生后血压升高、体重增加;近年发育生物学提出“成人慢性病的胎源性学说”,即成人一些慢性疾病如冠心病、Ⅱ型糖尿病、高血压等的病因源于胚胎及婴幼儿时期发育的可塑性,也就是在妊娠期间,始儿受到来自外界环境的刺激会对其发育产生影响,并可能对其成年后发生一些慢性疾病起重要作用,这一理论正与我们的研究发现相吻合。但究竟这种炎症免疫刺激因素是通过那一些因子和途径来引起胎儿发育上的改变导致仔鼠成年后发生血压升高和体重增加,目前还未见相关报道。鉴于此,本研究拟在我室原有的研究工作的基础上,探讨炎症免疫刺激因素是如何影响胎儿的发育,研究炎症免疫刺激孕鼠对胚胎全基因表达的影响,旨在探索仔鼠高血压发病相关的候选基因,为进一步深入了解其分子机制和寻找有效干预措施提供新线索和理论依据。
     方法
     1.SD孕鼠,在妊娠8、10、12天,分别腹腔注射0.79 mg/kg LPS、8 mg/kg zymosan为炎症免疫刺激模型,对照组腹腔注射生理盐水。
     2.在最后一次注射后2小时鼠尾取血,及取最后一次注射后2h、12h、24h及48h的羊水混合,用放免法检测血清及羊水的TNF-α及IL-6水平。
     3.实时荧光定量PCR分析胎盘、羊膜、羊水中细胞、胚胎及腹腔巨噬细胞中的TNF-α及IL-6 mRNA水平。
     4.Affymetrix的大鼠全基因组芯片研究炎症免疫刺激模型与正常对照之间胚胎的基因表达谱的变化。
     5.基因芯片数据采用Gene Onology分析生物学功能,采用GenMAPP2.1软件分析信号通路。GO分析我们重点放在分子功能分析上。
     6.选择了20个基因采用实时荧光定量PCR验证基因芯片结果,并研究这些基因在胚胎不同时相点的表达变化情况。
     结果与结论
     1.应用孕鼠腹腔注射LPS、zymosan,血清TNF-α、IL-6水平较对照组明显升高(P<0.01),说明在LPS和Zym组,母鼠均发生了炎症免疫反应;TNF-αmRNA水平在巨噬细胞中表达最多,3h时是其它组织的上千倍;IL-6 mRNA在巨噬细胞中表达最多,2h时是其它细胞的几十万倍。说明炎性因子TNF-α、IL-6主要来源于巨噬细胞一类炎性细胞。
     2.在胚胎中TNF-αmRNA的量较低,而IL-6 mRNA的量较其他几种组织中高,并且炎症刺激组在24h及48h两个时相点要明显高于对照组数十倍,提示IL-6与大鼠妊娠期注射炎症免疫刺激剂引起仔代大鼠血压升高有关;在羊膜、羊水及胎盘中LPS组明显高于对照组,而Zym组则仅在胎盘中变化明显,提示两种炎症免疫刺激剂作用路径不尽相同,LPS可以通过影响羊膜,羊水及胎盘的细胞因子变化而影响胚胎发育;zymosan则主要通过胎盘影响胚胎的发育。
     3.用大鼠全基因芯片从28 000个基因中发现孕鼠注射炎症、免疫刺激剂后胚胎的差异表达基因:LPS组上调(Ratio≥2)的有183个、下调(Ratio≤0.5)的有270个;Zym组上调(Ratio≥2)的有144个、下调(Ratio≤0.5)的有417个。LPS组及Zym组中同向变化的基因,上调的有50个,其中功能已知的基因有10个(Tnnt2,Arg1,Fgf8,Dusp9,Plekhf1,Soat1,Fubp1,Orc11,Hmga1,Nr2f6);下调的有173个,其中功能已知的基因有85个。
     4.Gene Ontology功能检索,差异表达基因数量较多的功能分类集中在结合分子、催化活性、转运体、信号转导及转录调节等几个方面,涉及生长因子、细胞信号转导的蛋白和核转录因子,直接参与代谢的酶,肌钙蛋白等。其中表达下调的基因比表达上调的多,这种胚胎期的基因表达下调可能会影响仔鼠以后的发育。
     5.GenMAPP信号通路的可视化分析,发现在DNA合成、RNA加工、细胞G1期到S期调控及翻译因子方面,有差异表达的基因基本是都是上调,而且在LPS组及Zym组中呈高度的一致性;在心肌钙调节、平滑肌收缩舒张通路及炎症反应通路中则下调的基因较多。
     6.选择了20个差异表达基因,采用实时荧光定量PCR技术对芯片结果进行验证。在12h时与基因芯片数据一致的有13个、不一致的有4个,还有RGD1307150、Bcl11a及Tgfb2三个基因的Zym组与芯片结果一致。
     7.各基因的mRNA含量变化中:Fgf8、Orcl1在2h及12h时实验组较对照组出现了上调,24h到48h逐渐降到对照组同一水平;Bcl11a、Dusp9表现与上述相反;Nfib的mRNA水平在实验组中各时相点均有不同程度的下调;Egfr、Gap43及Penk1的mRNA水平在2h时三个组相差不明显,在12h到48h实验组出现了不同程度的下调;Agtr2在12h时实验组明显低于对照组Tgfb2在Zym组各时相点都有下调,而LPS组则没有。结合各基因功能分析:Fgf8、Orc11、Bcl11a的表达变化可能与炎症免疫刺激后胚胎的急性期调节有关;Nfia、Nfib及Gap43的表达下调可能与炎症免疫刺激对胚胎脑发育的影响有关;Agtr2的表达下调可能会对仔鼠肾脏的发育产生一定的影响;Dusp9、Egfr、Ripx及Tgfb2等的表达变化可能与炎症免疫刺激对胚胎细胞增殖分化的影响有关。这些影响是否与炎症免疫刺激引起仔鼠血压升高有关还有待进一步的实验研究。
Essential hypertension(EH) is one of the most common cardiovascular disease.And the complication caused by EH is one the main cause of human fatility.So it is important that investigation of the mechanism of EH for prevention and cure EH.Recently significant progress has been made in understanding the effect of inflammation on cardiovascular disease.More and more data from clinic practice and research tells us that hypertension is related with inflammation in certain ways.In the past research of our own team,we found that prenatal exposure to LPS or zymosan result in increases in blood pressure and body weight in rats offspring.This also is accordance with the modern developmental biology proposes "Fetal-Oringin Theory for Adult Chronic Diseases".The theory suggest that developmental plasticity of embryo and infant cause some adult chronicle diseases such as coronary heart disease,type2 diabetes,hypertension.That is to say that exterior stimulation during preganency may play a key role in chronicle adult disease.Together with our data support the possibility of the existence of this relationship.However,we want to know more fundamental answer:what factors and channels affect the growth of fetius after those exterior stimulation.Based on our research team,this essay intends to study how immuno-inflammatory stimulation affect the development of embryo.Through Affymetrix's GeneChip Rat Genome 230 Arrays,the gene expression profiles between immuno-inflammatory group and control group is studied.
     Methods
     1.Sprague-Dawley(SD) rats,dams in each group received i.p injections of 0.79 mg/kg LPS,8 mg/kg zymosan or sterile saline respectively on their gestational days 8,10,and 12.
     2.The serums were collected in tail nick at 2 h after the last injection,and the amniotic fluid was mixed at 2 h,12 h,24 h,48 h after the last injection.TNF-αand IL-6 levels of serum and amniotic fluid were measured by RIA method.
     3.TNF-αand IL-6 mRNA levels were quantitated in amnion,placenta,amniotic fluid, Embryo and macrophage by real-time fluorescent quantitative-PCR.
     4.Gene expression profiles of each group was observed by Affymetrix's GeneChip Rat Genome 230 Arrays.
     5.The data of GeneChip were analyzed with Gene Ontology and GenMAPP for the biology function and the signal pathway.
     6.Twenty differentially expressed genes were selected to confirm the GeneChip data by real-time fluorescent quantitative-PCR.And these genes were studied in each group embryo by real-time fluorescent quantitative-PCR,
     Results and Conclusion
     1.The serum level of TNF-αand IL-6 in LPS group and zymosan group was higher than that in control group(P<0.01).It showed that there was immuno-imflammatory response after LPS or zymosan injection in rats.The mRNA levels of TNF-αand IL-6 was very higher in macrophage than in other organization.
     2.In embryo,the mRNA level of IL-6 was more than other organization,but the mRNA level of TNF-αwas lower than other organization.However,the IL-6 mRNA levelof LPS group and zymosan group was higher several dozens times than control group on 24h and 48h.It suggested that IL-6 was important in the model that prenatalexposure to immuno-inflammatory stimulant results in increases of blood pressure and body weight in rats.
     3.Among the total 28000 genes on the GeneChip,in LPS group,183 genes were found to be higher expression(Ratio≥2 ) and 270 genes were lower expression(Ratio≤0.5 );in Zymosan group,144 genes were found to be higher expression(Ratio≥2 ) and 417 genes were lower expression(Ratio≤0.5 ).However,both in two group,50 genes were found to be higher expression(Ratio≥2 ) and 173 genes were lower expression(Ratio≤0.5 ).
     4.The data of genechip was analyzed with Gene Ontology for biology function.It is showed that the differentially expressed genes were sorted into binding,catalytic activity, transporter activity,signal transducer activity or transcription regulator on GO Molecular Function.
     5.The data of genechip was analyzed by GenMAPP software for signal pathway.It showed that in DNA replication,mRNA processing,translation factors,the differentially expressed genes were up-regulation in the LPS group and Zymosan group.And in calcium regulation in cardiac cell,smooth muscle contraction pathways,inflammatory response pathways,the down-regulation expressed genes are more than up-regulaion.
     6.We detected the mRNA level of 20 genes by real-time PCR,and found that 13 genes was consistent with the genechip data,but 4 genes was inconsistent.And the zymosan group of RGD1307150,Bcl11a,Tgfb2 were consistent with the genechip data.
     7.In the embryos of rats with immunolgy inflammation,real-time PCR show that the FgfS,Orc11 increased at 2 h,12 h point and down to normal level at 24 h and 48 h compared with control group.However,the profile of Bcl11a,Dusp9 mRNA appeared reverse.The level of Nfib mRNA decrease in every time point.The Egfr,Gap43,Penk1 remain normal at 2 h and just decreased at 12 h to 48 h.The Agtr2 was lower than control at 12 h.The Tgfb2 in zymosan group decreased at all point,but no change in the LPS group. With the genes function,we presumed that Fgf8,Orcll,Bcl11a might be correlated with acute regulation of immuno-inflammatory stimulus.Nfia,Nfib,Gap43 might be correlated with efforts of immuno-inflammatory stimulus on embryo's brain development,and Agtr2 might be on kidney development.Dusp9,Egfr,Ripx,Tgfb2 might be correlated with efforts of immuno-inflammatory stimulus on the proliferation and differentiation of embryo cell. However,the relationship between these efforts and prenatal exposure to immunoinflammatory stimulus results in increases of blood pressure was for further research.
引文
1. Kurland L, Liljedahl U, Lind L. Hypertension and SNP genotyping in antihypertensive treatment. Cardiovasc-Toxicol. 2005; 5(2): 133-42.
    2. Marcano AC, Onipinla AK, Caulfield MJ et al. Recent advances in the identification of genes for human hypertension. Expert-Rev-Cardiovasc-Ther. 2005 Jul; 3(4): 733-41.
    3. McBride MW, Graham D, Delles C et al. Functional genomics in hypertension. Curr-Opin-Nephrol-Hypertens. 2006 Mar; 15(2): 145-51.
    4. Barker DJ. The developmental origins of chronic adult disease. Acta Paediatr Suppl, 2004,93(446):26-33.
    5. Bautista LE, Vera LM, Arenas IA, Gamarra G. Independent association between inflammatory markers (C-reactive protein, interleukin-6, and TNF -α) and essential hypertension. J Hum Hypertens 2005; 19: 149-154.
    6. Sesso HD, Buring JE, Rifai N, et al. C-reactive protein and the risk of developing hypertension. JAMA, 2003,290 (22): 2945-2951.
    7. Graundy S M. Inflammation, hypertension, and the metabolic syndrome. JAMA, 2003,290(22): 3000-3002.
    8. Samuelsson A M; Ohrn I, Dahlgren J et al. Prenatal exposure to interleukin-6 results in hypertension and increased hypothalamic-pituitary-adrenal axis activity in adult rats. Endocrinology. 2004 Nov; 145(11): 4897-911.
    9. Samuelsson A M; Jennische E; Hansson H A et al. Prenatal exposure to interleukin-6 results in inflammatory neurodegeneration in hippocampus with NMDA/GABA(A) dysregulation and impaired spatial learning. Am-J-Physiol-Regul-Integr-Comp-Physiol. 2006 May; 290(5): R1345-56.
    10. Pauletto P, Rattazzi M. Inflammation and hypertension: the search for a link. Nephrol-Dial-Transplant. 2006 Apr; 21(4): 850-3.
    11. Stoll LL, Denning GM, Weintraub NL. Endotoxin, TLR4 signaling and vascular inflammation: potential therapeutic targets in cardiovascular disease. Curr Pharm 2006; 12(32): 4229-4245.
    12. Stoll G, Bendszus M. Inflammation and atherosclerosis: novel insights into plaque formation and destabilization. Stroke. 2006 Jul; 37(7): 1923-32.
    13. Yanling W, Xiaohui L, Jianzhi Z. Prenatal exposure to lipopolysaccharide results in increases in blood pressure and body weight in rats. Acta pharmacology sinca. 2007; 28(5): 651-656.
    14. Gayle DA, Beloosesky R, Desai M, et al. Maternal LPS induces cytokines in the amniotic fluid and corticotropin releasing hormone in the fetal rat brain. Am J Physiol Regul Integr Comp Physiol, 2004,286(6):R1024-9.
    15. Urakubo A, Jarskog LF, Lieberman JA, et al. Prenatal exposure to maternal infection alters cytokine expression in the placenta, amniotic fluid, and fetal brain. Schizophr Res, 2001,47(1):27-36.
    16. Asmuth EJ, Maessen JG, van der Linden CJ, et al. Tumour necrosis factor alpha (TNF-αlpha) and interleukin 6 in a zymosan-induced shock model. Scand J Immunol, 1990,32(4):313-9.
    17. Nilsson C, Larsson BM, Jennische E, et al. Maternal endotoxemia results in obesity and insulin resistance in adult male offspring. Endocrinology, 2001,142(6):2622-30.
    18. Ornoy A, Altshuler G. Maternal endotoxemia, fetal anomalies, and central nervous system damage: a rat model of a human problem. Am J Obstet Gynecol, 1976, 124(2): 196-204.
    19. Zhu Q, Qian X, Wang S, et al. A comparison of elderly and adult multiple organ dysfunction syndrome in the rat model. Exp Gerontol. 2006; 41(8): 771-7.
    20. Tichopad A,Michael D,Gerhard S,et al.Standardized determination of real-time PCR efficiency from a single reaction set-up. Nucleic-Acids-Res.2003, 31(20):el22.
    21. Pfaffl MW,Gerstmayerb B,Bosiob A,et al.Effect of zinc deficiency on the mRNA expression pattern in liver and jejunum of adult rats:monitoring gene expression using cDNA microarrays combined with real-time RT-PCR.J-Nutr-Biochem.2003,14(12): 691-702.
    22. Marino JH,Peyton C,Kenton SM.Accurate and statistically verified quantification of relative mRNA abundances using SYBR Green I and real-time RT-PCR. J-Immunol-Methods.2003,283(1-2):291-306.
    23. Wall1 SJ and Dylan RE.Quantitative Reverse Transcription-Polymerase Chain Reaction(RT-PCR):A Comparison of Primer-Dropping,Competitive,and Real-Time RT-PCRs. Analytical Biochemistry.2002,300:269-273.
    24.Fronhoffs S,Totzke G,Stier S,et al.A method for the rapid construction of cRNA standard curves in quantitative real-time reverse transcription polymerase chain reaction.Molecular and Cellular Probes.2002,16:99-110.
    25.Burgos JS,Ramirez C,Tenorio R,et al.Influence of reagents formulation on real-time PCR parameters.Molecular and Cellular Probes.2002,16:257-260.
    26.Deprez RHL,Arnoud CF,Jan MR,et al.Sensitivity and accuracy of quantitative real-time polymerase chain reaction using SYBR green I depends on cDNA synthesis conditions.Analytical Biochemistry.2002,307:63-69.
    27.Patel N,Vinitha C,Erin C,et al.Differential gene expression of Chlamydomonas reinhardtii in response to 2,4,6-trinitrotoluene(TNT)using microarray analysis.Plant Science.2004,167:1109-1122.
    28.Ball TB,Plummer FA,HayGlass KT.Improved mRNA Quantitation in LightCycler RT-PCR.Int Arch Allergy Immunol.2003,130:82-86.
    29.Vandesompele J,De Paepe A,Speleman F.Elimination of primer-dimer artifacts and genomic coamplification using a two-step SYBR green I real2time RT-PCR.Anal Biochem,2002,303(1):95-98
    30.张驰宇,张高红,杨敏,贲昆龙.四步法消除SYBR Green Ⅰ实时定量RT-PCR中引物二聚体的影响.中国生物化学与分子生物学报.2004.06.15;20(3):387-392
    31.Sesso HD,Wang L,Buring JE,et al.Comparison of interleukin-6 and C-reactive protein for the risk of developing hypertension in women.Hypertension,2007,49(2):304-10.
    32.Gluckman PD,Lillycrop KA,Vickers MH,et al.Metabolic plasticity during mammalian development is directionally dependent on early nutritional status.Proc Natl Acad Sci U S A.2007 Jul 31;104(31):12796-800.
    33.Barker DJ.Fetal origins of coronary heart disease.BMJ,1995,311:171-174.
    34.Ajuwon M,Spurlock ME.Adiponectin inhibits LPS-induced NF-kappaB activation and IL-6 production and increases PPARgamma2 expression in adipocytes.Am-J-Physiol-Regul-Integr-Comp-Physiol.2005 May;288(5):R1220-5.
    35.Chae CU,Lee RT,Rifai N,et al.Blood pressure and inflammation in apparently healthy men.Hypertension,2001,38(3):399-403.
    36.Glowinska B,Urban M.Selected cytokines(I1-6,I1-8,I1-10,MCP-1,TNF-αlpha) in children and adolescents with atherosclerosis risk factors: obesity, hypertension, diabetes. Wiad Lek, 2003,56(3-4):109-16.
    37. Sato M, Sano H, Iwaki D, et al. Direct binding of Toll-like receptor 2 to zymosan, and zymosan-induced NF-kappa B activation and TNF-alpha secretion are down-regulated by lung collectin surfactant protein A. J Immunol, 2003,171(1):417-25.
    38. Andrzejczak D, Gorska D, Czarnecka E. Influence of amlodipine and atenolol on lipopolysaccharide (LPS)-induced serum concentrations of TNF-αlpha, IL-1, IL-6 in spontaneously hypertensive rats (SHR). Pharmacol Rep, 2006,58(5):711-9.
    1. Samuelsson A M; Ohrn I, Dahlgren J et al. Prenatal exposure to interleukin-6 results in hypertension and increased hypothalamic-pituitary-adrenal axis activity in adult rats. Endocrinology. 2004 Nov; 145(11): 4897-911.
    2. Yanling W, Xiaohui L, Jianzhi Z. Prenatal exposure to lipopolysaccharide results in increases in blood pressure and body weight in rats. Acta pharmacology sinca. 2007; 28(5): 651-656.
    3. Schena M,Schalon D,David RW,et al. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science. 1995,270:467-470.
    4. Schena M,Shalon D,Heller RW,et al. Parallel human genome analysis:Microarray-based expression monitoring of 1000 genes. Proc Natl Acad Sci U S A. 1996,93: 10614-10619.
    5. Marshall E. DNA arrays. Affymetrix settles suit, fixes mouse chips. Science. 2001 Mar 30;291(5513):2535.
    6. Robertson D. Affymetrix license valid, rules court. Nat Biotechnol. 2001 Jan;19(1):13-4.
    7. Javier H,VaquerizasJM,Al-Shahrour F,et al. New challenges in gene expression data analysis and the extended GEPAS. Nucleic Acids Res. 2004,32: 485-491.
    8. Pavlidis P and Noble W. Analysis of strain and regional variation in gene expresion in mouse brain. Genome Biol.2001,2:l-14.
    9. Mercier G,Mary J,Peyre J,et al.Biological detection of low radiation doses by combining results of two microarray analysis methods. Nucleic Acids Research.2004, 32(1):el2
    10. Hu N, Wang C, Hu Y, Yang HH, Kong LH, Lu N, Su H, Wang QH, Goldstein AM, Buetow KH, Emmert-Buck MR, Taylor PR, Lee MP. Genome-wide loss of heterozygosity and copy number alteration in esophageal squamous cell carcinoma using the Affymetrix GeneChip Mapping 10 K array. BMC Genomics. 2006 Nov 29;7:299.
    11. Archer KJ, Guennel T. An application for assessing quality of RNA hybridized to Affymetrix GeneChips. Bioinformatics. 2006 Nov 1;22(21):2699-701.
    12. Hatfield GW,Hung SP,Baldi P.Differential analysis of DNA microarray gene expression data. Mol-Microbiol.2003,47(4):871-7.
    13. Eschrich SA, Hoerter AM. Libaffy: software for processing Affymetrix GeneChip data. Bioinformatics. 2007 Jun 15;23(12):1562-4
    14. Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B, Speed TP. Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res. 2003 Feb 15;31(4):e15.
    15. Welle S, Brooks AI, Thornton CA. Computational method for reducing variance with Affymetrix microarrays. BMC Bioinformatics. 2002 Aug 30;3:23.
    16. Gene Ontology Consortium. Creating the gene ontology resource: design and implementation. Genome Res. 2001 Aug; 11 (8): 1425-33.
    17. Sirava M, Schafer T, Eiglsperger M, et al. BioMiner—modeling, analyzing, and visualizing biochemical pathways and networks.Bioinformatics. 2002; 18 Suppl 2:S219-30.
    18. Dahlquist KD, Salomonis N, Vranizan K, Lawlor SC, Conklin BR. GenMAPP, a new tool for viewing and analyzing microarray data on biological pathways. Nat Genet. 2002 May;31(1): 19-20.
    19. Cheng J, Sun S, Tracy A, Hubbell E, Morris J, Valmeekam V, Kimbrough A, Cline MS, Liu G, Shigeta R, Kulp D, Siani-Rose MA. NetAffx Gene Ontology Mining Tool: a visual approach for microarray dataanalysis. Bioinformatics. 2004 Jun 12;20(9): 1462-3.
    20. Robinson PN, Wollstein A, Bohme U, Beattie B. Ontologizing gene-expression microarray data: characterizing clusters with Gene Ontology. Bioinformatics. 2004 Apr 12;20(6):979-81.
    21. Zhong S, Li C, Wong WH. ChipInfo: Software for extracting gene annotation and gene ontology information for microarray analysis. Nucleic Acids Res. 2003 Jul 1;31(13):3483-6.
    22. Tuncay K, Ensman L, Sun J, Haidar AA, Stanley F, Trelinski M, Ortoleva P. Transcriptional regulatory networks via gene ontology and expression data. In Silico Biol. 2007;7(1):21-34.
    23. Zhou X, Su Z. EasyGO: Gene Ontology-based annotation and functional enrichment analysis tool for agronomical species. BMC Genomics. 2007 Jul 24;8:246.
    24. Ochs MF, Peterson AJ, Kossenkov A, Bidaut G. Incorporation of gene ontology annotations to enhance microarray data analysis. Methods Mol Biol. 2007;377:243-54.
    25. Pereira GS, Brandao RM, Giuliatti S, Zago MA, Silva WA Jr. Gene Class expression: analysis tool of Gene Ontology terms with gene expression data. Genet Mol Res. 2006 Mar 31;5(1):108-14.
    26. Salomonis N, Hanspers K, Zambon AC, Vranizan K, Lawlor SC, Dahlquist KD, Doniger SW, Stuart J, Conklin BR, Pico AR.GenMAPP 2: new features and resources for pathway analysis. BMC Bioinformatics. 2007 Jun 24;8:217.
    27. Doniger SW, Salomonis N, Dahlquist KD, Vranizan K, Lawlor SC, Conklin BR.MAPPFinder: using Gene Ontology and GenMAPP to create a global gene-expression profile from microarray data. Genome Biol. 2003;4(1):R7.
    1. Lim WC, Chow VT. Gene expression profiles of U937 human macrophages exposed to Chlamydophila pneumoniae and/or low density lipoprotein in five study models using differential display and real-time RT-PCR. Biochimie. 2006 Mar-Apr; 88(3-4): 367-77.
    2. Rajeevan MS, Vernon SD, Taysavang N, Unger ER. Validation of array-based gene expression profiles by real-time (kinetic) RT-PCR. J Mol Diagn. 2001 Feb; 3(1): 26-31.
    3. Pfaffl MW.A new mathematical model for relative quantification in real-time RT-PCR.Nucleic-Acids-Res. 2001, 29(9): e45.
    4. Marino JH,Peyton C,Kenton SM.Accurate and statistically verified quantification of relative mRNA abundances using SYBR Green I and real-time RT-PCR. J-Immunol-Methods. 2003, 283(1-2): 291-306.
    5. Yamashita T , Yoshioka M, Itoh N. Identification of a novel fibroblast growth factor , FGF223 , preferentially expressed in the ventrolateral tha2 lamic nucleus of the brain[J ] . BiochemBiophys Res Commun. 2000; 277 (2): 494
    6. Ghosh A K, Shankar D B , Shackleford GM et al . Molecular cloning and characterization of human FGF8 alternative messenger RNA forms[J ] . Cell Growth Differ,1996;7(10):1425
    7. Wu J , Payson R A , Lang J C et al . Activation of fibroblast growth factor 8 gene expression in human embryonal carcinoma cells [ J ] . J Steroid Biobhem Mol Biol , 1997 ;62(1) :1
    8. MacArthur C A , Lawshe A, Shankar D B et al. FGF-8 isoforms differ in NIH3T3 cell transforming potential [J ] . Cell Growth Differ ,1995 ;6 :817
    9. Tanaka A , Miyamoto K, Minamino N et al . Cloning and charaxterization of an androgen-induced growth factor essential for the androgen-dependent growth of mouse mummary carcinoma cells[J ] . Proc Natl Acad Sci USA, 1992 ;89 :8928
    10. Gemel J , Gorry M, Ehrlich GD et al . Structure and sequence of human FGF8[J ] . Genomics ,1996 ;35 :253
    11. Meyers E N , Lewandoski M, Martin G R et al . An FGF8 mutant allelic series generated by Cre2 and Flp2mediated recombination[J ]. Nat Genet, 1998 ;18 (2) :136
    12. Dickinson RJ, Williams DJ, Slack DN, Williamson J, Seternes OM, Keyse SM. Characterization of a murine gene encoding a developmentally regulated cytoplasmic dual-specificity mitogen-activated protein kinase phosphatase.Biochem J.2002 May 15;364(Pt 1):145-55.
    13.Muda M,Boschert U,Smith A,Antonsson B,Gillieron C,Chabert C,Camps M,Martinou I,Ashworth A,Arkinstall S.Molecular cloning and functional characterization of a novel mitogen-activated protein kinase phosphatase,MKP-4.J Biol Chem.1997;272(8):5141-51.
    14.柴三葆,唐朝枢.丝裂素活化蛋白激酶磷酸酶在心血管系统中的作用.生理科学进展.2000 Jul;31(3):240-2.
    15.Hong SB,Lubben TH,Dolliver CM,Petrolonis AJ,Roy RA,Li Z,Parsons TF,Li P,Xu H,Reilly RM,Trevillyan JM,Nichols A J,Tummino PJ,Gant TG.Expression,purification,and enzymatic characterization of the dual specificity mitogen-activated protein kinase phosphatase,MKP-4.Bioorg Chem.2005 Feb;33(1):34-44.
    16.Bazuine M,Carlotti F,Tafrechi RS,Hoeben RC,Maassen JA.Mitogen-activated protein kinase(MAPK) phosphatase-1 and-4 attenuate p38 MAPK during dexamethasone-induced insulin resistance in 3T3-L1 adipocytes.Mol Endocrinol.2004Jul;18(7):1697-707.
    17.Xu H,Dembski M,Yang Q,Yang D,Moriarty A,Tayber O,Chen H,Kapeller R,Tartaglia LA.Dual specificity mitogen-activated protein(MAP) kinase phosphatase-4plays a potential role in insulin resistance.J Biol Chem.2003 Aug 8;278(32):30187-92.
    18.Christie GR,Williams D J,Macisaac F,Dickinson RJ,Rosewell I,Keyse SM.The dual-specificity protein phosphatase DUSP9/MKP-4 is essential for placental function but is not required for normal embryonic development.Mol Cell Biol.2005 Sep;25(18):8323-33.
    19.Eki T,Okumura K,Amin A,Ishiai M,Abe M,Nogami M,Taguchi H,Hurwitz J,Murakami Y,Hanaoka F.Mapping of the human homologue(ORC1L) of the yeast origin recognition complex subunit 1 gene to chromosome band lp32.Genomics.1996Sep 15;36(3):559-61.
    20.Tatsumi Y,Ohta S,Kimura H,Ysurimoto T,Obuse C.The ORC1 cycle in human cells:I.cell cycle-regulated oscillation of human ORC1.J Biol Chem.2003 Oct 17;278(42):41528-34.
    21. Giordano-Coltart J, Ying CY, Gautier J, Hurwitz J. Studies of the properties of human origin recognition complex and its Walker A motif mutants. Proc Natl Acad Sci U S A. 2005 Jan 4; 102(1): 69-74.
    22. Bowers JL, Randell JC, Chen S, Bell SP. ATP hydrolysis by ORC catalyzes reiterative Mcm2-7 assembly at a defined origin of replication. Mol Cell. 2004 Dec 22; 16(6): 967-78.
    23. Miyake Y, Mizuno T, Yanagi K, Hanaoka F. Novel splicing variant of mouse Orc1 is deficient in nuclear translocation and resistant for proteasome-mediated degradation.J Biol Chem. 2005 Apr 1; 280(13): 12643-52.
    24. Miyake Y, Mizuno T, Yanagi K, et al. Novel Sp licing Variant of Mouse Ore1 Is Deficient in Nuclear Translocation and Resistant for Proteasome2mediated Degradation [ J ]. J Biol Chem, 2005, 280 (13): 12643-12652.
    25. Tissir F, Riviere M, Guo DF, Tsuzuki S, Inagami T, Levan G, Szpirer J, Szpirer C. Localization of the genes encoding the three rat angiotensin II receptors, Agtr1a, Agtrlb, Agtr2, and the human AGTR2 receptor respectively to rat chromosomes 17q12, 2q24 and Xq34, and the human Xq22. Cytogenet Cell Genet. 1995; 71(1): 77-80.
    26. Huang D, Sun W, Strom CM. Sequence variations in AGTR2 are unlikely to be associated with X-linked mental retardation. Am J Med Genet A. 2005 Dec 15;139(3):243-4.
    27. Vervoort VS, Beachem MA, Edwards PS, Ladd S, Miller KE, de Mollerat X, Clarkson K, DuPont B, Schwartz CE, Stevenson RE, Boyd E, Srivastava AK. AGTR2 mutations in X-linked mental retardation. Science. 2002 Jun 28;296(5577):2401-3.
    28. Moura MS, de Melo MB, Longui CA, Rocha MN, Monte O. Mutation screening in Angiotensin II receptors, AGTR1 and AGTR2, and evaluation of AGTR1 polymorphisms C573T and A1166C in patients with premature adrenarche. Arq Bras Endocrinol Metabol. 2006 Oct; 50(5): 893-900.
    29. Ichiki T, Labosky PA, Shiota C, Okuyama S, Imagawa Y, Fogo A, Niimura F, Ichikawa I, Hogan BL, Inagami T. Effects on blood pressure and exploratory behaviour of mice lacking angiotensin II type-2 receptor. Nature. 1995 Oct 26;377(6551):748-50.
    30. Hein L, Barsh GS, Pratt RE, Dzau VJ, Kobilka BK. Behavioural and cardiovascular effects of disrupting the angiotensin II type-2 receptor in mice. Nature. 1995 Oct 26;377(6551):744-7.Erratum in:Nature 1996 Mar 28;380(6572):366.
    31.Vervoort VS,Guzauskas G,Archie J,Schwartz CE,Stevenson RE,Srivastava AK.AGTR2 in brain development and function.Am J Med Genet A.2006 Mar 1;140(5):419-20.
    32.Ylisaukko-oja T,Rehnstr6m K,Vanhala R,Tengstrom C,Lahdetie J,Jarvela I.Identification of two AGTR2 mutations in male patients with non-syndromic mental retardation.Hum Genet.2004 Jan;114(2):211-3.
    33.Gelman IH.The role of SSeCKS/gravin/AKAP12 scaffolding proteins in the spaciotemporal control of signaling pathways in oncogenesis and development.Front Biosci.2002 Aug 1;7:d1782-97.
    34.Streb JW,Kitchen CM,Gelman IH,Miano JM.Multiple promoters direct expression of three AKAP12 isoforms with distinct subcellular and tissue distribution profiles.J Biol Chem.2004 Dec 31;279(53):56014-23.
    35.Flotho C,Paulun A,Batz C,Niemeyer CM.AKAP12,a gene with tumour suppressor properties,is a target of promoter DNA methylation in childhood myeloid malignancies.Br J Haematol.2007 Sep;138(5):644-50.
    36.Yoon DK,Jeong CH,Jun HO,Chun KH,Cha JH,Seo JH,Lee HY,Choi YK,Ahn BJ,Lee SK,Kim KW.AKAP12 induces apoptotic cell death in human fibrosarcoma cells by regulating CDKI-cyclin D1 and caspase-3 activity.Cancer Lett.2007 Aug 28;254(1):111-8.
    37.Choi MC,Jong HS,Kim TY,Song SH,Lee DS,Lee JW,Kim TY,Kim NK,Bang YJ.AKAP12/Gravin is inactivated by epigenetic mechanism in human gastric carcinoma and shows growth suppressor activity.Oncogene.2004 Sep 16;23(42):7095-103.
    38.Satterwhite E,Sonoki T,Willis TG,Harder L,Nowak R,Arriola EL,Liu H,Price HP,Gesk S,Steinemann D,Schlegelberger B,Oscier DG,Siebert R,Tucker PW,Dyer MJ.The BCL11 gene family:involvement of BCL11A in lymphoid malignancies.Blood.2001 Dec 1;98(12):3413-20.
    39.李扬秋.淋巴细胞增殖、分化和生存的重要因子-BCL11A和BCL11B.现代临床医学生物工程学杂志.2006,12(1)
    40.Weniger MA,Pulford K,Gesk S,Ehrlich S,Banham AH,Lyne L,Martin-Subero JI,Siebert R,Dyer MJ,Moller P,Barth TF.Gains of the proto-oncogene BCL11A and nuclear accumulation of BCL11A(XL) protein are frequent in primary mediastinal B-cell lymphoma.Leukemia.2006 Oct;20(10):1880-2.
    41.Liu H,Ippolito GC,Wall JK,Niu T,Probst L,Lee BS,Pulford K,Banham AH,Stockwin L,Shaffer AL,Staudt LM,Das C,Dyer M J,Tucker PW.Functional studies of BCL11A:characterization of the conserved BCL11A-XL splice variant and its interaction with BCL6 in nuclear paraspeckles of germinal center B cells.Mol Cancer.2006 May 16;5:18.
    42.Liu P,Keller JR,Ortiz M,Tessarollo L,Rachel RA,Nakamura T,Jenkins NA,Copeland NG.Bcl11a is essential for normal lymphoid development.Nat Immunol.2003 Jun;4(6):525-32.
    43.Salomon DS,Brandt R,Ciardiello F,et al.Epidermal growth factor-related peptides and their receptors in human malignancies.Critical reviews in oncology/hematology.1995,19(3):183-232.
    44.Mendelsohn J,Baselga J.Status of epidermal growth factor receptor antagonists in the biology and treatment of cancer[J].J Clin Oncol,2003,21:2787-2799.
    45.王晓英,张均田.突触可塑性与相关蛋白研究进展.中国药理学通报,2001,17(4):369-372.
    46.Holgert H.Developmental expression of GAP43 mRNA in chromaffin cells and intra-adrenal neurons.Neuroreport.1995 Dec 15;6(18):2581-4.
    47.Irwin N,Chao S,Goritchenko L,et al.Nerve growth factor control GAP-43 mRNA stability via the phosphoprotein ARPP-19.Pro Natl Acad Sci USA,2002,99(19):12427-12431.
    48.Steele-Perkins G,Plachez C,Butz KG,Yang G,Bachurski CJ,Kinsman SL,Litwack ED,Richards L J,Gronostajski RM.The transcription factor gene Nfib is essential for both lung maturation and brain development.Mol Cell Biol.2005 Jan;25(2):685-98.
    49.Grtunder A,Ebel TT,Mallo M,Schwarzkopf G,Shimizu T,Sippel AE,Schrewe H.Nuclear factor I-B(Nfib) deficient mice have severe lung hypoplasia.Mech Dev.2002Mar;112(1-2):69-77.
    50.Nilsson M,Panagopoulos I,Mertens F,Mandahl N.Fusion of the HMGA2 and NFIB genes in lipoma.Virchows Arch.2005 Nov;447(5):855-8.
    51.王世英.阿片肽研究的回顾和展望.生物学通报,2001,36:57.
    52. Huse M, Muir TW, Xu L, et al. The TGF-β repceptor activation process: An inhibitor - to substrate-binding switch. Cell, 2001, 8(3): 671 - 682
    53. Nishimura DY, Purchio AF, Murray JC. Linkage localization of TGFB2 and the human homeobox gene HLX1 to chromosome 1q. Genomics. 1993 Feb;15(2):357-64.
    54. Chen. W,Wahl SM. TGF-β: receptors, signaling pathways and auto-immunity . Curr Dir Autoimmun, 2002, 5: 62 - 91
    55. Barcellos - HoffMH. Latency and activation in the control of TGF-β. J Mammary Gland Biol Neop lasia, 1996, 1 (4): 353 - 363
    56. Chang H,Brown CW,MatzukMM. Genetic analysis of the mammalian TGF-β superfamily. Endocr Rev. 2002, 23 (6): 787 - 823
    1. Barker DJ. The developmental origins of chronic adult disease. Acta Paediatr Suppl, 2004, 93(446): 26-33.
    2. Volpe JJ. Perinatal brain injury: from pathogenesis to neuroprotection. Ment Retard Devel Disab Res Rev. 2001; 7: 56-64.
    3. Berger R, Gamier Y, Jensen A. Perinatal brain damage: underlying mechanisms and neuroprotective strategies. J Soc Gynecol Investig. 2002; 9: 319-328.
    4. Wu YW, Colford JM Jr. Chorioamnionitis as a risk factor for cerebral palsy: A meta-analysis. JAMA. 2000; 284: 1417-1424.
    5. Pang Y, Cai Z, Rhodes PG. Effects of lipopolysaccharide on oligodendrocyte progenitor cells are mediated by astrocytes and microglia. J Neurosci Res. 2000; 62: 510—520.
    6. Gamier Y, Coumans ABC, Jensen A, Hassart THM, Berger R. Infection-related perinatal brain injury: the pathogenic role of impaired fetal cardiovascular control. J Soc Gynecol Investing. 2003; 10: 450-459.
    7. Schendel D, Schuchat A, Thorsen P. Public health issues related to infectionand pregnancy and cerebral palsy. Ment Retard Dev Disabil Res Rev. 2002; 8: 39-45.
    8. Nyakas C, Buwalda B, Luiten PGM. Hypoxia and brain development. Prog Neurobiol. 1996; 49: 1-51.
    9. Rickmann M, Wolff JR. Prenatal oligenesis in the neopallium of the rat. Adv Anat Embryol Cell Biol. 1985; 93: 1-10.
    10. Sancho-Tello M, Valles S, Montoliu C, Renau-Piqueras J, Guerri C. Developmental pattern of GFAP and vimentin gene expression in rat brain and radial glial cultures. Glia. 1995; 15: 157-166.
    11. Chamak B, Dobbertin A, Mallat M. Immunohistochemical detection of thrombospondin in microglia in the developing rat brain. Neuroscience. 1995; 69: 177-187.
    12. Zupan V, Gonzales P, Lacaze-Masmonteil T, Boithias C, d'Allest AM, Dehan M, Gabilan JC. Periventricular leukomalacia: risk factors revisited. Dev Med Child Neurol. 1996;38:1061-1067.
    13. Verma U, Tejani N, Klein S, Reale MR, Beneck D, Figueroa R, Visintainer P. Obstetric antecedents of intraventricular hemorrhage and periventricular leukomalacia in the low-birth-weight neonate. Am J Obstet Gynecol. 1997; 176: 275-281.
    14. Berger R, Bender S, Sefkow S, Klingmuller V, Kunzel W, Jensen A. Peri/intraventricular haemorrhage: A cranial ultrasound study on 5286 neonates. Eur J Obstet Gynecol Reprod Biol. 1997; 75: 191-203.
    15. Dammann O, Leviton A. Maternal intrauterine infection, cytokines, and brain damage in the preterm newborn. Pediatr Res. 1997; 42: 1-8.
    16. Yoon BH, Romero R, Park JS, Kim CJ, Kim SH, Choi JH, Han TR. Fetal exposure to an intra-amniotic inflammation and the development of cerebral palsy at the age of three years. Am J Obstet Gynecol. 2000; 182: 675-681.
    17. Helfaer, MA.;Kirsch, JR.; Traystman, RJ. Radical scavengers: Penetration into brain following ischemia and reperfusion. In: Krieglstein J, Oberpichler-Schwenk H. , editor. Pharmacology of cerebral ischemia. Medpharm Scientific, Stuttgart; 1994. pp. 297-309.
    18. Palmer C, Towfighi J, Roberts RL, Heitjan DF. Allopurinol administered after inducing hypoxia/ischemia reduces brain injury in 7-day-old rats. Pediatr Res. 1993; 33: 405-411.
    19. Saito K, Packianathan S, Longo LD. Free radical-induced elevation of ornithine decarboxylase activity in developing rat brain slices. Brain Res. 1997; 763: 232-238.
    20. Cai Z, Pan ZO, Pang Y, Evans OB, Rhodes PG. Cytokine induction in fetal rat brains and brain injury in neonatal rats after maternal lipopoysacharide administration. Pediatr Res. 2000; 47: 64-72.
    21. Merrill JE. Tumor necrosis factor alpha, interleukin 1 and related cytokines in brain development: normal and pathological. Dev Neurosci. 1992; 14: 1-10.
    22. Yoon BH, Romero R, Kim CJ, Koo JN, Choe G, Syn HC, Chi JG. High expression of tumor necrosis factor-a and interleukin-6 in periventricular leukomalacia. Am J Obstet Gynocol. 1997; 177 :406-411.
    23. Yoon BH, Jun JK, Romero R, Park KH, Gomez R, Choi J-H, Kim I-O. Amniotic fluid inflammatory cytokines (interleukin-6, interleukin-1β, and tumor necrosis factor-a), neonatal brain white matter lesions, and cerebral palsy. Am J Obstet Gynecol. 1997; 177: 19-26.
    24. Uno H, Matsuyama T, Akita H, Nishimura H, Sugita M. Induction of tumor necrosis factor-alpha in the mouse hippocampus following transient forebrain ischemia. J Cereb Blood Flow Metab. 1997; 17: 491-499.
    25. Duchini A, Govindarajan S, Santucci M, Zampi G, Hofman FM. Effects of tumor necrosis factor-alpha and interleukin-6 on fluid-phase permeability and ammonia diffusion in CNS-derived endothelial cells. J Investig Med. 1996; 44: 474-482.
    26. Bell MJ, Hallenbeck JM. Effects of intrauterine inflammation on developing rat brain. J Neurosci Res. 2002; 70: 570-579.
    27. Cammer W. Effects of TNF-a on immature and mature oligodendrocytes and their progenitors in vitro. Brain Res. 2000; 864: 213-219.
    28. Ladiwala U, Hewei L, Antel J, Nalbantoglu J. p53 induction by tumor necrosis factor -a and involvement of p53 in cell death of human oligodendrocytes. J Neurochem. 1999; 73:605-611.
    29. Kaukola T, Satyaraj E, Patel DD, Tchernev VT, Grimwade BG, Kingsmore SF, Koskela P, Vainionpaa L, Pihko H, Aarimaa T, Hallman M. Cerebral palsy is characterized by protein mediators in cord serum. Ann Neurol. 2004; 55: 186-194.
    30. Oppenheim RW, Prevette D, Yin QW. Control of embryonic motoneuron survival in vivo by ciliary neurotrophic factor. Science. 1991; 251: 1616-1618.
    31. Knusel B, Rabin SJ, Hefti F. Regulated neurotrophin receptor responsiveness during neuronal migration and early differentiation. J Neurosci. 1994; 14: 1542-1554.
    32. Han BH, Holtzman DM. BDNF protects the neonatal brain from hypoxic-ischemic injury in vivo via the ERK pathway. J Neurosci. 2000; 20: 5775-5781.
    33. Kirschner PB, Jenkins BG, Schulz JB. NGF, BDNF and NT-5, but not NT-3 protect against MPP+ toxicity and oxidative stress in neonatal animals. Brain Res. 1996; 713: 178-185.
    34. Walton M, Connor B, Lawlor P, Young D, Sirimanne E, Gluckman P, Cole G, Dragunow M. Neuronal death and survival in two models of hypoxic-ischemic brain damage. Brain Res Brain Res Rev. 1999; 29: 137-168.
    35. Kamiguchi H, Yoshida K, Sagoh M, Sasaki H, Inaba M, Wakamoto H, Otani M, Toya S. Release of ciliary neurotrophic factor from cultured astrocytes and its modulation by cytokines. Neurochem Res. 1995; 20: 1187-1193.
    36. Heinrich M, Gorath M, Landsberg CR. Neurotrophin-3(NT-3) modulates early differentiation of oligodendrocytes in rat brain cortical culture. Glia. 1999; 28: 244-255.
    37. Patan S. Vasculogenesis and angiogenesis as mechanisms of vascular network formation, growth and remodeling. J Neurooncol. 2000; 50: 1-15.
    38. Miquerol L, Langille BL, Nagy A. Embryonic development is disrupted by modest increases in vascular endothelial growth factor gene expression. Development. 2000; 127:3941-3946.
    39. Yancopoulos GD, Davis S, Gale NW, Rudge JS, Wiegand SJ, Holash J. Vascular-specific growth factors and blood vessel formation. Nature. 2000; 407: 242-248.
    40. Taylor CM, Stevens H, Anthony FW, Wheeler T. Influence of hypoxia on vascular endothelial growth factor-derived cell lines: JEG, Jar and BeWo. Placenta. 1997; 18: 451-458.
    41. Yanagisawa M, Kurihara H, Kimura S, Tomobe Y, Kobayashi M, Mitsui Y, Yazaki Y, Goto K, Masaki T. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature. 1988; 332: 411-415.
    42. Shichiri M, Marumo F, Hirata Y. Endothelin-B receptor-mediated suppression of endothelial apoptosis. J Cardiovasc Pharmacol. 1998; 31: S138-S141.
    43. Nakamura S, Naruse M, Naruse K, Shioda S, Nakai Y, Uemura H. Colocalization of immunoreactive endothelin-1 and neurohypophysial hormones in the axons of the neural lobe of the rat pituitary. Endocrinology. 1993; 132: 530-533.
    44. Kuwaki T, Kurihara H, Cao WH, Kurihara Y, Unekawa M, Yazaki Y, Kumada M. Physiological role of brain endothelin in the central autonomic control: from neuron to knockout mouse. Prog Neurobiol. 1997; 51: 545-579.
    45. Yamashita K, Kataoka Y, Yamashita YS, Himeno A, Tsutsumi K, Niwa M, Taniyama K. Glial endothelin/nitric oxide system participates in hippocampus CA1 neuronal death of SHRSP following transient forebrain ischaemia. Clin Exp Pharmacol Physiol. 1995; 22: S277-S278.
    46. Josko J. Cerebral angiogenesis and expression of VEGF after subarachnoid hemorrhage (SAH) in rats. Brain Res. 2003; 981: 58-69.
    47. Dirnagl D, Iadecola C, Moskowitz MA. Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci. 1999; 22: 391-397.
    48. Vexler ZS, Ferriero DM. Molecular and biochemical mechanisms of perinatal brain injury. Semin Neonatol. 2001; 6: 99-108.
    49. Marks N, Berg MJ. Recent advances on neuronal caspases in development and neurodegeneration. Neurochem Int. 1999; 35: 195-220.
    50. Lipton JM, Catania A. Anti-inflammatory actions of the neuroimsmunomodulator alpha-MSH. Immunol Today. 1997; 18: 140-145.
    51. Oktar BK, Ercan F, Yegen BC, Alican I. The effect of alpha-melanocyte stimulating hormone on colonic inflammation in the rat. Peptides. 2000; 21: 1271-1277.
    52. Rajora N, Boccoli G, Catania A, Lipton JM. alpha-MSH modulates experimental inflammatory bowel disease. Peptides. 1997; 18: 381-385.
    53. Redondo P, Garcia-Foncillas J, Okroujnov I, Bandres E. Alpha-MSH regulates interleukin-10 expression by human keratinocytes. Arch Dermatol Res. 1998; 290: 425-428.
    54. Magnoni S, Stocchetti N, Colombo G, Carlin A, Colombo A, Lopton JM, Catania A. Alpha-melanocyte-stimulating hormone is decreased in plasma of patients with acute brain injury. J Neurotrauma. 2003; 20: 251-260.
    55. Lipton JM, Catania A, Delgado R. Peptide modulation of inflammatory processes Peptide modulation of inflammatory processes within the brain. Neuroimmunomodulation. 1998; 5: 178-83.
    56. Nyffeler M, Meyer U, Yee BK, Feldon J, Knuesel I. Maternal immune activation during pregnancy increases limbic GABAA receptor immunoreactivity in the adult offspring: implications for schizophrenia. Neuroscience. 2006 Nov 17; 143(1):51-62
    57. Goldenberg RL, Hauth JC, Andrews WW. Intrauterine infection and preterm delivery. N Engl J Med. 2000; 342: 1500-1507.
    58. Watterberg KL. Postnatal steroids for bronchopulmonary dysplasia: where are we now?J Pediatr. 2007 Apr; 150(4): 327-8.
    59. Yoon BH, Jun JK, Romero R, Park KH, Gomez R, Choi JH, Kim IO. Amniotic fluid inflammatory cytokines (interleukin-6, interleukin-1 beta, and tumor necrosis factor-alpha), neonatal brain white matter lesions, and cerebral palsy. Am J Obstet Gynecol. 1997; 177: 19-26.
    60. Watterberg K. Anti-inflammatory therapy in the neonatal intensive care unit: present and future. Semin Fetal Neonatal Med. 2006 Oct; 11(5): 378-84.
    61. Curley AE, Sweet DG, MacMahon KJ, O'Connor CM, Halliday HL. Chorioamnionitis increases matrix metalloproteinase-8 concentrations in bronchoalveolar lavage fluid from preterm babies.Arch Dis Child Fetal Neonatal Ed. 2004 Jan; 89(1): F61-4.
    62. Gomez R, Romero R, Ghezzi F, Yoon BH, Mazor M, Berry SM. The fetal inflammatory response syndrome. Am J Obstet Gynecol. 1998; 179: 194-202.
    63. Alexander JM, Gilstrap LC, Cox SM, McIntire DM, Leveno KJ. Clinical chorioamnionitis and the prognosis for very low birth weight infants. Obstet Gynecol. 1998; 91: 725-729.
    64. Matsuda T, Nakajima T, Hattori S, Hanatani K, Fukazawa Y, Kobayashi K, Fujimoto S. Necrotizing funisitis: Clinical significance and association with chronic lung disease in premature infants. Am J Obstet Gynecol. 1997; 177: 1402-1407.
    65. Fujimura M, Kitajima H, Nakayama M. Increased leukocyte elastase of the tracheal aspirate at birth and neonatal pulmonary emphysema. Pediatrics. 1993; 92: 564-569.
    66. Hitti J, Krohn MA, Patton DL, Tarczy-Hornoch P, Hillier SL, Cassen EM, Eschenbach DA. Amniotic fluid tumor necrosis factor-alpha and the risk of respiratory distress syndrome among preterm infants. Am J Obstet Gynecol. 1997; 177: 50-56.
    67. Barton L, Hodgman JE, Pavlova Z. Causes of death in the extremely low birth weight infant. Pediatrics. 1999; 103: 446-451.
    68. Warner BB, Stuart LA, Papes RA, Wispe JR. Functional and pathological effects of prolonged hyperoxia in neonatal mice. Am J Physiol. 1998; 275: L110-117.
    69. Hussain NA, Siddiqui NH, Stocker JR. Pathology of arrested acinar development in postsurfactant bronchopulmonary dysplasia. Hum Pathol. 1998; 29: 710-717.
    70. Coalson, JJ. Pathology of chronic lung disease of early infancy. In Chronic Lung Disease in Early Infance Edited by Bland RD, Coalson JJ New York: Marcel Dekker, Inc, 2000. pp. 85-124.
    71. Coalson JJ, Winter V, deLemos RA. Decreased alveolarization in baboon survivors with bronchopulmonary dysplasia. Am J Respir Crit Care Med. 1995; 152: 640-646.
    72. Coalson JJ, Winter VT, Siler-Khodr T, Yoder BA. Neonatal chronic lung disease in extremely immature baboons. Am J Respir Crit Care Med. 1999; 160: 1333-1346.
    73. Jobe AH. The New BPD: An arrest of lung development. Pediatr Res. 1999; 46: 641-643.
    74. Speer CP, Groneck P, Speer CP. Oxygen radicals, cytokines, adhesion molecules and lung injury in neonates. Seminars in Neonatology. 1998; 3: 219-228.
    75. Rojas MA, Gonzalez A, Bancalari E, Claure N, Poole C, Silva-Neto G. Changing trends in the epidemiology and pathogenesis of neonatal chronic lung disease. J Pediatr. 1995; 126:605-610.
    76. Jones CA, Cayabyab RG, Kwong KYC, Stotts C, Wong B, Hamdan H, Minoo P, deLemos RA. Undetectable interleukin (IL)-10 and persistent IL-8 expression early in Hyaline Membrane Disease: A possible development basis for the predisposition to chronic lung inflammation in preterm newborns. Pediatr Res. 1996; 39: 966-975.
    77. Massaro, DJ.; Massaro, GD. The regulation of the formation of pulmonary alveoli. Chronic Lung Disease in Early Infancy. Edited by Bland RD, Coalson JJ. New York: Marcel Dekker, Inc, 2000. pp. 479-492.
    78. Charafeddine L, D'Angio CT, Phelps DL. Atypical chronic lung disease patterns in neonates. Pediatrics. 1999; 103: 759-765.
    79. Bancalari, E.; Gonzalez, A. Clinical course and lung function abnormalities during development of neonatal chronic lung disease. Chronic Lung Disease in Early Infancy. Edited by Bland RD, Coalson JJ. New York: Marcel Dekker, Inc, 2000. pp. 41-64.
    80. Bry K, Lappalainen U, Hallman M. Intra-amniotic interleukin-1 accelerates surfactant protein synthesis in fetal rabbits and improves lung stability after premature birth. J Clin Invest. 1997; 99: 2992-2999.
    81. Bachurski, CJ. Ross, GF. Ikegami, M.;Kramer, BW.; Jobe, AH. Intra-amniotic endotoxin increases pulmonary surfactant components and induces SP-B processing in fetal sheep. Am J Physiol (Lung). 2000.
    82. Jobe, AH. Newnham, JP. Willet, KE. Moss, TJ. Ervin, MG. Padbury, JF. Sly, PD. Ikegami, M. Endotoxin induced lung maturation in preterm lambs. Am J Respirt Crit Care Med. 2000.
    83. Tremblay, LN.;Slutsky, AS.;Dreyfuss, D.; Saumon, G. Ventilator-induced lung injury: Mechanisms and clinical correlates. Physiological Basis of Ventilatory Support Edited by Marini JJ, Slutsky AS. New York: Marcel Dekker, Inc, 1998. pp. 395-451.
    84. Willet K, Jobe A, Ikegami M, Brennan S, Newnham J, Sly P. Antenatal endotoxin and glucocorticoid effects on lung morphometry in preterm lambs. Pediatr Res. 2000
    85. Barker DJ. Fetal origins of coronary heart disease. BMJ, 1995, 311:171-174.
    86. Nilsson C, Larsson BM, Jennische E, et al. Maternal endotoxemia results in obesity and insulin resistance in adult male offspring. Endocrinology, 2001, 142(6): 2622-30.
    87. Brunton PJ, Meddle SL, Ma S, Ochedalski T, Douglas AJ, Russell JA. Endogenous opioids and attenuated hypothalamic-pituitary-adrenal axis responses to immune challenge in pregnant rats. J Neurosci 2005; 25(21): 5117-26.
    88. Abdella N, Akanji A, Mojiminiyi O, Assoussi A, Moussa M: Relationship of serum total sialic acid concentrations with diabetic complications and cardiovascular risk factors in Kuwaiti Type 2 diabetics.Diabetes Research and Clinical Practice 2000, 50:65-72.
    89. Samuelsson AM, Ohrn I, Dahlgren J, et al. Prenatal exposure to interleukin-6 results in hypertension and increased hypothalamic-pituitary-adrenal axis activity in adult rats. Endocrinology JT - Endocrinology, 2004, 145(11): 4897-911.
    90. Cosentino F, Savoia C, De Paolis P, Francia P, Russo A, Maffei A et al. Angiotensin II type 2 receptors contribute to vascular responses in spontaneously hypertensive rats treated with angiotensin II type 1 receptor antagonists. Am J Hypertens. 2005; 18, 493-199.
    91. Samuelsson AM, Alexanderson C, Molne J, Haraldsson B, Hansell P, Holmang A. Prenatal exposure to interleukin-6 results in hypertension and alterations in the renin-angiotensin system of the rat.J Physiol. 2006 Sep 15;575(Pt 3): 855-67.
    92. Crowley SD, Gurley SB, Oliverio MI, Pazmino AK, Griffiths R, Flannery PJ et al. Distinct roles for the kidney and systemic tissues in blood pressure regulation by the renin-angiotensin system. J Clin Invest. 2005; 115, 1092-1099.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700