酸性蛋白酶基因在毕赤酵母及黑曲霉中的表达
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
酸性蛋白酶是一种能在酸性环境下水解蛋白质的酶类,其最适作用pH值为2.5~5.0。由于酸性蛋白酶具有较好的耐酸性,因此被广泛地应用于食品、医药、轻工、皮革工艺以及饲料加工工业中。宇佐美曲霉是工业化生产酸性蛋白酶的主要菌种,但是酸性蛋白酶的表达受碳源和氮源阻遏的调控和蛋白质的诱导,并受严格的pH控制,导致其发酵条件不易控制,发酵酶活不稳定。利用宇佐美曲霉工业化生产酸性蛋白酶的酶活还有待进一步提高。
     真核生物表达系统是高效表达蛋白的有效手段。酵母作为表达外源蛋白的工程菌日益受到重视。它具有基因表达调控和蛋白修饰功能,克服了原核表达系统中产物活性低以及包涵体的变性、复性等的问题。而且,酵母可以通过高密度发酵,且分泌产物与天然蛋白相似,临床应用较安全。同样黑曲霉卓越的表达和分泌能力也一直是吸引人们的最大特点。并具有真核分泌机制,很可能还具有与哺乳动物系统相似的蛋白修饰性能,如高甘露糖型和N-糖基化等,也是表达真核基因的理想系统。通过基因工程手段在酵母和黑曲霉中高效表达酸性蛋白酶,对于简化发酵条件、提高酶制剂产量都具有重要意义。
     本研究以酸性蛋白酶基因生产菌种宇佐美曲霉为基因供体,克隆酸性蛋白酶基因(pepA),构建其毕赤酵母表达载体,并通过电击法转化毕赤酵母,以获得高效表达酸性蛋白酶的工程菌。同时,试图通过农杆菌介导法敲除糖化酶生产菌黑曲霉的pyrA基因和ku70基因,获得黑曲霉受体菌,并构建农杆菌介导的pepA基因同源重组载体,为黑曲霉表达系统的建立和实现pepA基因在黑曲霉中的高效表达奠定基础。
     主要研究成果如下:
     1.基因的克隆
     采用RT-PCR方法克隆得到了宇佐美曲霉pepA基因的cDNA序列,采用PCR方法克隆得到了黑曲霉pyrA基因,黑曲霉ku70基因5′和3′同源臂基因,黑曲霉glaA基因启动子和终止子,瑞氏木霉pyrG基因,以及宇佐美曲霉pepA基因。测序结果正确。
     2.酸性蛋白酶基因在毕赤酵母中的表达
     构建了pepA基因的毕赤酵母表达载体pGAPHαm-pepAc。将载体线性化并通过电击转化毕赤酵母。经转化子PCR鉴定得到重组子GS115-pGAPHαm-pepAc。在最适发酵条件下,GS115-pGAPHαm-pepAc分泌表达的酸性蛋白酶最高酶活为1289.68u/mL。
     3.黑曲霉表达载体构建
     构建了pyrA、ku70、glaA、pepA基因的相关载体pEMT-pyrA,pEMT-△pyrA,pEMT-△kusA,pEMT-△kusA-pyrG,pEMT-△glaA-pepA,并将这些载体通过冻融法转入到根癌农杆菌GV3101中,以用于下一步转化黑曲霉。
     4.黑曲霉pyrA基因缺失突变菌株的构建
     以黑曲霉UV48为受体材料,利用农杆菌介导法将表达载体pEMT-△pyrA对黑曲霉进行遗传转化。筛选培养基中加入5-氟乳清酸,获得了一些抗性菌株,但经过PCR鉴定后,发现这些抗性菌株并非pyrA基因缺失突变菌株。此实验在进一步进行中。
Acidic protease is an enzyme which can hydrolyze proteins in the acidic environment, and the optimum pH is from 2.5 to 5.0.As has good acid resistance, Acidic protease is widely used in food, medicine, light industry, leather technology and forage processing industry. Aspergillus usamii is the main species in the industrial production of acid protease, but the expression is regulated by the deter at cabon and nitrogen, induced by proteins, and controlled by the pH. The result is that it is difficult to control the ferment condition and the activity is unstable.In addition, the activity of acid protease produced in Aspergillus usamii needs to be further improved.
     Eukaryotic expression system is an effective method in the efficient expression of proteins. Yeast as an engineering strain has received more and mor attention. It has the functions that regulates gene expression and modifies proteins. Meanwhile it overcomes the questions of low activity, denaturation and renaturation of Inclusion body, and so on. Moreover, it could be high-density fermented and the product is similar to natural proteins. The clinical application is safe. Aspergillus niger has been more and more attractive because of the excellent expression and secretion ability. It has the eukaryotic secretion mechanism and may also has the protein modification performance, such as high mannose-type and N-glycosylation. It is an ideal expression system for eukaryotic gene. Efficient expression of acidic protease in yeast and Aspergillus niger by means of genetic engineering has important significance in simplifing the fermentation conditions and increasing the production.
     In this study, cloned pepA gene with gene donor Aspergillus usamii, then constructed yeast expression vector, transformated into Pichia pastoris by electroporation, and got engineering strain that express acidic protease gene effectively. Meanwhile, tried to obtain Aspergillus niger as the acceptor with the pyrA gene and kusA gene disrupted mediated by Agrobacterium, and constructed homologous recombination vector of pepA. Laied the basis for establishing the Aspergillus niger expression system and achieving the efficient expression of pepA gene in Aspergillus niger. The major results were as follows:
     1. Cloning of genes
     The cDNA sequence of pepA gene was cloned from Aspergillus usamii by RT-PCR. PyrA gene, 5' and 3' homologous arm of ku70 gene, promoter and terminator of glaA gene were cloned from Aspergillus niger by PCR. PyrG and pepA genes were cloned from Trichoderma reesei and Aspergillus usamii respectively using PCR. The sequences of these genes were right.
     2. The expression of pepA gene in Pichia pastoris
     Pichia pastoris expression vector pGAPHαm-pepAc was constructed. The linear expression vectors were transformed into Pichia pastoris by electroporation. Transformants were identified by PCR: GS115-pGAPHαm-pepAc. Under optimum fermentative condition, the activity of the acid protease expression was 1289.68u/mL.
     3. Construction of Aspergillus niger expression vectors
     Five Aspergillus niger expression vectors were constructed, incuding pEMT-pyrA、pEMT-△pyrA、pEMT-△kusA、pEMT-△kusA-pyrG、pEMT-△glaA–pepA,and then were translated into Agrobacterium GV3101 for Aspergillus niger transformation.
     4. Construction of the pyrA gene disruption mutant in Aspergillus niger
     The expression vector pEMT-△pyrA was transferred into Aspergillus niger UV48 mediated by Agrobacterium Tumefaciens. At the stage of screening, 5-FOA was added in screening medium.Some resistant mutants were obtained via screening. However, these were not pyrA gene disruption mutants by PCR identified. The study is still in research.
引文
曹亚彬,郭丽妹,王惠民.2000.饲料用酸性蛋白酶研究[J].饲料工业,21(l0):23~25
    陈汉春,彭兴华.2003.Rad51同系物与DNA重组修复.国外医学遗传学分册,(4):194~197
    韩雪清,刘湘涛,尹双辉.2003.毕赤酵母表达系统.Journal of Microbiology,23(4):35~40
    黄亚丽,叶婧,蒋细良,朱昌雄.2007.真菌遗传转化系统的研究进展.微生物学通报,234 (6):1213~1217
    李刚,王强,刘秋云,李宝健.2004.利用PEG法建立药用真菌灵芝的转化系统.菌物学报,23 (2) :255~261
    李乃强,潘中明,潘军华,张星元.2000.碳源、氮源和pH对酸性蛋白酶表达的调控[J].粮食与饲料工业,(10):34~36
    李永泉.2001.羊毛生物整理复合酶高产菌的激光选育[J].菌物系统,20(2):196~200
    刘德辉,黄毓茂,徐蕙.2010.丝状真菌异源蛋白高效表达的研究进展.中国生物制品学杂志,23,(4):221~224.
    刘华,李敏.2002.基因重组蛋白质的表达系统与分离纯化研究进展.福建师范大学学报(自然科学版) ,23(1):100~104
    刘西梅,安立国,乔宪凤等.2008.毕赤酵母表达猪胃蛋白酶的研究.华中师范大学学报,42(3):426~340
    马元兴,谭建华,朱平,等.2003.巴斯德毕赤酵母(Pichia pastoris)表达系统及其在外源蛋白生产中的优势与应用前景[J].中国兽医学报,23(1):98~101
    王彦荣,孟祥春,许丽霞,姜淑荣等.2003.酸性蛋白酶生产与应用的研究[J].酿酒(5:)16~18
    王政逸,王秋华.2003.根癌土壤杆菌介导的丝状真菌转化.菌物系统, 22(2): 339~344
    邬显章. 1988.酶的工业生产技术.吉林:吉林科技出版社, 443~445
    肖竞,孙建议,李卫芬.2003.酸性蛋白酶及其在畜牧业中的应用[J].营养研究,(3):27~29
    杨长得,刘刚,郑易之.2006.根疮农杆菌在丝状真菌转化中的应用[J].生物技术讯,17:784~787
    杨丰科,姜萍,李思东,王守满.2009.丝状真菌基因工程进展.氨基酸和生物资源,31(1):25~28
    姚斌,张春义,王建华,范云六,史秀云,王亚茹,李淑敏.1998.产植酸酶的黑曲霉菌株筛选及其植酸酶基因克隆.农业生物技术学,6(1):1~6
    长孙东亭,罗素兰,严建燕等.2006.基因枪法介导GNA基因遗传转化甘蔗的研究[J].生物技术,16(3):55~57
    张桂芝,武彬,井庆川等.2009.微小毛酶凝乳酶的基因克隆及在毕赤酵母GS115中的表达.山东农业科学,(11):1~4
    张文荟,周益军,范兆坚.2002.稻瘟病菌限制酶介导整合(REMI)转化的致病性诱变[J].南京师大学报(自然科学版),25(2):17~21
    赵华,赵树欣,张维.1997.酒精发酵中应用酸性蛋白酶的研究[J].食品与发酵工业,23(2):26~28
    郑立运,方先珍.2005.酵母表达系统最新研究进展.郑州牧业工程高等专科学校学报,25(4):250~253
    钟耀华,王晓利,汪天虹.2008.丝状真菌高效表达异源蛋白研究进展.生物工程学报,24(4):531~540.
    周长林,陈光明,邵雷,等.2006.重组Pichia pastori高密度培养和表达过程的溶氧调控[J].药物生物技术, 13(1),20~23
    周恒刚.1998.酸性蛋白酶在酿酒上的功用[J].酿酒科技,(6):15
    Barley A M,Mena G L,Herrera-Estrella L.1993.Transformation of four pathogenic Phytophthora spp.by microprojectile bombardment on intact mycelia.Curr Genct,23:42~46
    Benoit Lacroix,Tzvi Tzfira,Alexander Vainstein,et al.2006.A case of promiscuity: Agrobacterium's endless hunt for new partners.Trends in Genetics,22 (1) :29~38
    Bhadury P,Mohammad B,et al.2006.The current status of natural products from marine fungi and their potential as anti-infective agents.J Ind Microbiol Biotech,33(5):325~327
    Bills SN,Ricehter DL,Podila GK.1995.Genetic transformation of the ectomycorrhizal fungus Paxillus involutus by particle bombardment.Mycol Res,99:557~561
    Biotechnol,76:945~950Caroline B.Michielse,Paul J.J.Hooykaas,Cees A.M.J.J. van den Hondel,Arthur F.J.Ram.2005.Agrobacterium -mediated transformation as a tool for functional genomics in fungi. Curr Genet, 48: 1~17
    Bok JW,Hoffmeister D,et al.2006.Genomic mining for Aspergillus natural products.Chem Biol ,13(1):31~37
    Cary JW,Ehrlich KC.2006.Aatoxigenicity in Aspergillus:molecular genetics,phylogenetic relationships and evolutionary implications.Mycopathologia,162(3):167~177
    Cereghino,J L.and cregg,J.M. 2001.Heterologous protein expression in the methylotrophic yeast pastoris.FEMS micrrobiol.Rev. 24,45~66
    Charley Christian Staats & Angela Junges &Mariana Fitarelli & Marcia Cristina Furlaneto & Marilene Henning Vainstein & Augusto Schrank. 2007.Gene inactivation mediated by Agrobacterium tumefaciens in the filamentous fungi Metarhizium anisopliae. Appl Microbiol Biotechnol ,76:945~950
    Davidson RC,Cruz MC,Sia RAL,Allen BM,Alspaugh JA,Heitman J.2000.Gene disruption by biolistic transformation in serotype D strains of Cryptococcus neoformans.Fungal Genet Biol,29(1):38~48
    De GrootMJA,Bundock P,HooykaasPJJ.1998.Agrobacterium tumefciens-mediated transformation of filamentous fung.i [J]Nature Biotechno,16: 839~842
    Flowers JL,Vaillaneourt IJ.2005.Parameters affecting the efficiency of Agrobacterium tumefaciens-mediated transformation of Colletirichum graminicoia[J].Curt Genet,48:380~388
    Gardiner DM,Howlett BJ,2004.Negative selection using thymidine kinase increases the efficiency of recovery of transformants with targeted genes in the filamentous fungus Leptosphaeriamaculans.Curr Genet,45(4):249~255
    Gonzalez-Santos JM,Cao H,Wang A,Koehler DR,Martin B,Navab R,Hu J.2005.A complementation method for functional analysis of mammalian genes.Nucleic Acids Res,33(10):e94
    Gouka R J,Punt P J,van den Hondel CAMJJ.1997. Efficient production of secreted proteins by Aspergillus: progress, limitations and prospects .Appl Micro Bio,47:1~11
    Haarmann T, LorenzN, Tudzynski P.2008. Use of a nonhomologous end joining deficient strain (Δku70) of the ergot fungusClaviceps purpurea for identification of a nonribosomal peptide synthetase gene involved in ergotamine biosynthesis. [J]FungalGenetBiol, 45: 35~44
    Jochl C,Loh E,Ploner A,et al.2009.Development-dependent scavenging of nucleic acids in the filamentous fungus Aspergillus fumigatus.RNA Biol,6(2):179~186
    Katherine F,Dobinson SJ,Grant SK.2004.Cloning and targeted disruption,via Agrobacterium tumefaciens-mediated transformation,of a trypsin protease gene from the vascular wilt fungus Verticillium dahliae.Curr Genet,45:104~110
    Khang CH,Park SY,Lee YH,Kang SC.2005.A Dual selection based,targeted gene replacement tool for Magnaporthe grisea and Fusarium oxysporum.Fungal Genet Biol,42(6):483~492
    Kostyantyn V. Dmytruk, Andriy Y. Voronovsky, Andriy A, et al.2006. Insertion mutagenesis of the yeast Candida famata (Debaryomyces hansenii) by random integration of linear DNA fragments.Curr Genet,50:183~191
    KressMR, SavoldiM, GoldmanMH, HartlA.2006.A powerful tool for analyzing pathogenicity inAspergillus fumigatus. [J]EukaryotCel,5: 207~211
    Lakrod K.,Chaisrisook C.2003.Transformation of Monascus purpureus to hygromyein B resistance with cosmid pMOcosX reduces fertility[J].Electronic Journal of Biotechnology,6(2):143~147
    Left.1997.Lactase from the white-rot fungs trametes versieolor:cDNA cloning of lccl and expression in Pichia pastoris[J].Curr Gene,32:425~430
    MacKenzie DA,Guillemette T,et al.2005.UPR-independent dithiothreitol stress-induced genes in Aspergillus niger.Mol Genet Genomics,274(4):410~418
    Mala B R,Aparna M T,Mohini SG,Vasanti V D.1998.Molecular and biotechnological aspects of microbial proteases[J].Mierobiology & Molecular Biology Reviews,62(3):597~635
    Mare W T,et al.1999.High yield secretion of recombinant gelations by Pichia pastoris.Yeast,15:1087~1096
    Martin Schro¨der.2008. Engineering eukaryotic protein factories. Biotechnol Lett ,30:187~196
    Meyer V.2008.Genetic engineering of filamentous fungi-progress,obstacles and future trends.Biotechnol Adv,26(2):177~185
    Michael JO'Donohue,et al.1996.Over expression in Pichia Pastries and crystallition of an allcidor protein secreted by the phytopathogenic fungus.Protein Expression andPurification,8:254~261
    Michielse CB,Hooykaas PJ,van den Hondel CA,Ram AF.2005.Agrobacterium-mediated transformation as a tool for functional genomics in fungi. Curr Genet,48(1):1~17
    Miin-Huey Lee 54 Richard M. Bostock. 2006. Agrobacterium T-DNA-mediated integration and gene replacementin the brown rot pathogen Monilinia fructicola. Curr Genet,49: 309~322
    Moralejo F J,Cardoza R E,Gutierrez S,et al.2002.Silencing of the as pergillopepsin B(pepB)gene of Aspergillus awamori by antisense RNA expression or protease removal by gene disruption results in a large increase in thaumatin production.Appl Environ Microbiol,68(7):3550~3551
    Naoki T.2009.Response to hypoxia,reduction of electron acceptors,and subsequent survival by filamentous fungi.Biosci Biotechnol Biochem,73(1):1~8
    Natsume T,Egusa M,Kodama M,Johnson R,Itoh T,Itoh Y.2004.An appropriate increase in the transcription of Aspergillus nidulans uvsC improved gene targeting efficiency. Biosci Biotechnol Biochem,68(8):1649~1656
    Nayak T,Szewczyk E,Oaklay C E,et al.2005.A versatile and efficient gene targeting system for Aspergillus nidulans[J].Genetics, 172:1557~1566
    Oda K,Kakizono D,et al.2006.Proteomic analysis of extracellular proteins from Aspergillus oryzae grown under submerged and solid-state culture conditions.Appl Environ Microbiol,72(5):3448~3457
    Oh S,Chnag W ,SuAn J.2001Aspartic protease analouge:intermolecular catalysis of peptide hydrolysis by carboxyl groups[J].Bioogrnaic & Medicinal Chemistyr Letters,(11):1469~1472
    Punt PJ,Schuren FH,Lehmbeck J,et al.2008.Characterization of the Aspergillus niger prtT,a unique regulator of extracellular protease encoding genes.Fungal Genet Biol,45(12):1591~1599
    Riyad El-Khoury·Carole H. Sellem·Evelyne Coppin·Antoine Boivin·Marc F. P. M. Maas·Robert Debuchy·Annie Sainsard-Chanet. 2008.Gene deletion and allelic replacement in the Wlamentous fungus Podospora anserina. Curr Genet,53:249~258
    Saeed U. Khan, Martin Schro¨der.2008. Engineering of chaperone systems and of the unfolded protein response. Cytotechnology,57:207~231
    Shoji JY,Arioka M,Kitamoto K.2008.Dissecting cellular components of the secretory pathway in filamentous fungi:insights into their application for protein production.Biotechnol Lett,30(1):7~14
    Smith F D,Gadoury D M,HarPending P R,et al.1992..Transformation of a powdery midow Uneinula necator by microprojectile bombardment.Phyto Pathology,82:274
    Sunkyung Kim,Jaemahn Song, Hyoung T.2004.Choi.Genetic transformation and mutant isolation in Ganoderma lucidum by restriction enzyme-mediated integration.[J].FEMS,Microbiol Lett,(233):201~204
    Tadashi Takahashi, Tsutomu Masuda, Yasuji Koyama.2006.Enhanced gene targeting frequency in ku70 and ku80 disruption mutants of Aspergillus sojae and Aspergillus oryzae. MolGen Genomics,275: 460~470
    Thierry Bergs and Christian Barreau.1991. Isolation of uridine auxotrophs from Trichoderma reesei and efficient transformation with the cloned ura3 and ura5 genes. Curr Genet,19:359~365
    Wang SJ , WangYK , GaoHK, Yang CF, Chen J.2002. Studies on production, characteristics and application of feed acid proteinase produced byAsoergillus cinna momeusstrain 9824.J Chin Cereals&0ils Ass,17(4): 63~66
    Waterham FID, Digan ME, Clare,J.J.,F.B.Rayment,S.P.Ballantine,et al.1991.High-level expression of tetanus toxin fragment C in Pichia pastrois strains containing multiple tandem integrations of the gene. Biotechnology(NY), 9,455~460
    Xiuwan Lan·Ziting Yao·Yan Zhou·Jinjie Shang·Haiyan Lin·Donald L. Nuss·Baoshan Chen. 2008.Deletion of the cpku80 gene in the chestnut blight fungus, Cryphonectria parasitica, enhances gene disruption eYciency. Curr Genet,53:59~66
    Yu JH,Hamari Z,Han KH,Seo JA,Reyes-Dominguez Y, Scazzocchio C.2004.Double-joint PCR:a PCR-based molecular tool for gene manipulations in filamentous fungi.Fungal Genet Biol,41(11):973~981.
    Zeilinger S.2004.Gene disruption in Trichoderma atroviride via Agrobacterium-mediated transformation.Curr Genet,45(1):54~60
    Zwiers LH,De Waard MA.2001.Efficient Agrobacterium tumefaciens-mediated gene disruption in the phytopathogen Mycosphaerella graminicola.Curr Genet, 39(5~6):388~393

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700