基于纳米粒子的荧光传感新体系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米粒子是指在三维尺度上至少有一维处于纳米尺度范围(1~100nm)的物质,具有独特的化学性质和物理性质,呈现出常规材料不具备的优越性,是当前科技领域的研究热点。纳米粒子在生物技术、环境检测、纳米光学、纳米电子学、医药、陶瓷、磁性材料和防护材料等诸多领域有极好的应用潜力。
     本文研究了纳米粒子(纳米金、碳点)在检测生物小分子如氨基酸、蛋白质和金属离子中的作用。纳米金(gold nanoparticles,AuNPs)是一种重要的纳米材料,具有独特的电学、光学性质及良好的生物亲和性,是荧光团的超强猝灭剂。碳点(Carbon Dots,CDs)是继量子点之后的新型碳质纳米材料,因其生物相容性好、毒性低的特点,特别适合生物体系分析。
     本文以纳米金和碳点为研究对象,主要研究内容如下:
     (1)本文基于荧光内滤效应,建立了一种使用纳米金高灵敏测定生物氨基酸的方法。半胱氨酸在许多生化过程中起着至关重要的作用,造血功能不足、白细胞减少及牛皮癣等疾病都和体内半胱氨酸的缺乏有关,因此半胱氨酸的高灵敏检测具有非常重要的意义。荧光素的荧光光谱与纳米金的吸收光谱部分重叠,以纳米金做为吸收体,荧光素做为发光体,构造了荧光传感体系。纳米金可以猝灭荧光素的荧光,而半胱氨酸的巯基能与纳米金形成Au-S键导致纳米金聚集及其吸光度减弱,从而使荧光素由于内滤光效应而减弱的荧光恢复。在选定的实验条件下,荧光素的荧光强度的增加值与半胱氨酸的浓度在5.0×10-8~1.0×10-6mol/L范围内呈良好的线性关系,检测限为1×10-8mol/L。
     (2)阿尔茨海默病(alzheimer's disease, AD),又称老年痴呆症,是一种中枢神经退行性疾病,严重影响着老年人的身体健康和生活质量。β-淀粉样蛋白(βAmyloid,AP)是AD的病理学特征。因此Aβ的高灵敏检测对AD的早期诊断具有十分重要的意义。利用Aβ的不同聚集态对胰蛋白酶的不同作用,建立了一种监测Aβ1-42聚集过程的方法。分散态的Aβ可以使trypsin的活性保持,而纤维化的Ap (fAβ)与trypsin形成trypsin/fAβ配合物,抑制trypsin的活性。通过纳米金和Arg6体系来检测trypsin的活性,从而监测到Ap的聚集状态。
     (3)利用荧光碳点与硫黄素T(Thioflavin T,ThT)之间的内滤光效应测定Cu2+。细胞内的Cu2+在生理学和病理学方面起非常重要的作用,体内Cu2+浓度的变化会导致一些严重的神经变性疾病。利用荧光CDs的荧光谱与ThT的激发和发射谱存在较大重叠的性质,构建了CDs/ThT内滤光体系。ThT会吸收CDs发出的荧光从而使ThT的荧光增加,而Cu2+是一种猝灭剂可以使CDs/ThT的荧光猝灭,并且ThT的荧光强度与Cu2+的浓度呈良好的线性关系。从而确立了一种测定Cu2+的新方法,且在Cu2+测定方面有很好的应用前景。
Nanoparticles, defined as a substance with the scale between1-100nm at least in one-dimensional of three-dimensional space, with a unique chemical and physical properties,showing the advantages that the conventional materials doesn't have, is the hot point of the current scientific and technological fields.Nanoparticles has excellent potential application in biotechnology, environmental testing, nanochemistry, nanoelectronics, medicine ceramics,magnetic materials,protective materials, and many other fields.
     In this thesis,the role of Nanoparticles (gold nanoparticles, carbon dots) in the detection of small biological molecules such as amino acids, proteins and metal ions is researched.Gold nanoparticles,an important nanomaterials with unique electrical, optical properties and good biocompatibility, is the super quencher of the fluorophore. Carbon dots.the new carbonaceous nanoparticles following quantum dots,is particularly suitable for biological systems analysis because of its good biocompatibility and low toxicity.
     In this paper, Gold nanoparticles and carbon dots are studied, the main contents are as follows:
     (1)This article establish a highly sensitive method for the determination of biological amino acids based on the fluorescence inner filter effect of gold nanoparticles.Cysteine plays a vital role in many biochemical processes.Lack of cysteine in vivo will lead to the disease of Hematopoietic insufficiency,leukopenia, psoriasis and so on,hence highly sensitive detection of cysteine is very important.The fluorescence spectrum of fluorescein and the absorption spectrum of gold nanoparticles can be partially overlapped.Constructed a fluorescent sensing system with gold nanoparticles as the absorbent and fluorescein as the fluorophore. Gold nanoparticles could quench the fluorescence of fluorescein,while the sulfhydryl of cysteine formate the Au-S key with gold nanoparticles,thus cause the aggregation of gold nanoparticle with its reduced absorbance,finally fluorescence of fluorescein recovered.Under the selected experimental conditions,the enhancemant value of the fluorescence intensity of fluorescein showed a good linear relationship with the concentration of cystein in the range of5.0×l0-8-1.0×l0-6mol/L,and the detection limit is1×10-8mol/L.
     (2)Alzheimer's disease(AD),is a degenerative disease of the central nervous,which seriously affect the health and quality of life of the elderly.β-amyloid (Aβ) is the pathological feature of AD,therefore highly sensitive detection of Aβ has a very important meaning for the early diagnosis of AD. The different aggregation state of Aβ have different effect for trypsin, thus could be used to monitor the aggregation process of Aβ. Soluble Aβ can maintain the activity of trypsin,while fiber Aβ (fAβ) can form the trypsin/fAβ complex with trypsin and inhibit its activity.Thus aggregation state of Aβ can be monitored by detecting the activity of trypsin in the gold nanoparticles and Arg6system.
     (3)Build the inner filter effect system between fluorescent carbon dots(CDs) and thioflavine T (ThT) for the determination of Cu2+.The Cu2+in cells play an important role in the physiology and pathology,and the change of the concentration of Cu2+in vivo will cause some serious neurodegenerative diseases.There is a big overlap between the fluorescence spectrum of CDs and excitation and emission spectrum of ThT, which could be used to build a CDs/ThT inner filter system for the detection of Cu2+.ThT will absorb the fluorescence emitted by CDs and the fluorescence intensity of ThT increase, and that Cu2+is a quencher can quench the fluorescence of CDs/ThT system,and there is a good linear relationship between fluorescence intensity of ThT and the concentration of Cu2+.Thus a new method for the detection of Cu2+was established and has good application prospects in the detection of Cu2+.
引文
[1]吴维明,蔡强,陈裕泉.纳米金在生物检测中的应用[J].国外医学生物医学工程分册,2003,26(5):193-197
    [2]蔡涯文.水溶性量子点与纳米金相互作用的光谱研究[D].[硕士学位论文].武汉:华中农业大学,2008
    [3]Jennifer A. Dahl, Bettye L. S. Maddux,James E. Hutchison. Toward Greener Nanosynthesis[J].Chemical Reviews,2007,107(6):2228-2269
    [4]王康林.纳米金共振散射相关光谱及其应用[D].[博士学位论文].上海:上海交通大学,2008
    [5]Chad A.Mirkin,Robert L.Letsinger, Robert C.Mucic, et al.A DNA-based method for rationally assembling nanoparticles into macroscopic materials[J].Nature,1996, 382(15):607-609
    [6]Huixiang Li, Lewis J. Rothberg.DNA Sequence Detection Using Selective Fluorescence Quenching of Tagged Oligonucleotide Probes by Gold Nanoparticles[J].Anal. Chem., 2004,76(18):5414-5417
    [7]Lin He, Michael D. Musick, Sheila R. Nicewarner, et al.Colloidal Au-Enhanced Surface Plasmon Resonance for Ultrasensitive Detection of DNA Hybridization[J].J. Am. Chem. Soc.,2000,122(38):9071-9077
    [8]Kohut Ananiys, Andriy Voronov, Wolfgang Peukert.Organization of Functionalized Gold Nanoparticles by Controlled Protein Interactions[J].Part. Part. Syst. Charact.,2005, 22(5):329-335
    [9]Slim Mohamed,Nela Durisic,Peter Grutter,et al.DNA-Protein Noncovalent Cross-Linking: Ruthenium Dipyridophenazine Biotin Complex for the Assembly of Proteins and Gold Nanoparticles on DNATemplates[J].Chem.BioChem.,2007,8(7):804-812
    [10]Xiaorong He,Huibiao Liu, Yuliang Li,et al.Gold Nanoparticle-Based Fluorometric and Colorimetric Sensing of Copper(Ⅱ) Ions[J].Adv. Mater.,2005,17(23):2811-2815
    [11]ShihJu Chen,HuanTsung Chang.Nile Red-Adsorbed Gold Nanoparticles for Selective Determination of Thiols Based on Energy Transfer and Aggregation[J].Anal.Chem.,2004, 76(13):3727-3734
    [12]Chih Ching Huang,Huan Tsung Chang.Selective Gold-Nanoparticle-Based "Turn-On" Fluorescent Sensors for Detection of Mercury(II) in Aqueous Solution[J].Anal.Chem., 2006,78(24):8332-8338
    [13]Philip Landon,Paul J. Collier,Adam J. Papworth,et al.Direct formation of hydrogen peroxide from H2/O2 using a gold catalyst[J].Chem. Commun.,2002,2058-2059
    [14]Marubayashi Kazuyoshi, Shinobu Takizawa, Tetsuo Kawakusu, et al.Monolayer-Protected Au Cluster (MPC)-Supported Ti-BINOLate Complex[J].Org.Lett.,2003,5(23):4409-4412
    [15]黄鑫,张慧,梁丽芸等.多功能水溶性聚合物配体制备纳米颗粒[J].化学进展,2010, 22(5):953-961
    [16]Partha Ranga, Linsey R. Mitchell, Jennifer L. Lyon,et al.Buckysomes:Fullerene-Based Nanocarriers for Hydrophobic Molecule Delivery[J].ACS Nano,2008,2(9):1950-1958
    [17]Xiangyang Shi, Suhe Wang, Sasha Meshinchi, et al.Dendrimer-Entrapped Gold Nanoparticles as a Platform for Cancer-Cell Targeting and Imaging[J].small,2007, 3(7):1245-1252
    [18]Medley Colin D., Joshua E. Smith, Zhiwen Tang, et al.Gold Nanoparticle-Based Colorimetric Assay for the Direct Detection of Cancerous Cells[J].Anal. Chem.,2008, 80(4):1067-1072
    [19]YaPing Sun, Bing Zhou, Yi Lin, et al.Quantum-Sized Carbon Dots for Bright and Colorful Photoluminescence[J].J. Am. Chem. Soc,2006,128(24):7756-7757
    [20]白文君.基于碳点荧光猝灭一恢复的分析应用研究[D].[硕士学位论文].重庆:西南大学,2011
    [21]王珊珊,米渭清,朱红等.一步微波法合成碳点及其荧光性质研究[J].光谱学与光谱分析,2012,32(10):2710-2713
    [22]刘利芹.荧光碳点的合成、表征及其在生化分析中的应用研究[D].[硕士学位论文].重庆:西南大学,2011
    [23]陶惠泉.荧光碳纳米点和磁性纳米石墨烯复合材料在生物成像与药物输送中的应用[D].[硕士学位论文].苏州:苏州大学,2012
    [24]齐宝平,龙艳敏,包蕾等.电化学方法在荧光碳点研究中的应用[J].电化学,2011,17(3):271-277
    [25]Xiaoyou Xu, Robert Ray, Yunlong Gu, et al.Electrophoretic Analysis and Purification of Fluorescent Single-Walled Carbon Nanotube Fragments[J].J. Am. Chem. Soc,2004,126 (40):12736-12737
    [26]Jigang Zhou, Christina Booker, Ruying Li,et,al.An Electrochemical Avenue to Blue Luminescent Nanocrystals from Multiwalled Carbon Nanotubes (MWCNTs)[J].J. Am. Chem. Soc,2007,129(4):744-745
    [27]Haipeng Liu, Tao Ye.Chengde Mao.Fluorescent Carbon Nanoparticles Derived from Candle Soot[J].Angew. Chem. Int. Ed.,2007,46(34):6473-6475
    [28]S. C. Ray, Arindam Saha, Nikhil R. Jana, et al.Fluorescent Carbon Nanoparticles: Synthesis, Characterization, and Bioimaging Application[J].J. Phys. Chem. C,2009, 113(43):18546-18551
    [29]Dengyu Pan, Jingchun Zhang, Zhen Li, et al.Observation of pH-, solvent-, spin-, and excitation-dependent blue photoluminescence from carbon nanoparticles[J].Chem. Commun.,2010,46(21):3681-3683
    [30]Wang Fu, Zheng Xie, Hao Zhang, et al.Highly Luminescent Organosilane-Functionalized Carbon Dots[J].Advanced Functional Materials,2011,21(6):1027-1031
    [31]Hui Zhu, Xiaolei Wang, Yali Li, et al.Microwave synthesis of fluorescent carbon nanoparticles with electrochemiluminescence properties[J].Chem. Commun.,2009, 45(34):5118-5120
    [32]Yuhui Wang, Lei Bao, Zhihong Liu,et,al.Aptamer Biosensor Based on Fluorescence Resonance Energy Transfer from Upconverting Phosphors to Carbon Nanoparticles for Thrombin Detection in Human Plasma[J].Anal. Chem.,2011,83(21):8130-8137
    [33]Yingwei Zhang,Sen Liu,Xuping Sun.Mesoporous carbon microparticles as a novel fluorescent sensing platform for thrombin detection[J].Biosens.Bioelectron.,2011, 26(9):3876-3880
    [34]Jinhua Liu,Jishan Li,Ying Jiang,et al.Combination of [small pi]-[small pi] stacking and electrostatic repulsion between carboxylic carbon nanoparticles and fluorescent oligonucleotides for rapid and sensitive detection of thrombin[J].Chem.Commun.,2011, 47(40):11321-11323
    [35]刘利芹,李原芳.碳点共振光散射法测定溶菌酶[J].西南大学学报2010,32(11):25-29
    [36]Hailong Li, Yingwei Zhang, Lei Wang, et al.Nucleic acid detection using carbon nanoparticles as a fluorescent sensing platform[J].Chem.Commun.,2011,47(3):961-963
    [37]Hengxin Zhao, Liqin Liu, Zhongde Liu, et al.Highly selective detection of phosphate in very complicated matrixes with an off-on fluorescent probe of europium-adjusted carbon dots[J].Chem.Commun.,2011,47(9):2604-2606
    [38]Hailong Li, Junfeng Zhai,Xuping Sun.Sensitive and Selective Detection of Silver(I) Ion in Aqueous Solution Using Carbon Nanoparticles as a Cheap, Effective Fluorescent Sensing Platform[J].Langmuir,2011,27(8):4305-4308
    [39]WeiWei Li, Can Xu, Jinsong Ren, et al.Sensing metal ions with ion selectivity of a crown ether and fluorescence resonance energy transfer between carbon dots and graphene[J].Chem.Commun.,2012,48(9):1284-1286
    [40]Wang Fu, Maximilian Kreiter, Bo He, et al.Synthesis of direct white-light emitting carbogenic quantum dots[J].Chem. Commun.,2010,46(19):3309-3311
    [41]Wang Fu, Yonghua Chen, Chunyan Liu, et al.White light-emitting devices based on carbon dots'electroluminescence[J].Chem.Commun.,2011,47(12):3502-3504
    [42]Yan Li, Yue Hu, Yang Zhao, et al.An Electrochemical Avenue to Green-Luminescent Graphene Quantum Dots as Potential Electron-Acceptors for Photovoltaics[J].Adv. Mater.,2011,23(6):776-780
    [43]许金钩,王尊本.荧光分析法,第三版[M].北京:科学出版社,1990.3-6
    [44]Yongxiang Wang, Limin Xiong, Fenghua Geng, et al.Design of a dual-signaling sensing system for fluorescent ratiometric detection of Al3+ion based on the inner-filter effect[J].Analyst,2011,136(22):4809-4814
    [45]许金钩,王尊本.荧光分析法,第三版[M].北京:科学出版社,1990.64-69
    [46]钱章生,刘玫瑰,田大慧等.基于发光金纳米粒子荧光增强法测定溶菌酶[J].分析化学,2011,39(5):611-616
    [47]饶通德.基于Fe3O4@PAA_RB荧光纳米粒子荧光增强法检测环境水样中阴离子表面活性剂[J].安徽农业科学,2012,40(9):5544-5545
    [48]Fathima S.Ameer, Siyam M.Ansar, Wenfang Hu, et al.Inner Filter Effect on Surface Enhanced Raman Spectroscopic Measurement[J].Anal. Chem.,2012,84(20):8437-8441
    [49]Shang Li, Chuanjiang Qin, Lihua Jin, et al.Turn-on fluorescent detection of cyanide based on the inner filter effect of silver nanoparticles[J].Analyst,2009,134(7):1477
    [50]Shao Na, Ying Zhang, SinMan Cheung, et al.Copper Ion-Selective Fluorescent Sensor Based on the Inner Filter Effect Using a Spiropyran Derivative[J].Anal. Chem.,2005, 77(22):7294-7303
    [51]Bernard Fanget,Olivier Devos.Correction of Inner Filter Effect in Mirror Coating Cells for Trace Level Fluorescence Measurements[J].Anal. Chem.,2003,75(11):2790-2795
    [52]Shang Li.Shaojun Dong.Design of Fluorescent Assays for Cyanide and Hydrogen Peroxide Based on the Inner Filter Effect of Metal Nanoparticles[J].Anal. Chem.,2009, 81(4):1465-1470
    [53]Huarui He, Hong Li, Gemhard Mohr, et al.Novel Type of Ion-Selective Fluorosensor Based on the Inner Filter Effect:An Optrode for Potassium[J].Anal. Chem.,1993, 65(2):123-127
    [54]Qun Gu,onathan E. Kenny.Improvement of Inner Filter Effect Correction Based on Determination of Effective Geometric Parameters Using a Conventional Fluorimeter[J].Anal. Chem.,2009,81(1):420-426
    [55]Yueming Zhai,Huajin Li, Ping Wang, et.al.Dual-functional Au-Fe3O4 dumbbell nanoparticles for sensitive and selective turn-on fluorescent detection of cyanide based on the inner filter effect[J].Chem.Commun.,2011,47(29):8268-8270
    [56]Nanda K. Subbarao,Robert C. MacDonald.Experimental method to correct fluorescence intensities for the inner filter effect[J].Analyst,1993,118(7):913-916
    [57]Mikael Kubista, Robert Sjoback, Svante Eriksson, et al.Experimental correction for the inner-filter effect in fluorescence spectra[J].Analyst,1994,119(3):417-419
    [58]Gisela N. Piccirilli,Graciela M. Escandar.Partial least-squares with residual bilinearization for the spectrofluorimetric determination of pesticides. A solution of the problems of inner-filter effects and matrix interferents[J].Analyst,2006,131(9):1012-1020
    [59]Le Xu, Baoxin Li, Yan Jin.Inner filter effect of gold nanoparticles on the fluorescence of quantum dots and its application to biological aminothiols detection[J].Talanta,2011, 84(2):558-564
    [60]Zhengquan Yan, Shanyi Guang, Hongyao Xu, et al.An effective real-time colorimeteric sensor for sensitive and selective detection of cysteine under physiological conditions[J].Analyst,2011,136(9):1916-1921
    [61]Li Li,Baoxin Li.Sensitive and selective detection of cysteine using gold nanoparticles as colorimetric probes[J].Analyst,2009,134(7):1361-1365
    [62]Shahrokhian Saeed.Lead Phthalocyanine as a Selective Carrier for Preparation of a Cysteine-Selective Electrode[J].Anal. Chem.,2001,73(24):5972-5978
    [63]Pu Fang,Zhenzhen Huang, Jinsong Ren, et al.DNA/Ligand/lon-Based Ensemble for Fluorescence Turn on Detection of Cysteine and Histidine with Tunable Dynamic Range[J].Analytical Chemistry,2010,82(19):8211-8216
    [64]Yibin Ruan,Aifang Li, Jinsong Zhao, et al.Specific Hg2+-mediated perylene bisimide aggregation for highly sensitive detection of cysteine[J].Chem.Commun.,2010, 46(27):4938-4940
    [65]Shuo Wu, Xiaoqin Lan, Feifei Huang, et al.Selective electrochemical detection of cysteine in complex serum by graphene nanoribbon[J].Biosensors and Bioelectronics,2012, 32(1):293-296
    [66]Yongxiang Wang, Limin Xiong, Fenghua Geng, et al.Design of a dual-signaling sensing system for fluorescent ratiometric detection of Al3+ion based on the inner-filter effect[J].Analyst,2011,136(22):4809-4814
    [67]Jensen T., L. Kelly, A. Lazarides, et al.Electrodynamics of noble metal nanoparticles and nanoparticle clusters[J].Jouraal of Cluster Science,1999,10(2):295-317
    [68]Cyrus K. Bett.Johnpeter N. Ngunjiri, Wilson K. Serem, et al.Structure-Activity Relationships in Peptide Modulators of β-Amyloid Protein Aggregation:Variation in R,R-Disubstitution Results in Altered Aggregate Size and Morphology[J].ACS Chem. Neurosci.,2010, 1(9):608-626
    [69]Chengke Wang, Dianjun Liu,Zhenxin Wang.Resonance light scattering as a powerful tool for sensitive detection of β-amyloid peptide by gold nanoparticle probes[J].Chem. Commun,2011,47(33):9339-9341
    [70]Chengke Wang, Jine Wang, Dianjun Liu, et al.Gold nanoparticle-based colorimetric sensor for studying the interactions of β-amyloid peptide with metallic ions[J].Talanta, 2010,80(5):1626-1631
    [71]Jie Geng,Fenghua, Konggang Qu, Jinsong Ren, et al.Rapid and efficient screening of Alzheimer's disease β-amyloid inhibitors using label-free gold nanoparticles[J].Molecular BioSystems,2010,6(12):2389-2391
    [72]Laura Connelly Hyunbum Jang, Fernando Teran Arce,et,al.Atomic Force Microscopy and MD Simulations Reveal Pore-Like Structures of All-d-Enantiomer of Alzheimer's β-Amyloid Peptide:Relevance to the Ion Channel Mechanism of AD Pathology[J].J. Phys. Chem. B,2012,116(5):1728-1735
    [73]Masafumi SAKONO, Tamotsu ZAKO.Mizuo MAEDA.Naked-eye Detection of Amyloid Aggregates Using Gold Nanoparticles Modified with Amyloid Beta Antibody[J].ANALYTICAL SCIENCES 2012,28 (1):73-76
    [74]Kowalewski Tomasz,David M. Holtzman.In situ atomic force microscopy study of Alzheimer's β-amyloid peptide on different substrates:New insights into mechanism of P-sheet formation[J].Proceedings of the National Academy of Sciences,1999, 96(7):3688-3693
    [75]H. K. L. Blackley, G. H. W. Sanders, M. C. Davies, et al.In-situ Atomic Force Microscopy Study of β-Amyloid Fibrillization[J].J. Mol. Biol.,2000,298(5):833-840
    [76]Justin Legleiter, John D. Fryer, David M. Holtzman, et al.The Modulating Effect of Mechanical Changes in Lipid Bilayers Caused by ApoE-Containing Lipoproteins on Aβ Induced Membrane Disruption[J].ACS Chemical Neuroscience,2011,2(10):588-599
    [77]Kazushige Yokoyama, Nicole B. Gaulin, Hyunah Cho, et al.Temperature Dependence of Conjugation of Amyloid Beta Protein on the Surfaces of Gold Colloidal Nanoparticles[J].J. Phys. Chem.A2010,114(3):1521-1528
    [78]Yokoyama K.,D. R. Welchons.The conjugation of amyloid beta protein on the gold colloidal nanoparticles'surfaces[J].Nanotechnology,2007,18(10):105101-105107
    [79]Qiongzheng Hu,Changyun Jang.Imaging Trypsin Activity through Changes in the Orientation of Liquid Crystals Coupled to the Interactions between a Polyelectrolyte and a Phospholipid Layer[J].ACS Applied Materials& Interfaces,2012,4(3):1791-1795
    [80]Chiu Karen, Lauren L. Agoubi, Iris Lee, et al.Effects of Polymer Molecular Weight on the Size, Activity, and Stability of PEG-Functionalized Trypsin[J].Biomacromolecules,2010, 11(12):3688-3692
    [81]Zhenxing Chi, Rutao Liu,Hao Zhang.Noncovalent Interaction of Oxytetracycline with the Enzyme Trypsin[J].Biomacromolecules,2010,11(9):2454-2459
    [82]Xinggui Gu,Ge Yang,Guanxin Zhang,et al.A New Fluorescence Turn-on Assay for Trypsin and Inhibitor Screening Based on Graphene Oxide[J].ACS Applied Materials& Interfaces,2011,3(4):1175-1179
    [83]Wangxin Xue, Guanxin Zhang,Deqing Zhang.A sensitive colorimetric label-free assay for trypsin and inhibitor screening with gold nanoparticles[J].Analyst,2011, 136(15):3136-3141
    [84]Zarafshani Zoya,Toshihiro Obata,Jean-Franc ois Lutz.Smart PEGylation of Trypsin[J].Biomacromolecules,2010,11(8):2130-2135
    [85]Zaccheo Brian A.Crooks, Richard M.Self-Powered Sensor for Naked-Eye Detection of Serum Trypsin[J].Anal. Chem.,2011,83(4):1185-1188
    [86]Anne Agnes, Arnaud Chovin,Christophe Demaille.Optimizing Electrode-Attached Redox-Peptide Systems for Kinetic Characterization of Protease Action on Immobilized Substrates. Observation of Dissimilar Behavior of Trypsin and Thrombin Enzymes[J].Langmuir,2012,28(23):8804-8813
    [87]Wangxin Xue, Guanxin Zhang,Deqing Zhang.A sensitive colorimetric label-free assay for trypsin and inhibitor screening with gold nanoparticles[J].Analyst,2011,136(15):3136
    [88]Chengyan Lin,Chengju Yu,YenHsiu Lin,et al.Colorimetric Sensing of Silver(I) and Mercury(II) Ions Based on an Assembly of Tween 20-Stabilized Gold Nanoparticles[J].Anal. Chem.,2010,82(16):6830-6837
    [89]Hao Wang,Yongxiang Wang, Jianyu Jin,et al.Gold Nanoparticle-Based Colorimetric and "Turn-On" Fluorescent Probe for Mercury(II) Ions in Aqueous Solution[J].Anal. Chem., 2008,80(23):9021-9028
    [90]Dingbin Liu, Weisi Qu, Wenwen Chen, et al.Highly Sensitive, Colorimetric Detection of Mercury(II) in Aqueous Media by Quaternary Ammonium Group-Capped Gold Nanoparticles at Room Temperature[J].Anal. Chem.,2010,82(23):9606-9610
    [91]Lee Jeongjin, Junsu Park, Byoung Kyu Kwak, et al.Formation of abnormally large-sized tubular amyloid β aggregates on a nanostructured gold surface[J].Korean Journal of Chemical Engineering,2010,28(1):184-188
    [92]Dianlu Jiang, Iris Rauda, Shubo Han, et al.Aggregation Pathways of the Amyloid β(1-42) Peptide Depend on Its Colloidal Stability and Ordered β-Sheet Stacking[J].Langmuir, 2012,28(35):12711-12721
    [93]Chander Harish, Abha Chauhan, Jerzy Wegiel, et al.Binding of trypsin to fibrillar amyloid beta-protein[J].Brain Research,2006,1082(1):173-181
    [94]Ved Chauhan, Ashfaq M. Sheikh, Abha Chauhan, et al.Fibrillar amyloid beta-protein inhibits the activity of high molecular weight brain protease and trypsin[J].Journal of Alzheimer's Disease 2005,7:37-44
    [95]Paranjape Geeta S., Lisa K. Gouwens, David C. Osborn, et al.Isolated Amyloid-β(1-42) Protofibrils, But Not Isolated Fibrils, Are Robust Stimulators of Microglia[J].ACS Chemical Neuroscience,2012,3(4):302-311
    [96]Hui Zhu,Xiaolei Wang,Yali Li,et al.Microwave synthesis of fluorescent carbon nanoparticles with electrochemiluminescence properties[J].Chem.Commun.,2009, 45(34):5118-5120
    [97]Goh Eun Ji, Ki Su Kim, Yi Rang Kim, et al.Bioimaging of Hyaluronic Acid Derivatives Using Nanosized Carbon Dots[J].Biomacromolecules,2012,13(8):2554-2561
    [98]Yongqiang Dong, Ruixue Wang, Hao Li, et al.Polyamine-functionalized carbon quantum dots for chemical sensing[J].Carbon,2012,50(8):2810-2815
    [99]ShengTao Yang,Li Cao,Pengju G. Luo,et al.Carbon Dots for Optical Imaging in Vivo[J].J. Am. Chem. Soc.,2009,131(32):11308-11309
    [100]Haipeng Liu, Tao Ye,Chengde Mao.Fluorescent Carbon Nanoparticles Derived from Candle Soot[J].Angew. Chem. Int. Ed.,2007,119(34):6593-6595
    [101]Jing Wang,CaiFeng Wang,Su Chen.Amphiphilic Egg-Derived Carbon Dots:Rapid Plasma Fabrication, Pyrolysis Process, and Multicolor Printing Patterns[J].Angew. Chem. Int. Ed., 2012,51(37):9297-9301
    [102]Haitao Li, Xiaodie He, Zhenhui Kang, et al. Water-Soluble Fluorescent Carbon Quantum Dots and Photocatalyst Design[J].Angew. Chem. Int. Ed.,2010,49(26):4430-4434
    [103]白文君.基于碳点荧光猝灭-恢复的分析应用研究[D].重庆:西南大学,2011
    [104]Qiang Qu,Anwei Zhu,Xiangling Shao, et al.Development of a carbon quantum dots-based fluorescent Cu2+probe suitable for living cell imaging[J].Chem.Commun.,2012, 48(44):5473
    [105]Yongqiang Dong,Ruixue Wang,Geli Li,et al.Polyamine-Functionalized Carbon Quantum Dots as Fluorescent Probes for Selective and Sensitive Detection of Copper Ions[J].Anal. Chem.,2012,84(14):6220-6224
    [106]许金钩,王尊本.荧光分析法,第三版[M].北京:科学出版社,1990.11-12
    [107]Parker C. A.,W. T. Rees.Correction of fluorescence spectra and measurement of fluorescence quantum efficiency[J].Analyst,1960,85(1013):587-600

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700