用户名: 密码: 验证码:
三江地区南澜沧江带临沧花岗岩的地球化学、年代学与成因
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
滇西三江地区南澜沧江带的临沧花岗岩体是云南省出露面积最大的复式岩基,它是古特提斯构造域中的重要单元。但对其成因和形成时代尚存在争议。本论文在野外调研的基础上,对临沧花岗岩体进行了系统的U-Pb同位素年代学、岩石学、元素地球化学以及锆石Hf同位素等方面的研究,结合区域上已有的U-Pb年代学,旨在对其成因和形成时代以及区域构造岩浆演化提供约束。
     本论文共选用样品19件,岩性主要为黑云母二长花岗岩,研究结果表明,该花岗岩的SiO_2含量为66.07-73.99%,平均为68.88%,K_2O/Na_2O值高,为1.41-2.21,平均为2.06,Al_2O_3含量为12.94-15.23%,平均为14.30%,铝饱和指数A/CNK为0.97-2.01,平均为1.27,为高钾钙碱性过铝-强过铝花岗岩。岩石总体上富集大离子亲石元素和Pb,明显亏损高场强元素。稀土总量173.58-359.16×10~(-6),平均为240.13×10~(-6),具有明显的轻稀土富集,重稀土亏损的特征,(La/Yb)_N为6.69-15.72,平均11.54,δEu为0.41-0.75,平均0.53,球粒陨石标准化配分模式显示明显的负Eu异常。六件样品的锆石U-Pb年龄分别为227.00±0.80Ma、219.19±0.99、219.69±0.67 Ma、203.38±0.70 Ma、211.9±1.8Ma和214±2Ma,属晚三叠世。SiO_2-Zr判别图、ACF图解等花岗岩成因类型判别图指示临沧花岗岩为S型花岗岩,其物质来源为贫粘土的砂屑岩。微量元素Rb-Y+Nd判别图中,临沧花岗岩体投影点全部落入后碰撞花岗岩区。在Sr-Yb判别图中,投影点全部落入低Sr高Yb型花岗岩区,与我国东南沿海花岗岩特征一致,应形成于挤压向伸展转换的后碰撞阶段。锆石Hf同位素组成比较均一,εHf(t)均为负值(集中于-14~-10之间),Hf地壳模式年龄集中于1.90~2.15Ga,推断其为古老地壳部分熔融的产物。结合锆石定年结果及岩体产出的区域地质背景,我们认为临沧花岗岩形成于缅泰马陆块与思茅地块大陆碰撞造山过程的后碰撞阶段,应形成于晚三叠世。
The Lincang granite in southern Lancangjiang zone of Sanjiang area, located in West of Yunnan Province, has the largest area of outcrop in Yunnan Province. The composite granite batholith is an important part in the paleo-Tethyan Tectonic Region. However, its petrogenesis and age are still in dispute. Based on Field investigation, the Lincang granite is systematically researched in this study, in which the subjects of U-Pb isotope chronology, petrology, elemental geochemistry and zircon Hf isotopic geochemistry are involved. Correlated with the known U-Pb dating, the purpose of this study endeavors to bring up the geological constraints for its petrogenesis, age and regional magmatic evolution under the tectonic setting.
     The Lincang granite is mostly biotitic monzogranite in terms of lithology. The 19 representative samples have shown that SiO_2 and Al_2O_3 of the granitoid range 66.07-73.99% and 12.94-15.23%, averagely 68.88% and 14.30% respectively,The K_2O/Na_2O ratio is high,ranging 1.41-2.21, with average of 2.06,A/CNK varies from 0.97 to 2.01,averagely 1.27,and mostly >1.1. So Lincang granites are high-K calc-alkaline and peraluminous to strongly peraluminous series. They are also enriched in LILE and Pb,but strongly depleted in HFSE. The REE content is between 173.58×10~(-6) and 359.16×10~(-6)(average 240.13×10~(-6)), with (La/Yb)_N ratios of 6.69-15.72 (average 11.54) andδEu of 0.41-0.75(average 0.53). The intrusion is remarkably characterized by enriched LREE and depleted HREE. The chondrite-normalized REE patterns show strong negative Eu anomalies. The zircon U-Pb age of the six samples is 227.00±0.80 Ma、219.19±0.99 Ma、219.69±0.67 Ma、203.38±0.70 Ma、211.9±1.8Ma and 214±2Ma, belonging to Late Tertiary. The SiO_2-Zr relationship and ACF plot indicated that the Lincang granite was S type granite. It mainly derives from clay-poor psammite. Lincang granite can be classified into the group of post-collisional granites in the Rb-Y+Nd discrimination diagram. In addition, Lincang granites are plotted into the low-Sr and high-Yb granites in the Sr-Yb discrimination diagram, in accordance with the granites in Southeast China, and should be formed during the transferring setting from compression to extension. Lincang granites have homogeneous zircon Hf isotopic composition. Their zircons have negativeεHf(t) Values(-14~-10) and old Hf-isotope Crust model ages (1.90~2.15Ga), suggesting that Lincang granite was formed by partial melting of old crust. Therefore we consider that Lincang granite was formed in post-collisional stage between the Burma-Thai-Malaysia and Simao block in the late Triassic.
引文
Amelin Y, Lee DC and Halliday AN. Early-Middle Archean crustal evolution deduced from Lu-Hf isotopic studies of single zircon grains. Geochimica et Cosmochimica Acta, 2000, 64: 4205 - 4225
    Barbarin B. A review of the relationships between granitoid types: Their origins and their geodynamic environments. Lithos, 1999, 46: 605 - 626
    Blichert-Toft J and Albarede F. The Lu-Hf geochemistry of chondrites and the evolution of the mantle-crust system. Earth Planet. Sci. Lett., 1997, 148: 243 - 258
    Chappell BW and White AJR. I- and S-type granites in the Lachlan Fold Belt. Transactions of the Royal Society of Edinburgh: Earth Sciences, 1992, 83: 1 - 26.
    Chappell BW. Aluminum saturation in I- and S-type granites and the characterization of fractionated granites. Lithos, 1999, 46: 535 - 551
    Chu NC, Taylor RN, Chavagnac V, et al. Hf isotope ratio analysis using multi-collector inductively coupled plasma mass spectrometry: An evaluation of isobaric interference corrections. J. Anal. Atom. Spectrom., 2002, 17: 1567 - 1574
    Collins WJ, Beams SD, White AJR, et al. Nature and origin of A- type granites with particular reference to Southeastern Australia. Contributions to Mineralogy and Petrology, 1982, 80: 189 - 200
    DeBievre P and Taylor PDP. Table of the isotopic composition of the elements. Int. J. Mass. Spectrom. Ion Process, 1993, 123: 149
    Griffin WL, Pearson NJ, Belousova E, et al. The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochim Cosmochim Acta, 2000, 64: 133 - 147
    Griffin WL, Wang X, Jackson SE, et al. Zircon chemistry and magma mixing, SE China: In-situ analysis of Hf isotopes. Tonglu and Pingtan igneous complexes. Lithos, 2002, 61: 237 - 269
    Griffin WL, Belousova EA and Shee SR. Crustal evolution in the northern Yilarm Craton: U-Pb and Hf-isotope evidence from detrital zircons. Precambrian Research, 2004, 131(3-4): 231 - 282
    Hennig D, Lemann B, Frei D, et al. Early Permian seafloor to continental arc magmatism in the eastern Paleo-Tethys: U–Pb age and Nd–Sr isotope data from the southern Lancangjiang zone, Yunnan, China. Lithos, 2009, 113: 408 - 422
    Heppe K. Plate Tectonic evolution and mineral resource potential of the Lancang River Zone, southwestern Yunnan, People's Republic of China. Geologisches Jahrbuch SD 7, 2006, 1 - 159
    Hoskin PWO and Schaltegger U. In: Manchar JM, Hoskin PWO(Eds.)The composition of zircon and metamorphic petrogenesis. Zircon Reviews of Mineralogy and Geochemistry, 2003, 53: 27 - 62
    Le Maitre R W. The Chemical Variability of some Common Igneous Rocks. Journal of Petrology, 1976, 17(4): 589 - 598
    Le Maitre R W. (ed.). Igneous Rocks: A Classification and Glossary of Terms (2ndedition). Cambridge University Press, 2002, 33 - 39
    Li XH, Li ZX and Li WX, et al. Initiation of the Indosinian Orogeny in South China: evidence for a Permian magmatic arc in the Hainan Island. J Geol, 2006, 114: 341 - 353
    Li XH, Li ZX, Li WX, et al. U-Pb zircon, geochemical and Sr-Nd-Hf isotopic constraints on age and origin of Jurassic I- and A-type granites from central Guangdong, SE China: a major igneous event in response to foundering of a subducted flat-slab? Lithos, 2007, 96: 186 - 204
    Liegeois NP, Navez J, Hertogen J, et al. Contrasting origin of post-collisional high-K calc-alkaline and shoshonitic versus alkaline and peralkaline granitoids. The use of sliding normalization.
    Lithos, 1998, 45: 1 - 28
    Liu YS, Hu ZC, Gao S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. 2008a, Chemical Geology 257: 34 - 43
    Liu YS, Zong KQ, Kelemen PB, et al. Geochemistry and magmatic history of eclogites andultramafic rocks from the Chinese continental scientific drill hole: Subduction and ultrahigh-pressure metamorphism of lower crustal cumulates. 2008b, Chemical Geology 247: 133 - 153
    Liu YS, Hu ZC, Zong KQ, et al. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS. Chinese Science Bulletin in press, 2010b
    Ludwig KR. ISOPLOT 3.00. A Geochronological Toolkit for Microsoft Excel. Berkeley: Berkeley Geochronology Center, California, 2003
    Mania PD and Piccoli PM. Tectonic discrimination of granitoids. Geological Society of America Bulletin, 1989, 101: 635 - 643
    Middlemost EAK. Magmas and Magmatic Rocks [M]. London: Longman, 1985.1 - 266
    Miller CF. Are strongly peraluminous magmas derived from pelitic sedimentary sources? J. Geol, 1985, 93: 673 - 689
    Patino Douce AE and Johnson AD. Phase equilibria and melting productivity in the politic system: Implication for the origin of peraluminous granitoids and aluminous guanulites. Contri. Mineral. Petro, 1991, 107: 202 - 218
    Pearce JA. Source and settings of granitic rocks. Episodes, 1996, 19: 120 - 125
    Peccerillo R and Taylor SR. Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey [J]. Contrib. Mineral Petrol. , 1976, 58: 63-81
    Pirajno F. Hydrothermal Processes and Mineral System. Berlin: Springer, 2008. 1250
    Rudnick RL and Fountain DM. Nature and composition of the continental crust: a lower crustal perspective. Reviews of Geophysics, 1995, 33: 267 - 309
    Rudnick RL and Gao S. Composition of the continental crust. In: Rudnick RL (ed.). The crust, Treatics on Geochemistry, v.3. Oxford: Elsevier Pergamon, 2003, 1 - 64
    Soderlund U, Patchett PJ, Vervoort JD, et al. The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions. Earth Planet Sci Lett, 2004, 219: 311 - 324
    Streckeisen AL. Classification of the common igneous rocks by means of their chemical composition: A provisional attempt. Neues Jahrbuch fur Mineralogie, Monatshefte, 1976, 1: 1 - 15
    Sun SS and McDonough WF. Chemical and isotopic systematics of oceanic basalt: implications for mantle composition and process. In: Saunders AD and Norry MJ (Eds.), Magmatism in the Ocean Basins. Spc. Publ. Geol. Soc. Lond. , 1989, 42: 528 - 548
    Sylvester PJ. Post-collisional alkaline granites. Journal of Geology, 1998.97: 261–280
    Taylor SR and McLennan SM. The Continental Crust: Its Composition and Evolution. Oxford: Blackwell, 1985
    Treuil M and Joron J M. Vtilisation des elements hydromagatophiles pour la simplification de la modelisation quantitative des proccessus magamtiques,Exemples de’l afar et de la dorsade medioatlatique Soc.It.Mine.Petro, 1975, 31:125
    Vervoort JD, Pachelt PJ, Gehrels GE, et al. Constraints on early Earth differentiation from hafnium and neodymium isotopes. Nature, 1996, 379: 624– 627
    Vervoort JD, Pachelt PJ, Albarede F, et al. Hf-Nd isotopic evolution of the lower crust. Earth and Planerary Science Letters, 2000, 181: 115 - 129
    Watson EB and Harrison TM. Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth and Planetary Science Letters, 1983, 64: 295 - 304
    Wen DJ, Chung SL, Lee HY, et al.Geochronology and geochemistry of the Lincang Granite Complex: implications of the Indosinian Orogeny in Southeast Asia. In: Brown, D. (Ed.), EUG XI, Symposium MS02, 2001
    Wolf MB and London D. Apatite dissolution into peraluminous haplogranitic melts: an experimental study of solubilities and mechanism. Geochim Cosmochim Acta, 1994, 58: 4127 - 4145
    Wu FY, Jahn BM, Wilder SA, et al. Highly fractionated I-type granites in NE China (I): geochronology and petrogenesis. Lithos, 2003, 66: 241 - 273
    Wu FY, Yang YH, Xie LW, et al. Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology. Chem. Geol, 2006, 232: 105 - 126
    Yuan HL, Gao S, Dai MN, et al. Simultaneous determinations of U-Pb age, Hf isotopes and trace element compositions of zircon by excimer laser-ablation quadrupole and multiple-collector ICP-MS. Chemical Geology, 2008, 247: 100 - 118
    陈吉琛.滇西花岗岩类时代划分及同位素年龄值选用[J] .云南地质,1987,6(2): 101 - 113
    陈吉琛.滇西花岗岩类形成的构造环境及岩石特征[J] .云南地质,1989,8(3、4): 205 - 212
    陈衍景.碰撞造山体制的流体演化模式:理论推导和东秦岭金矿床氧同位素证据[J].地学前缘,1996,3(3–4): 282 - 289
    陈永清,刘俊来,冯庆来,等.东南亚中南半岛地质及与花岗岩有关的矿床[M].北京:地质出版社,2010
    从柏林,吴根耀,张旗,等.中国滇西古特提斯构造带岩石大地构造演化.中国科学,B辑,1993,23(11): 1201 - 1207
    段建中,谭筱虹.滇西三江地区新生代主要走滑断裂性质及特征.云南地质,2000,19(1): 8 - 23
    范承钧,张翼飞.云南西部地质构造格局.云南地质,1993,12(2)
    范蔚茗,彭头平,王岳军.滇西古特提斯俯冲-碰撞过程的岩浆作用记录.地学前缘,2009,16(6): 291 - 302
    方宗杰,周志澄,林敏基.关于滇西地质的若干新认识.科学通报,1990,35(5): 363 - 365
    韩吟文,马振东.地球化学.北京:地质出版社,2003,181 - 296
    黎彤,袁怀雨,吴胜昔.中国花岗岩类和世界花岗岩类平均化学成分的对比研究.大地构造与成矿学,1998,22(1): 29 - 34
    李昌年.火成岩微量元素岩石学[M].武汉:中国地质大学出版社,1992,1 - 195
    李继亮.滇西三江带的大地构造演化.地质科学,1988,4,337 - 346
    李进文,裴荣富,张德全,等.铜陵矿集区燕山期中酸性侵入岩地球化学特征及其地质意义.地球学报,2007,28(1):11 - 22
    李文昌,潘桂棠,侯增谦,等.西南“三江”多岛弧盆-碰撞造山成矿理论与勘查技术[M].北京:地质出版社,2010
    李献华,李武显,李正祥.再论南论燕山早期花岗岩的成因类型与构造意义.科学通报,2007,52(9): 981 - 992
    李兴林.临沧复式花岗岩基的基本特征及形成构造环境的研究.云南地质,1996,15(1):1 - 18
    李兴振,刘文均,王义昭,等.西南三江特提斯构造演化与成矿[M].北京:地质出版社,1999
    李兴振,江新胜,孙志明,等.西南三江地区碰撞造山过程[M].北京:地质出版社,2002
    刘本培,冯庆来,方念乔.滇西南昌宁-孟连带和澜沧江带古特提斯多岛洋构造演化.地球科学,1993,18(5): 529 - 538
    刘昌实,朱金初,徐夕生.滇西临沧复式岩基特征研究.云南地质,1989a,8(3、4): 189 - 204
    刘昌实,朱金初.滇西临沧岩基源区物质定量模拟.岩石矿物学杂志,1989b,8(1): 1 - 12
    刘德利,刘继顺,张彩华,等.滇西南澜沧江结合带北段云县花岗岩的地质特征及形成环境. 岩石矿物学杂志,2008,27(1): 23 - 31
    刘海龄,王子江,施小斌,等.古特提斯缝合带澜沧江段花岗岩高温高压实验模拟.热带海洋学报,2004,23(2): 10 - 18
    刘增乾,李兴振,叶庆同,等.三江地区构造岩浆带的划分与矿产分布规律[M].北京:地质出版社. 1993,56 - 58
    路远发. GeoKit:一个用VBA构建的地球化学工具软件包地球化学,2004,33(5): 459 - 464
    吕伯西,王增,张能德,等.三江地区花岗岩类及其成矿专属性[M].北京:地质出版社. 1993,97 - 103
    吕古贤等.澜沧江构造带拆沉作用与铜多金属成矿[M].北京:地质出版社,2004,1 - 231
    莫宣学,邓晋福.西藏-三江地区几对蛇绿岩-弧岩浆岩带的构造意义.亚洲的增生,北京:地震出版社,1993
    莫宣学,路凤香,沈上越.三江特提斯火山作用与成矿[M].北京:地质出版社,1993
    莫宣学,沈上越,朱勤文,等.三江中南段火山岩-蛇绿岩与成矿[M].北京:地质出版社,1998,44 - 47
    潘桂棠,徐强,侯增谦,等.西南三江地区多岛弧造山过程成矿系统与资源评价[M].北京:地质出版社,2003,1 - 404
    彭头平,王岳军,范蔚茗,等.澜沧江南段早中生代酸性火成岩SHRIMP锆石U-Pb定年及构造意义.中国科学,D辑,2006,36(2): 123 - 132
    彭头平.澜沧江南带三叠纪碰撞后岩浆作用-岩石成因及其构造意义[D].广州:中国科学院广州地球化学研究所,2006
    秦元季.滇西临沧花岗岩基的基本特征和构造侵位机制[D].北京:中国科学院地质研究所,1991
    阙梅英,陈敦模,张立生,等.兰坪-思茅盆地铜矿床.北京:地质出版社,1998,l - 109
    沈敢富,吕伯西.西南三江地区新生代侵入岩的成岩与成矿[M].北京:地质出版社. 2000
    施小斌,丘学林,刘海龄,等.滇西临沧花岗岩基冷却的热年代学分析.岩石学报,2006,22(2): 465 - 479
    王德滋,刘昌实,沈渭洲,等.桐庐I和相山S型两类碎斑熔岩对比.岩石学报,1993,9(1): 44 - 53
    王登红,应汉龙,梁华英,等.西南三江地区新生代大陆动力学过程与大规模成矿[M].北京: 地质出版社,2006
    王义昭,李兴林,段丽兰,等.三江地区南段大地构造与成矿[M].北京:地质出版社,2000,31 - 39
    吴福元,李献华,郑永飞,等. Lu-Hf同位素体系及其岩石学应用.岩石学报,2007,23(2): 185 - 220
    肖庆辉,邓晋福,马大铨,等.花岗岩研究思维与方法[M].北京:地质出版社,2002,30 - 50
    徐克勤.与金矿有关花岗岩类的岩石地球化学特征.桂林冶金地质学院学报,1992,12(1):1 - 9
    杨振德.一条巨型花岗岩推覆体.云南地质,1995,14(2): 99 - 108
    杨振德.云南临沧花岗岩的冲断叠瓦构造与推覆构造.地质科学,1996,31(2): 130 - 139
    俞赛赢,李昆琼,施玉萍,等.临沧花岗岩基中段花岗闪长岩类研究.云南地质,2003,22(4): 426 - 442
    云南省地质矿产局.云南省区域地质志.北京:地质出版社,1990,291 - 301
    张旗,王焰,李承东,等.花岗岩的Sr-Yb分类及其地质意义.岩石学报,2006,22(9): 2249 - 2269
    张旗,潘国强,李承东,等.花岗岩的结晶分离作用问题-关于花岗岩研究的思考之二.岩石学报,2007,23(6):1239 - 1251
    张旗,潘国强,李承东,等.花岗岩的构造环境问题-关于花岗岩研究的思考之三.岩石学报,2007,23(11):2683 - 2698
    张旗,王元龙,金惟俊,等.造山前、造山和造山后花岗岩的识别.地质通报,2008, 27(1): 1 - 18
    钟大赉等.滇川西部古特提斯造山带[M].北京:科学出版社,1998,176 - 177
    朱勤文等.澜沧江带火山岩构造-岩浆类型与特提斯演化.青藏高原地质文集(21),北京:地质出版社,1991
    朱勤文.滇西南澜沧江带三叠纪火山岩大地构造环境.岩石矿物学杂志,1993,12(2),134 - 143
    朱勤文,张双全,谭劲.确定南澜沧江缝合带的火山岩地球化学证据.岩石矿物学杂志,1998,17(4),298 - 307
    朱勤文,莫宣学,张双全.南澜沧江古特提斯演化的岩浆岩证据.特提斯地质,1999,23: 16 – 30
    云南省地质科学研究所锡矿组测试室.临沧花岗岩基的(景洪-勐海间)的同位素年龄.云南地质,1982,1(4)
    云南省地质矿产局区域地质调查大队. 1:20万景东幅区域地质调查报告资料.1977
    云南省地质矿产局区域地质调查大队. 1:20万景谷幅区域地质调查报告资料.1981
    云南省地质矿产局区域地质调查大队. 1:20万耿马幅区域地质调查报告资料.1984
    云南省地质矿产局区域地质调查大队. 1:20万思茅幅区域地质调查报告资料.1983
    云南省地质矿产局区域地质调查大队. 1:20万勐海幅区域地质调查报告资料.1979

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700