高功率啁啾脉冲在光纤中的非线性传输为
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文的研究工作主要受到国家自然科学基金《高功率啁啾脉冲在单模光纤中的非线性传输特性研究》及863面上基金项目《超大模场高功率光纤宽带传输与放大技术研究》的资助。
     新型高功率激光前端系统是我国为研究惯性约束核聚变而开发的新一代高功率激光器系统的重要组成部分之一,前端系统的主要功能是为后续系统提供具有一定能量和脉冲宽度且可以任意整形的激光脉冲。在整形方案中,为了减小整形脉冲因基元脉冲间的干涉而出现的调制结构,前端系统的方案之一是采用啁啾脉冲堆积的技术,同时为了提高整个系统的稳定性,其采用了全固化、全光纤的设计的方案。单模光纤的有效应纤芯截面很小,脉冲在光纤中传输时,光纤中的能量密度会很大,致使高功率状态下光纤中的非线性效应非常的明显,从而引起脉冲发生形变,因此研究啁啾基元高斯脉冲在光纤中的非线性传输行为对整个系统的研发具有非常重要的指导意义。本论文主要研究了中心波长为1053nm、脉冲宽度为100ps、光谱宽度为1.2nm、峰值功率为kW量级的啁啾高斯脉冲在光纤中传输时色散和非线性效应对脉冲的影响。
     本论文主要的研究工作包括:
     1.采用广义的非线性薛定谔方程及对称分步傅立叶算法,模拟分析了传输过程中色散和非线性效应对脉冲时域和频域特性的影响。分析主要集中在脉冲峰值功率kW量级的高功率激光系统。
     2.给出了啁啾脉冲的色散升序表达式并验证其合理性。当啁啾脉冲在光纤中传输时,色散对其的影响与入射脉冲的初始啁啾有关,而且在研究中发现在无啁啾情况下定义的色散长度并不能准确的反映出色散对啁啾脉冲的影响程度,为此,我们对啁啾脉冲的色散重新定义。
     3.定义了用于衡量传输过程中脉冲形变程度的脉冲形变因子,定量地研究了中心波长为1053nm、功率为kW量级的啁啾高斯脉冲在单模光纤中传输时,传输长度、初始脉冲功率及初始啁啾对脉冲形变的影响。同时还模拟分析了入射功率对脉冲光谱的影响。
     本论文的创新型成果为:
     1.数值分析了初始啁啾对色散的影响,提出了用于衡量啁啾脉冲受色散影响程度的色散长度LDC,为理论和工程设计时估算色散对脉冲的影响程度提供依据。
     2.定义了用于衡量脉冲形变大小的脉冲形变因子,模拟分析了100ps啁啾高斯脉冲在单模光纤中传输时,脉冲形变因子、初始啁啾、传输长度等之间的关系。结果表明:在相同的输入功率条件下,与负啁啾脉冲和无啁啾脉冲相比,正啁啾脉冲在传输过程中产生的形变最小;在脉冲的初始啁啾一定时,临界长度随着入射功率的增加而降低,且随着功率的增大,初始啁啾不同的入射脉冲的临界长度趋于一致;在传输距离一定时,临界功率和初始啁啾成线性关系,且正啁啾脉冲的临界功率受啁啾变化的影响较大。研究表明:在实际应用中,在形变范围内,为了使传输功率尽可能的大,我们应采用正啁啾脉冲。模拟分析了脉冲光谱随输入功率的变化关系,指出在入射脉冲的峰值功率较大时,脉冲的光谱宽度随着输入功率约呈线性变化。
The research work in this thesis is supported by the National Natural Science Foundation of China“Nonlinear Transmission Characteristics of High-power Chirped Stacked Pulses in Single-mode Fibers”and 863 project“Propagation and Amplification of Super Large-mode-area High Power Broadband Pulse”.
     The novel high power laser front-end system is an important part of the new high power laser system of China, which aims for the Inertial Confinement Fusion(ICF). It is composed of main oscillator and power amplifiers and should provide arbitrary shaping pulse for the subsequent systems. The front-end system adopts the technology of chirped pulse stacking to reduce the modulation of the stacking pulse arising from the interference of the contiguous unit pulse, meanwhile uses the all-solid, all-fiber structure to improve the stability of the whole systems. In the single-mode fiber, the nonlinear effect is obvious because of the large energy density in the small core area and makes the pulse distorted, so it is important to study the nonlinear transmission characteristics of the Gaussian pulse. In this thesis, we mainly study the nonlinear transmission characteristics of Gaussian pulse whose center wavelength is 1053nm, FWHM is 100ps, spectrum bandwidth is 1.2nm, peak power is several kW.
     The major results in the thesis are as followings:
     1. In our study, we adopt General Nonlinear Schrodinger Equation to study the influence of dispersion and nonlinear effects on the pulse, and mainly analyze the pulses with the peak power of several kW which is output by the high power laser systems.
     2. We give the dispersion length of the chirped pulse and validate its correctness. When chirped pulse pulses propagate in fiber, the influence of the dispersion on the pulse is related to the initial chirp of the pulse, and we find that the dispersion length which is defined under Fourier transform limit pulse cannot evaluate the influence of the dispersion on the chirped pulse, so we redefine the dispersion length to evaluate the influence of the dispersion on the chirped pulse.
     3. We define the factor of distortion to evaluate the distortion of the pulse, numerically simulate and analyze the relations among the factor of distortion, critical length of propagation, critical power of the pulse and initial chirp of the pulse when second-order dispersion and nonlinear effect is considered. We simulate and analyze the influence of peak power of input pulse on the pulse spectrum.
     The innovative results in this thesis are as followings:
     1. We simulate the relation between initial chirp and dispersion, advance the dispersion length of the chirped pulse LDC to evaluate the influence of dispersion on the chirped pulse, and provide a scientific basis for evaluating the influence of the of dispersion in theory and engineering..
     2. We define factor of distortion to evaluate the distortion of the pulse, simulate and analyze the relations among Factor of Distortion, initial chirp and length of propagation. The results show: the distortion of the positive chirped pulse is less than that of the negative chirped pulse and fourier transform limit pulse when the peak power of the input pulses is the same; critical length decreases along with the input power increasing; for specified propagation length, critical power is linear with the initial chirp, compared with the negative chirped pulse , positive pulses are more sensitive to be affected by the fluctuation of the chirp; simulate and analyze the relations between peak power of the input pulse and spectrum width, point out that the spectral width is linear with input power when the input power is high.
引文
[1] Yu Haiwua, Jing Fenga, Wei Xiaofenga, et al. 2009. Status of prototype of SG-III High-Power Solid-State Laser[C]. Proc. of SPIE, Vol. 7131.
    [2] Zheng Wanguo, Zhang Xiaomin, Wei Xiaofeng, et al. 2008. Status of the SG-III Solid-State Laser Facility. Journal of Physics: Conference Series 112(2008) :Institute of Physics Publishing.
    [3]李锋,高功率激光器前端系统模拟设计[D],in物理系. 2006,中国科学技术大学:合肥
    [4] D. Pimentel, L. E. Hurd, A. C. Bellotti, et al. 1973. Food Production and the Energy Crisis [J]. Science Magazine.,182(4111): 443-449.
    [5] Y. Kozlovsky, M. M. Kozlov. 2002. Stalk Model of Membrane Fusion: Solution of Energy Crisis[J] .Biophysical Journal, 82(2): 882-895.
    [6] W. Fred Cottrell. 2009. Energy and Society: The Relation Between Energy, Social Change, and Economic development[R]. Author House, Bloomington , IN.
    [7] G. P. Hammond, Energy. 2000. Environment and Sustainable Development: A UK Perspective[J]. Institution of Chemical Engineers Trans IChemE, 78(Part B): 304-323
    [8] A. A. Bartlett. 1980. Forgotten fundamentals of the energy crisis. Journal of Geological Education [J], 28:4-35.
    [9] M. Tanzer. 1974. The energy crisis: World Struggle for power and wealth [M]. Monthly Review Press.
    [10] K. W. J. Barnham, M. Mazzer and B.Clive. 2006. Resolving the energy crisis: nuclear or Photovoltaics[J]. Nature, 25:161-164.
    [11] Sheng Zhou and Xiliang Zhang, Nuclear energy development in China: A study of opportunities and challenges, Energy(2009), doi:10.1016/j.energy.2009.04.020.
    [12] World Nuclear Association http://www.world-nuclear.org.
    [13] Vasilis M. Fthenakis and Hyung Chul Kim. 2006. Greenhouse-gas emission from solar electric- and nuclear power: A life-cycle study[J].35(4):2549-2557.
    [14] IAEA.国际原子能机构网站http://www.iaea.rog.
    [15] World Nuclear Association http://www.world-nuclear.org.
    [16] H. Hofmann, F. A. lvanyuk,C. Rummel, et al. 2001. Nuclear fission: The“onset of dissipation”from a microscopic point of view [J]. Physical review C, 64(054316).
    [17] Aleksandra Kelic, Maria Valentina Ricciardi, et al. 2007. Macroscopic-microscopic approach to the nuclear fission process[C]. International Conference on Nuclear Data for Science and Technology 2007.
    [18]胡济民,核裂变物理学[M].北京:北京大学出版社, 1999.
    [19] William E. Parkins. 2006. Fusion Power: Will It Ever Come? [J]. Science, 311:1380
    [20] M. H. Key. 2007. Status of and Prospects for the fast ignition inertial fusion concept [J]. Physics of Plasmas, 14(5):05502.
    [22] J. Team, J. Project, J. Undertaking. 1992. Fusion energy production from a deuterium–tritium plasma in the JET tokomak[J]. Nuclear Fusion, 32(2):187-203.
    [23] E. I. Moses, C. R. Wuest. 2005. The National Ignition Facility: laser performance and first experiments[J]. Fusion Science and Technology, 47(3):314-322.
    [24] M. C. Herrmann, M. Tabak and J. D. Lindl. 2001. A generalized scaling law for the ignition energy of inertial confinement fusion capsules[J]. Nuclear Fusion, 41(1):99-111
    [25] S. Nakai and K. Mima. 2004. Laser driven inertial fusion energy: present and prospective. Reports on Progress in Physics[J]. 67:321-349.
    [26]胡希伟. 1981.受控核聚变[M].北京:科学出版社
    [27]王淦昌. 2004.王淦昌全集第四卷:惯性约束核聚变.石家庒:河北教育出版社.
    [28] C. M. Brims, P. E. Stott. 2002. Nuclear fusion: half a century of magnetic confinement fusion research[M]. IOP Publishing Ltd
    [29] Stefano Atzeni, Jürgen Meyer ter Vehn. 2004. The Physics of Inertial Fusion: Beam Plasma Interaction Hydrodynamics, Hot Dense Matter [M]. Oxford Science Publications
    [30]张杰. 1998.浅谈惯性约束核聚变[J].物理,25(3):142-452
    [31]贺贤土,2000,惯性约束聚变研究进展和展望[J].核科学与工程, 20(3):248-251
    [32] John Lindl. 1995. Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain [J]. Physics of Plasmas, 2(11):1025-1117
    [33]孙景文,2001,高增益惯性约束聚变进展述评[J].维普资讯, 1:20-52
    [34] R. Betti, V. N. Goncharov, R. L. McCrory, et al. 1996. Self-consistent stability analysis of ablation fronts in inertial confinement fusion [J]. Journal of Plasma Physics, 3(5): 2122-2128
    [35]李锋. 2006.高功率激光器前端系统模拟设计[D], in物理系.合肥:中国科学技术大学
    [36] Erik storm. 1988. Approach to High Compression in Inertial Fusion. Journal of Fusion Energy[J]. 7(2):131-134
    [37] William J. Krauser, Nelson M. Hoffman, Douglas C. Wilson, et al. 1996. Ignition target design and robustness studies for the National Ignition Facility [J]. Physics of Plasmas, 3(5):2084-2093
    [38] E. M. Campbell, J. T. Hunt, E. S. Bliss, et al. 1986. Nova experimental facility(invited) [J]. Review of Scientific Instrument, 57(8):2101-2106
    [39] M. D. Rosen, D.W. Phillion, V. C. Rupert, et al. 1979. The interaction of 1.06μm laser radiation with high Z disk targets [J]. Physics of Fluids, 22(10):2020-2031
    [40] W. C. Mead, E. M. Campbell, K. G. Estabrook, et al. 1981. Laser-Plasma Interactions at 0.53μm for Disk Targets of Varying Z [J]. Physical Review Letter, 47(18):1289-1292
    [41]http://www.anthonares.nte/2006/02/imploding-pellets-fusion-and-the-worlds-biggest-laser.html
    [42] Steven W. Han, Stephen M. Pollaine, John D. Lindl, et al. 1995. Design and modeling of ignition targets for the National Ignition facility [J]. Physics of Plasmas, 2(6):2480-2487
    [43] Richard L. Schriever. 1987. Status of Inertial Confinement Fusion [J]. Journal of Fusion Energy, 6(4):371-389
    [44] Wayne R. Meier, William J. Hogan. 1986. Inertial fusion reseach at Lawrence Livermore National Laboratory: program status and future applications[C]. The Fourth International Conference on Emerging Nuclear Energy Systems, 1-20
    [45] M. Tabak, D. S. Clark, S. P. Hatchett, et al. 1994. Review of progress in Fast Ignition [J]. Physics of Plasmas, 12(5):057605
    [46] D. A. Callahan-Miller, M. Tabak. 2000. Progress in target Physics and design for heavy ion fusion[J]. Physics of Plasmas, 7(5): 2083-2091
    [47] H. Peng, XM Zhang, XF Wei, et al. 1999. Status of the SG-III solid state laser project[C], Proceeding of SPIE, 3492(25):25-33
    [48]希物,2006.国际核聚变研究开发的现状和发展趋势[J].中国核工业, 76(12):15-16
    [49] G. Ball, C. Holton, G. Hull-Allen, et al. 1994. 60mW 1.5μm single-frequency low-noise fiber laser MOPA[J]. IEEE Photonics Techonology Letters, 6(2):192-194
    [50] M. Dunne. 2006. A high-power laser fusion facility for Europe [J]. Nature Physics, 2(1):2-5
    [51] L. A. Rosocha, J. A. Hanlon, J. McLeod, et al. 1987. Aurora multikilojoule KrF laser system prototype for inertial confinement fusion[J]. Fusion Technology, 11(3):497-531
    [52] Y. Izawa, K. Mima, H. Azechi, et al. Laser Fusion Research with GEKKO-XII and PW laser System at Osaka.
    [53] XM Zhang, F Jing, Z. Shui. 1999. Preliminary design of Technical Integration Line(TIL) for the SG-III laser facility[C]. Proceeding of SPIE, 3492:877-883
    [54] J. A. Card, J. D. Bonlie, J. A. Britten, R. R. Cross, et al. 2004. Janus Intense Short Pulse(ISP), the next Ultrahigh Intensity Laser at LLNL[C]. 2004: UCRL-CONF-206931, Lawrence Livermore National Laboratory(LLNL), Livermore, CA.
    [55] G. J. Suski, F. W. Hollyway. 1979. The evolution of a large control system-From Shiva to Nova[C]. IEEE Circuits and Systems Magazine, 1: 3-10
    [56] E. I. Moses. 2001. The National Ignition Facility: Status and Plans for Laser Fusion and High-Energy-Density Experimental Studies. Arxiv preprint physics, 2001:UCRL-JC-142223
    [57] A. Revision, System Operations Manual Volume I: System Description Chapter 5:Optomechanical System, 1989
    [58] Y. Kitagawa, Y. Sentoku, S. Akamatsu, et al. 2002. Progress of fast ignitor studies and Petawatt laser construction at Osaka University[J]. Physics of Plasmas, 9(5):2202-2207
    [59] N. Miyanaga, H. Azechi, T. Jitsuno, et al. Development of 10-kJ PW Laser for the FIREX-I Program. 2008: IF/P5-2
    [60] A. F. Aushev, V. G. Borodin, I. A. Bubnov, et al. 2003. Remote adjustment system for the Luch for-channel Nd-glass laser apparatus[J]. Journal of Optical Technology, 70(4): 267-273
    [61]刘华,叶金祥,夏彦文等. 2000.星光II装置激光能量测量实时采集和数据传输系统[J].强激光与粒子束, 12(1): 35-38
    [62] H.S. Peng, Z. J. Zheng, B. H. Zhang, et al. 2004. Direct-drive implosion experiments on the SG-II laser facility [J]. Journal of Fusion Energy, 19(1):81-85
    [63]沈为民,吴泉英,薛鸣球. 2004.神光III强激光光束远场诊断系统光学设计[J].光子学报, 8:964-969
    [64] P. J. Wisoff, M. W. Bowers, G. V. Evbert, et al. 2004. NIF injection laser system [C]. Proceeding of SPIE, 5341:146-155
    [65] S. Matsuoka, N. Miyanaga, A. Ando, et al. 1995. Flexible pulse shaping of partially coherent light on GEKKO XII [C]. Monterey, CA, USA:Proceeding of SPIE
    [66]林尊琪,王世绩,范滇元等. 2002. 8路神光II装置在基频和三倍频条件下工作研究进展.强激光与粒子束[J], 14(3):403-407
    [67] M. Tabak, D. S. Clark, S. P. Hatchett, et al. 2005. Review of progress in Fast Ignition[J]. Physics of Plasmas, 12(5):057305
    [68] J. Wang, H. Lin, Z. Sui, et al. 2006. Temporal pulse shaping by chirped stacking in fiber time delay lines[C]. Proceeding of SPIE, 6287:62870G
    [69] H. Lin, Z. Sui, J. Wang, et al. 2007. Nanosecond-shaped optical pulse generation based on integrated all fiber systems[C]. Laser and Electro-optics 2007 and the International Quantumn Electronics Conference. DLEOE-IQEC 2007. European Conference on. 2007
    [70] W. E. Martin, B. C. Johnson, K. R. Guinn, et al. 1977. Optical Pulse Shaping For Laser Fusion Experiments [C]. Laser Focus with Fiber optic Technology, 13(6):44-48
    [71] P. A. Franken, A. E. Hill, C. W. Peters, et al. 1961. Generation of optical harmonics [J]. Physical Review Letters, 1961, 7(4):118-119
    [72] A. Hasegawa, F. Tappert. 1973. Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers II. Normal dispersion[J]. Applied Physics Letters, 23(4):171-172
    [73] R. H. Stolen, L. F. Mollenauer, W. J. Tomlinson. 1983. Observation of pulse restoration at the soliton period in optical fibers [J]. Optics Letters, 8(3):186-188
    [74] D.Marcuse, J. M . Wiesenfeld. 1984. Chirped picosecond pulses:evaluation of the time-dependent wavelength for semiconductor film lasers[J]. Applied Optics, 23(1):74-82
    [75] Hiroki Nakatsuka, D. Grischkowsky, A. C. Balant. 1981. Nonlinear Picosecond-Pulse Propagation through Optical Fibers with Positive Group velocity Dispersion[J]. Physical Review Letters, 47: 910-913
    [76] C. V. Shank, R. L. Fork, R. Yen, R. H. Stolen. 1982. Compression of femtosecond optical pulses [J]. Applied Physics letters, 40:761-763
    [77] B. P. Nelson, D. Cotter, K. J. Blow. 1983. Large nonlinear pulse broadening in long lengths of monomode fiber[J]. Optics Communications, 48(4):292-294
    [78] D. Grischkowsky, A. C. Balant. 1982. Optical pulse compression based on enhanced frequency chirping[J]. Applied Physics Letters, 41:1-3
    [79] W. J. Tomlinson, R. H. Stolen, C. V. Shank. 1984. Compression of optical pulse chirped by self-phase modulation in fibers[J]. 1(2):139-149
    [80] R. Meinel. 1983. Generation of chirped pulses in optical fibers suitable for an effective pulse compress[J]. Optics Communications, 47(5):343-346
    [81] Govind P. Agrawal. 2005. Nonlinear Fiber Optics[M], 3rd ed. Singapore: Elsevier Pte Ltd.
    [82]石顺祥,陈国夫,赵卫等. 2003.非线性光学[M].西安:西安电子科技大学出版社
    [83]钱士雄,王恭明. 2005.非线性光学[M].上海:复旦大学出版社
    [84] E. D. Watkins, John D. Teasdale. 2001. Rumination and overgeneral memory in depression:Effects of self-focus and analytic thinking [J]. Journal of Abnormal Psychology, 110(2): 353-357
    [85] Kildal, H., Mikkelsen, J. C. 1973. The nonlinear optical coefficient, phasematching and optical damage in the chalcopyrite AgGaSe2 [J]. Optics Communications, 9(3):315-318
    [86] M. Oberthaler, R. A. Hopfel. 1993. Special narrowing of ultrashort pulses by self-phase modulation in optical fibers [J]. Applied Physics letters, 63(8):1017-1019
    [87] H. E. Lassen, F. Mengel, B. Tromborg, N. C. Albertsen. 1985. Evolution of chirped pulses in nonlinear single-mode fibers[J]. Optics Letters, 10:34
    [1] Govind P. Agrawal. 2001. Nonlinear Fiber Optics[M], 3rd ed. Singapore: Elsevier Pte Ltd.
    [2]钱士雄,王恭明,2001,非线性光学:原理与进展[M].上海:复旦大学出版社
    [3]郭硕鸿. 1995.电动力学.北京:高等教育出版社
    [4] P. N. Bucher, D. N. Cotter. 1990. The Elements of Nonlinear Optics[M]. Cambridge, UK: Cambridge University Press
    [5]石顺祥,陈国夫,赵卫等. 2005.非线性光学[M].西安:西安电子科技大学出版社
    [6] Y. R. Shen. 1984. The Principles of Nonlinear Optics[M]. John Wiley & Sons, Inc.
    [7] J. A. Armstrong, N. Bloembergen, J. Ducuing, et al. 1962. Interactions between Light Waves in a Nonlinear Dielectric[J]. Physical Review, 127(8):1918-1939
    [8] G. P. Agrawal, in Supercontinum Laser Source, R. R. Alfano, ed. 1989, Springer-Verlag, Heidelberg
    [9] H. A. Haus. 1984. Waves and Fields in Optoelectonics[M]. Prentice-Hall,Englewood Cliffs.
    [10] K. J. Blow and D. Wood. 1989. Theoretical description of transient stimulated Raman scattering in optical fibers [J]. IEEE Journal of Quantum Electronics, 25:1212,2665-2673
    [11] P. V. Mamyshev, S. V. Chernikov. 1990. Ultrashort-pulse propagation in optical fibers[J]. Optics Letters, 15(19):1076-1078
    [12] P. M. Morse, H. Feshbach. 1953. Methods of Theoretical Physics[M]. New York: McGraw-Hill
    [13]明海,张海平,谢建平. 1998.光电子技术[M].合肥:中国科学技术大学出版社
    [14] R. H. Stolen, J. P. Gordon. 1989. Raman response function of silica-core fibers[J]. Journal of Optical Society of America, 6(6):1159-1165
    [15] S. V. Chernikov, P. V. Mamyshev. 1991. Femtosecond soliton propagation in fibers with slowly decreasing dispersion [J]. Journal of optical Society of America B8, 8(8):1633-1641
    [16] R. H. Stolen. 1992. Effect of the Raman part of the nonlinear refractive index on propagation of ultrashort optical pulses in fibers[J]. Journal of optical Society of America B, 9(9):565-573
    [17] R. H. Stolen, J. P. Gordon, W. J. Tomlinson, et al. 1989. The Raman response function of silica-core fibers[J]. Journal of optical Society of America B, 6:1159-1166
    [18] R. W. Hellwarth, J. Cherlow, T. Yang. 1975. Origin and frequency dependence of nonlinear optical susceptibilities of glasses [J]. Physics Review B, 11:964-967
    [19] Clifford Headley, III, Govind P. Agrawal. 1995. Noise Characteristics and Statistics of Picosecond Stokes Pulses Generated in Optical Fibers Through Stimulated Raman Scattering[J]. IEEE Journal of Quantum, Electronics, 31(13):2058-2067
    [20] M. Schubert, B. Wilheimi. 1984. Nonlinear Optics and Quantum Electronics[M]. New York: Wiley
    [21] Y. Kodama, K. Nozaki. 1987. Soliton interaction in optical fiber[J]. Optics Letters,12(12): 1038-1040
    [22] http://encyclopedia2.thefreedictionary.com/chirped+pulse
    [23] D. Marcuse. 1981. Pulse distortion in single-mode fibers. 3:Chirped pulse[J]. Applied Optics, 20(20):3573-3579
    [24] V.E. Zakharov, A.B. Shabat. 1972. Exact theory of two dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media[J]. Physics-JETP, 34:62-69
    [25] P.L. Nash and L.Y Chen. 1997. Efficient difference solutions to the time-dependent Schr?dinger Equation[J]. Journal of Computational Physics, 130:266-268
    [26] Christian Lubich. 2008. On Spliteting Methods for Schr?dinger-Poisson and Cubic Nonlinear Schr?dinger equations[J]. Mathematics of Computation, 77(264):2141-2158
    [27] J. M. Sanz-Serna, V. S. Manoranjan. 1983. A Method for the integration in time of certain partial differential equations[J]. Journal of computational Physics, 52:273-289
    [28] T.E. Simos. 1990. A four-step method for the numerical solution of the Schr?dinger equation[J]. Journal of Computational and Applied Mathematics, 30:251-255
    [29] Thiab R. Taha, Mark J. Ablowriz. 1984. Analytical and Numerical Aspects of Certain Nonlinear Evolution Equations. II. Numerical, Nonlinear Schr?dinger Equation[J]. Journal of Computational Physics, 55(2):203-230
    [30]吴涛,王世芳. 2006.高阶非线性效应对啁啾高斯光脉冲传输的影响[J].武汉化工学院学报, 28(3):83-86
    [31] Oleg V. Sinkin, Member, IEEE, Ronald Holzl?hner, et al. 2003. Optimization of theSplit-Step Fourier Method in Modeling Optical-Fiber Communications Systems[J]. Journal of Lightwave Technology, 21(1):61-68
    [32] T. T. Meirelles, A. A. Rieznik, H. L. Fragnito. 2005. Study on a New Split-step Fourier Algorithm for Optical Fiber Transmission Systems Simulations[C].
    [33] Xueming Liu. 2009. Adaptive higher-order Fourier algorithm for simulating lightwave propagation in optical fiber[J]. Optics Communications, 282:1435-1439
    [34] Mankei Tsang, Demetri Psaltis.2003. Reverse propagation of femtosecond pulses in optical fibers[J]. Optics Letters, 28(20):1873-1875
    [35] Thiab R. Taha, Mark J. Ablowitz. 1984. Analytical and Numerical Aspects of Certain Nonlinear Evolution Equations. III. Numerical, Korteweg-de Vries Equation[J]. Journal of Computational Physics, 55(2):231-253
    [36]蒋长锦,蒋勇. 2004.快速傅里叶变换及其C程序[M].合肥:中国科学技术大学出版社
    [1]明海,张国平,谢建平. 1998.光电子技术[M].合肥:中国科学技术大学出版社
    [2] Govind P. Agrawal,. 2001. Nonlinear Fiber Optics[M], 3rd ed. Singapore: Elsevier(Singapore) Pte Ltd.
    [3]纪帆. 2008.高功率激光器前端系统关键物理问题[D],博士学位论文,合肥:中国科学技术大学
    [4] Huan Zheng, Anting Wang, Lixin Xu, et al. 2010. Stability analysis of linearly chirped Guassian pulse stacking in laser plasma reaction[J]. Chinese Opticas Letters, 8(2):248-252
    [5] D. Marcuse. 1980. Pulse distortion in single-mode fibers[J]. Applied Optics, 19(10):1653-1660
    [6] D. Marcuse, 1981. Pulse distortion in single-mode fibers. 3:Chirped pulses[J]. Applied Optics, 20(20):3573-3579
    [7] D. Marcuse,. 1981. Pulse distortion in single-mode fibers. Part 2[J]. Applied Optics, 20(17): 2963-2974
    [8] Govind P. Agrawal. 2002.非线性光纤光学原理及应用,第三版中文译本,北京:电子工业出版社
    [9] Joseph W. Goodman. 2006.傅立叶光学导论,第三版中文译本,北京:电子工业版社
    [1]石顺祥,陈国夫,赵卫等. 2005.非线性光学[M].西安:西安电子科技大学出版社
    [2] P. J. Wisoff, M. W. Bowers, G. V. Erbert, et al. 2004. NIF Injection Laser System[C]. Proceeding of SPIE, San Jose,Ca, USA
    [3]明海,张国平,谢建平. 1998.光电子技术,北京:中国科学技术大学出版社
    [4]纪帆. 2008.高功率激光器前端系统关键物理问题与关键技术研究[D],in物理系.合肥:中国科学技术大学
    [5]李峰. 2006.高功率激光器前端系统模拟设计[D]. in物理系.合肥:中国科学技术大学
    [6] F. Shimizu, 1967. Frequency broadening in liquids by a short light pulse[J]. Physical Review Letters, 19(19):1097-1100
    [7] R. H. Stolen and Chinlon Lin. 1978. Self-phase-modulation in silica optical fibers[J]. Physical Revies A, 17(4):1448-1453
    [8] F. DeMartini, C.H. Townes, T. K. Gustafson, et al. 1967. Self-Steepening of Light Pulses[J]. Physical Review, 164(2):312-323
    [9] D. Mihalache, N. Truta, L. C. Crasovan. 1997. Painlevéanalysis and bright solitary waves of the higher-order nonlinear Schr?dinger equation containing third-order dispersion and self-steepening term[J]. Physical Review, 56(1):1064-1070
    [10] L.A.Ostrovskii, 1967. Propagation of Wave Packets and Space-time Self-focusing in a Nonlinear Medium[J]. Soviet Physics JETP, 24:797
    [11] D.Grischkowsky, Eric courtens, J.A.Armstrong. 1973. Observation of Self-Steepening of Optical Pulses with Possible Shock Formation [J]. Physical Review Letters, 32(7):422-425
    [12] Jeffrey Moses, Frank W. Wise. 2006. Controllable Self-Steepening of Ultrashort Pulses in Quadratic Nonlinear Media[J]. Physical Review Letters, 97(7):073903
    [13] J. R. de Oliveira, Marco A. de Moura, J. Miguel Hickmann, et al. 1992. Self-steepening of optical pulses in dispersive media [J]. Journal of Optical Society of America B,9(11):2025-2027
    [14] Govind P. Agrawal. 2005. Nonlinear Fiber Optics[M], 3rd ed. Singapore: Elsevier Pte Ltd.
    [15] F. X. Kartner, D. J. Dougherty, H. A. Haus, et al. 1994. Raman noise and soliton Squeezing. Optical Society of America B, 11(7):1267-1275
    [16] N. Tzoar, M. Jain. 1981. Self-phase modulation in long-geometry optical waveguides[J]. Physical Review A, 23(3):1266-1270
    [17] H. Henderson. 1978. Theoretical maximum efficiencies for passive optical pulse shaping systems [J]. Journal of optical Society of America, 68: 919-924
    [18] T. Kanable, M. Nakatsuka, Y. Kato, et al. 1986. Coherent stacking of frequency-chirped pulses for stable generation of controlled pulse shapes [J]. Optics Communications, 58(3):206-210
    [19] Jianjun Wang, Honghuan Lin, Zhan Sui, et al. 2006. Temporal pulse shaping by chirped pulse stacking in fiber time delay lines[C]. Proceedings of SPIE, 6287
    [20] S. Matsuoka, N. Miyanaga, A. Ando, et al. 1995. Flexible pulse shaping of partially coherent light on GEKKO XII[C]. Proceedings of SPIE, Monterey, CA, USA
    [21] Li Feng, Ji Fan,X. Lü, et al. 2007. Shaping ability of all fibers coherent pulse stacker[J]. Optics and laser Technology, 39(6):1120-1124
    [22] W. Martin and D. Milam. 1976. Interpulse interference and passive laser pulse shapers[J]. Applied Optics, 15(12):3054-3061
    [23] Huang Xiu-jiang, Liu Yong-zhi, Sui Zhan, et al. 2005. Research on Yb3+-doped Mode-locked Fiber Ring Laser[C]. Proceedings of SPIE, 5623:679-682
    [24] Huang Xiu-jiang, Liu Yong-zhi, Sui Zhan, et al. 2005. Design of Highly doped Yb fiber ring laser[C]. Proceedings of SPIE
    [25]郑欢. 2009.高功率激光器前端系统啁啾脉冲堆积技术的研究[D], in物理系.合肥:中国科学技术大学
    [26] G. Agrawal, 2001. Applications of nonlinear fiber optics[M]. Academic Press.
    [27] G. Agrawal and R. Boyd, Nonlinear fiber optics[M]. 2001:Springer
    [28] R. Kashyap, Fiber Brag gratings[M]. 1999:Academinc Press
    [29] Govind. P. Agrwal, Senior member, IEEE, et al. 1989. Self-Phase modulation and spectral Broadening of Optical Pulse in Semiconductor Laser Amplifiers[J]. IEEE Journal of Quantum Electronics, 25:2297-2306
    [30] H. Zheng, L. Xu, A. Wang, et al. 2010. Stabilility Analysis of Linearly Chirped Gaussian Pulse Stacking in the Laser Plasma Reaction[J]. Chinese optics Letters, 8(2) 248-252
    [31] Zeng shu guang, Li Kun, Zhan Bin. 2008. Third Harmonic Generation of Broadband ShapingPulse by Chirped Pulse Stacking Method [J]. Optics & Optoelectronic Technology, 6(2):88-92
    [32]钱士雄, 2001.非线性光学:原理与进展[M].上海:复量大学出版社
    [33] Schneider, Ehomas. 2007. Nonlinear optics in telecommunications[M].北京:科学出版社
    [34] M. Oberthaler, R. A. H?pfel, 1993. Special narrowing of ultrashort laser pulses by self-phase modulation in optical fibers[J]. Applied Physical Letters, 63(8):1017-1019
    [35] D. Marcuse, 1980. Pulse distortion in single-mode fibers [J]. Applied Optics, 19(10):1653-1660
    [36] S. C. Pinault and M. J. Potasek. 1985. Frequency broadening by Self-phase modulation in optical fibers[J]. Journal of the Optical Society of America, 2(8):1318-1319

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700