污泥发酵产酸条件优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
面对城市污水处理厂低C/N比生活污水由于碳源缺乏而导致脱氮除磷效率较低的现状,开发利用污泥内碳源为BNR(Biological Nutrients Removal)系统进行碳源补给成已为目前污水处理领域的研究热点。污泥在厌氧条件下发酵可产出大量可溶性有机质,尤其是小分子挥发酸类物质是极易被微生物利用的有利基质。
     本研究着眼于在厌氧条件下对初沉污泥和二沉污泥两种性质不同的污泥进行发酵研究,探索pH和发酵时间对发酵溶出各有机物如SCOD、碳水化合物、蛋白质、各种挥发酸等和发酵副产物如氨和磷的影响。在此基础上提出针对不同污泥进行发酵产酸的较优工作参数;并设计运行发酵反应器,考察反应器内有机物的溶出过程,发酵混合液的分离及有机底物的转移,转化效率。旨在为碳源缺乏的BNR系统最大限度的提供连续,稳定,有效的碳源补给的工程实现提供技术参考。
     首先,通过序批试验研究初沉污泥和二沉污泥在不同pH值和发酵时间内各物质的溶出规律,结果表明:碱性条件明显有利于SCOD和VFAs的溶出,且SCOD在发酵前期迅速溶出,初沉污泥在SRT=2d时达最高,二沉泥SRT=4d达最高;较长的SRT有利于VFAs的产生,初沉污泥在SRT=7.5~9.5 d时VFAs产量较大,二沉污泥在SRT=7.5 d时产量较大;结合SCOD和VFAs两者的溶出规律,本研究中得出的初沉污泥最佳的发酵条件为pH=9,SRT=9.5d,二沉污泥的最佳发酵条件为pH=10,SRT=7.5d。
     其次,通过对两种污泥发酵的对比研究得出:初沉污泥不仅能在较短时间内产生大量的SCOD和VFAs,而且氨磷的释放较少,因此在初沉污泥足量的条件下单一利用初沉污泥发酵是最有效的方式。稳定后虽二沉污泥的氨磷释放率远高于初沉污泥(分别高出58.7%,73.1%)但单位二沉污泥发酵溶出SCOD的量高于初沉污泥单位溶出量(高出25.4%),结合大多数污水厂对两种污泥进行混合处理的现实,提出适当配比下混合污泥在pH=10,SRT=8d条件下进行发酵也能在溶出大量的SCOD,VFAs的同时减轻对后续处理单元的影响。
     再次,通过以二沉污泥为底泥的连续流碱性发酵反应器的运行研究表明:进入稳定期后,主体区内的VSS、SCOD及VFAs的产量较稳定分别为4079 mg/L、3063 mgCOD/L、1252 mgCOD/L。VFAs中乙酸占了主要部分(41.12%),其次是丙酸(23.57%),异戊酸(15.38%);发酵液液相中的氨含量(66.15mg/L)与生活污水中含量接近,因此可以忽略对后续处理系统的影响,但值得注意的是发酵液中磷的含量较高(201.4mg/L),因此有必要单独针对磷进行化学除磷的前处理。
     最后,通过元素平衡分析了污泥在发酵过程中的物质转移转化规律,得出C、N和P从污泥固相经发酵转移到液相中的转移效率分别为3.2%、16.8%和17.3%。可见污泥中的C还有较大的开发空间。针对发酵混合泥水分离困难的问题,采用淘洗技术,SCOD的一次淘洗效率为68%,为提高效率可采用多次淘洗技术。在淘洗过程中,三种元素的总量基本能保持平衡。C元素在淘洗过程中能够较有效的从淘洗前混合泥液相中转移到静沉区上清液中,淘洗效率为86%。
As we all known, in many cities of our China, the influent water contains insufficient carbon source in some wastewater treatment plant, particularly in urban wastewater treatment plant. Accordingly, it becomes necessary to add extra carbon source to such wastewater to achieve satisfying BNR performance. Recently, production of SCOD, especially short-chain fatty acids (SCFAs) by fermentation of sludge generated in municipal wastewater treatment plants (MWTP) has attracted much attention, because it can not only take advantage of organic wastes for reclamation but also improve the SCOD concentration of influent.
     Primary sludge (PS) and waste activated sludge (WAS) are the two different wastes generated in MWTP. This thesis focused on the anaerobic fermentation of the two types of sludge, discussed the effect of pH and fermentation time on the products such as SCOD, carbohydrate, protein, etc as well as by-products like ammonia and phosphate, finally proposed optimal parameters for different sludge fermentation. On that basis, sludge fermentation reactor was designed and we investigated the dissolving process of organic matter, the separation of mixed fermentation liquid, transfer efficiency of organic substrate and so on. Finally results provide reference for actual project which aimed to provide maximum, continuous, stable and efficient carbon source for BNR system with insufficient carbon source.
     Firstly, sequencing batch method used in this experiment was to examine the different processes of fermentation of primary sludge and activated sludge, under different pH conditions and fermentation time. The results show: alkaline conditions are obviously benefit to the dissolution of SCOD and VFAs. SCOD dissolved rapidly in the initial stage, for primary sludge the maximum rate achieved at 2d, while for activated sludge was at 4d; Relatively long fermentation time was benefit to the production of VFAs. Primary sludge achieved maximum output at 7.5to 9.5d, while activated was at 7.5d; Combined with SCOD and VFAs two factors the optimum fermentation conditions of primary sludge is pH at 9 and fermentation time in 9.5 days, while for activated sludge is pH at 10 and the fermentation time in 7.5 days.
     Secondly, comparation of the two sludge fermentation shows: primary sludge can produce a large number of VFAs in a relatively short time with low ammonia and phosphate load, therefore, fermentation of sole primary sludge is the most effective and efficient manner as additional carbon source for BNR system; Though the amount of SCOD dissolved by activated sludge is much higher than primary sludge (about 25.4%) after stabilization under pH at 10, the phosphorus and ammonia release are also higher than primary sludge (about 58.7%, 73.1%, respectively). As we all know great deal of ammonia and phosphorus release undoubtedly aggravated the waste water processing load of the follow-up system, in order to ease this negative impact, fermentation of mixed sludge as the carbon sources is proposed in this paper, meanwhile, suggested that the optimum conditions is pH at 10 and fermentation time in 8 days, under the combination of the fermentation characteristics of the two types of sludge.
     Thirdly, the research of continuous flow of alkaline fermentation reactor for activated sludge shows: the biomass of the sludge fermentation area was stable (SS 6890mg/L, VSS 4079 mg/L) and the production of SCOD and VFAs was also steady (3063 mg COD/L, 1252 mg COD/L, respectively); The main VFAs was acetic acid (41.12%), followed by propionic acid (23.57%) and isovaleric acid (15.38%); ammonia content was relatively low (66.15mg/L) and approach to sewage waste water, therefore, the effect to follow-up system can be ignored. However, the amount of phosphorus was relatively high (201.4mg/L), necessary pretreatment was needed to lower phosphorus load before utilization, such as chemical precipitation.
     Finally, the element-balance analysis of which C、N and P from the solid phase of sludge before fermentation to liquid phase after fermentation, shows that: the transfer efficiency was 3.2%、16.8% and 17.3%, respectively. Lower C transfer efficiency manifests larger sludge development space for ever exploit. The difficult problem of separation the fermentation mixture can be solved efficiently by elutriation technology, and the efficiency was 68%, which can be improved by continuous elutriation. The content of C、N、P keep equilibrium in the process of fermentation. C can effectively transfer from fermentation mixture before elutriation to the liquid phase of Static sink tank, where the elutriation efficiency was 86%.
引文
1李贵宝,尹澄清,单保庆.我国森林与园林绿地污泥的利用及其展望.北京林业大学学报. 2001,23(4):71~74
    2 Alexandria. Biosolids Composting: A Special Publication. Water Environ. Fed. 1995:56~60
    3苑宏英.基于酸碱调节的剩余污泥水解酸化及其机理研究.同济大学.工学博士学位论文. 2006:25~30
    4张自杰.排水工程(第四版).中国建筑工业出版社. 2000:353~356
    5任南琪,马放,杨基先等编著.污染控制微生物学.哈尔滨工业大学出版社2004:93~100
    6 Nagase M, Matsuo T. Interactions between amino-acid degrading bacteria and methanogenic bacteria in anaerobic digestion. Biotechnol. Bioeng. 1982,24:2227~2239
    7 Ramsay I R, Pullammanappallil P C. Protein degradation during anaerobic wastewater treatment: derivation of stoichiometry. Biodegradation. 2001,12:247-257
    8胡纪萃.废水厌氧生物处理理论与技术.中国建筑工业出版社.2002:65~90
    9 Emine Ubay Cokgor, Seda Oktay, Didem Okutman Tas, et al. In?uence of pH and temperature on soluble substrate generation with primary sludge fermentation. Bioresour. Technol. 2009,100:380~386
    10 Rodriguez G C, Gonzalez-Barcelo O, Gonzalez-Martinez S.Wastewater fermentation and nutrient removal in sequencing batch reactors. Water Sci. Technol. 1998,38:255~264
    11 Yinguang Chen, Su Jiang, Hongying Yuan, et al. Hydrolysis and acid?ication of waste activated sludge at different pHs. Water Res. 2007,41:683~689
    12 Lay J J, Li Y Y, Noike T. In?uences of pH and moisture content on the methane production in high-solids sludge digestion. Water Res. 1997,31(6):1518~1524
    13 Eastman J A, Ferguson J F. Solubilization of Particulate organic matter during the acid-phase of anaerobic digestion. Water Pollut. Control. Fed. 1981,53(3):352~366
    14 Moser Engeler R, Udert K M, Wild D, et al. Products from primary sludge fermentation and their suitability for nutrient removal. Water Sci. Technol. 1998,38(1):265~273
    15 Cha G C , Noike T. Effect of rapid temperature change and HRT on anaerobic acidogenesis. Water Sci. Technol. 1997,36 (6&7):247~253
    16 Skalsky D S, Daigger G T. Wastewater solids fermentation for volatile acid production and enhanced biological phosphorus removal. Water Environ. Res. 1995,67:230~237
    17 Maharaj I, Elefsiniotis S S. The role of HRT and low temperature on the acidphase anaerobic digestion of municipal and industrial wastewaters. Bioresour. Technol. 2001,76:191~197
    18 Ferreiro N, Soto M. Anaerobic hydrolysis of primary sludge: ?inuence of sludge concentration and temperature. Water Sci. Technol. 2003,47:239~246
    19 Elefsiniotis P, Oldham W K. Effect of HRT on acidogenic digestion of primary sludge. Environ. Engrg. 1994,120(3):645~660
    20 I Maharaj, P Elefsiniotis. The role of HRT and low temperature on the acid-phase anaerobic digestion of municipal and industrial wastewaters. Bioresour. Technol. 2001,76:191~197
    21 Elefsiniotis P, Oldham W K. Anaerobic acidogenesis of primary sludge: the role solids retention time. Biotech.Bioeng. 1994,44(1):7~13
    22 Miron Y, Zeeman G, Van Lier J B, et al. The role of sludge retention time in the hydrolysis and acidification of lipids, carbohydrates and proteins during digestion of primary sludge in CSTR systems. Water Res. 2000,34:1705~1713
    23黄达然,冯雷雨,陈银广,等.连续流反应器中污泥停留时间对剩余污泥碱性厌氧发酵生产短链脂肪酸的影响.环境污染与防治. 2008,30(10):54~58
    24 Yuan Q, Sparling R, Oleszkiewicz J A. Waste activated sludgefermentation: Effect of solids retention time and biomass concentration. Water Res. 2009,43:5180~5186
    25任南琪,王爱杰,马放.产酸发酵微生物生理生态学.科学出版社(北京). 2005:51~135
    26任南琪.产酸发酵细菌演替规律研究pH≤5条件下ORP的影响.哈尔滨建筑大学学报. 1999,32(2):29~34.
    27赵丹,任南琪,王爱杰. pH、ORP调控发酵类型和微生物顶级群落.重庆环境科学. 2003,25:33~38
    28张希衡.废水厌氧生物处理工程.中国环境科学出版社(北京). 1996:100~400
    29王勇,孙寓姣,任南琪,等. C /N对细菌产氢发酵类型及产氢能力的影响.太阳能学报. 2004,25:375~378
    30 Ren N Q, WangB Z, Huang J C. Ethanol-type fermentation from carbohydrate in high rate acidogenic reactor. Biotech Bioeng. 1997,54:428~433
    31 Bouallagui H, TorrijosM, Godon J J, et al . Two- phase anaerobic digestion of fruit and vegetable wastes: bioreactors performance. Biochem. Eng.2004,21:193~197
    32任南琪,赵丹,陈晓蕾,等.厌氧生物处理丙酸产生和积累的原因及控制对策.中国科学. 2002,32:83~89
    33 P Kampas, S A Parsons, P Pearce, et al. Mechanical sludge disintegration for the production of carbon source for biological nutrient removal. Water Res. 2007,41:1734~1742
    34沈志,刘和,许科伟,等.硫酸盐还原菌促进市政污泥厌氧发酵产乙酸.环境科学研究. 2009,22(9):87~90
    35 Yan Y Y, Feng L Y, Zhang C J, et al. Ultrasonic enhancement of waste activated sludge hydrolysis and volatile fatty acids accumulation at pH 10.0. Water Res. 2010:1~8
    36刘晓玲.城市污泥厌氧发酵产酸条件优化及其机理研究.江南大学.博士学位论文. 2008:133~150
    37 C Bougrier, C Albasi, J P Delgenes, et al. Effect of ultrasonic, thermal and ozone pre-treatments on waste activated sludge solubilisation and anaerobic biodegradability,Chemical Engineering and Processing. 2006,45:711~718
    38 Su Jiang, Yinguang Chen, Qi Zhou,et al. Biological short-chain fatty acids (SCFAs) production from waste-activated sludge affected by surfactant. Water Res. 2007,23:76~79
    39 Zhouying Ji, Guanlan Chen, Yinguang Chen. Effects of waste activated sludge and surfactant addition on primary sludge hydrolysis and short-chain fatty acids accumulation. Bioresour. Technol. 2010,101:3457~3462
    40 Rajan R V, Lin J G, Ray B T. Low-level chemical pretreatment for enhanced sludge solubilization. JWPCF. 1989,61:1678~1683
    41 Kenzevic Z, Mavinic D S, Anders on B C. Pilot scale evaluation of anaerobic codigestion of primary and pretreated waste activated sludge. Water Environ Res. 1994,67 (5):5835~5841
    42 Rocher M, Roux G, Goma G, et al. Excess sludge reduction in activated sludge Process by integrating biomass alkaline heat treatment. Water Sci.Technol. 2001,44(2-3):437~444
    43 Kim J S, Park C W, Kim T H, et al. Effects of various pretreatment for enhanced anaerobic digestion with waste activated sludge. Biosci. Bioeng. 2003,95(3):271~275
    44 Chang C N, Ma Y S, Lo C W, Application of oxidation-reduction potential as a controlling Parameter in waste aetivated sludge hydrolysis. Chem. Eng. 2002, 90(3):273~281
    45肖本益,刘俊新.污水处理系统剩余污泥碱处理融胞效果研究.环境科学. 2006,27(2):319~323
    46 HaiyanWu, Dianhai Yang, Qi Zhou, et al. The effect of pH on anaerobic fermentation of primary sludge at room temperature. Hazardous Materials. 2009,172:196~201
    47 Feng Leiyu, Yan Yuanyuan, Chen Yinguang. Kinetic analysis of waste activated sludge hydrolysis and short-chain fatty acids production at pH 10. Environ. Sci. 2009,21:589~594
    48 Guang Hui Yu, Pin Jing He, Li Ming Shao. Reconsideration of anaerobic fermentation from excess sludge at pH 10.0 as an eco-friendly process. Hazardous Materials. 2001,175:510~517
    49 Tong J and Chen Y G. Enhanced Biological Phosphorus Removal Driven by Short-Chain Fatty Acids Produced from Waste Activated Sludge Alkaline Fermentation. Environ. Sci. Technol. 2007,41:7126~7130
    50 Pantelis Kampas, Simon A Parsons, Pete Pearce, et al. An internal carbon source for improving biological nutrient removal. Bioresour. Technol. 2009,100:149~154
    51国家环境保护局.水和废水检测分析方法(第四版).中国环境出版社(北京). 2002
    52 Lowry O H, Rosebrough N J, Farr A L, et al. Protein measurement with the Folin phenol reagent. Biol. Chem. 1951,193:165~175
    53肖本益,刘俊新. pH对碱处理污泥厌氧发酵产氢的影响.科学通报. 2005,50(24):54~57
    54 Cai M L, Wei Y S, Liu J X. Enhanced biohydrogen production from sewage sludge with alkaline pretreatment. Environ. Sci . Technol. 2004,38:3195~3202
    55 McInerney M J. Anaerobic hydrolysis and fermentation of fats and proteins. In: Zehnder, A.J.B. (Ed.). Biology of Anaerobic Microorganisms. Wiley, New York. , 1988
    56 Gerardi M H. The Microbiology of Anaerobic Digesters. John Wiley&Sons:New York. 2003:15~21
    57 David Bolzonella, Francesco Fatone, Paolo Pavan and Franco Cecchi. Anaerobic fermentation of organic municipal solid wastes for the production of soluble organic compounds. Ind. Eng. Chem. Res. 2005,44:3412~3418
    58 Chao Zhang and YinGuang Chen. Simultaneous Nitrogen and Phosphorus Recovery from Sludge-Fermentation Liquid Mixture and Application of the Fermentation Liquid To Enhance Municipal Wastewater Biological Nutrient Removal. Environ. Sci. Technol. 2009,43:6164~6170
    59 Doyle J D, Parsons S A. Struvite formation, control and recovery. Water Res. 2002,36(16):3925~3940
    60 Lee S I, Weon S Y, Lee C W, et al. Removal of nitrogen and phosphate fromwastewater by addition of bittern. Chemosphere. 2003,51:265~271
    61 Le Corre K S, Valsami-Jones E, Hobbs P, et al. Struvite crystallisation and recovery using a stainless steel structure as a seedmaterial. Water Res. 2007, 41:2449~2456
    62晏波,胡成生,朱凡,等.磷酸铵镁沉淀法去除NH4+-N的影响因素及应用研究.环境化学. 2007,24(6):68~72
    63 Z C Arnai, J C Gutierrez, J Lebrato. Biomass stabilization in the anaerobic digestion of wastewater sludges. Bioresour. Technol. 2006,97:1179~1184
    64 E U Cokgor, G E Zengin, D O Tas, et al. Respirometric assessment of primary sludge fermentation products. Environ. Eng. ASCE. 2006,132:68~74
    65 Yuan H Y, Chen Y G, Zhang H X, et al. Improved Bioproduction of Short-Chain Fatty Acids (SCFAs) from Excess Sludge under Alkaline Conditions. Environ. Sci. Technol. 2006,40:2025~2029
    66杜连祥.工业微生物学实验技术.天津科学技术出版社. 1992:38~39
    67 Tanaka S, Kobayashi T, Kamiyama K, et al. Effects of thermochemical pretreatment on the anaerobic digestion of waste activated sludge. Water Sci. Technol. 1997,35(8):209~215
    68 Liu H, Fang H H P. Extraction of extracellular polymeric substances (EPS) of sludges. Biotechnol. 2002,95(3):249~256
    69 Pantelis Kampas, Simon A Parsons, Pete Pearce, et al. An internal carbon source for improving biological nutrient removal. Bioresour. Technol. 2009,100:149~154
    70 Miron Y, Zeeman G, Van Lier JB, et al. The role of solids retention time in the hydrolysis and ac?idciation of lipids, carbohydrates and proteins during digestion of primary sludge in CSTR systems. Water Res. 2003,4:1705~1713
    71 Orhon D, Artan N. Modelling of Activated Sludge Systems. Technomic Publishing Co. Inc., Lancester, Pennsylvania. 1994:32~36
    72 Henze M, Mladenovski C. Hydrolysis of particulate substrate by activated sludge under aerobic, anoxic and anaerobic conditions. Water Resour. 1991,25: 61~64
    73 Elefsiniotis P, Oldham W K. In?uence of pH on the acid phase anaerobic-digestion of primary sludge. Chem.Technol. Biotechnol. 1994,60:89~96
    74 Bouzas A, Gabaldon C, Marzal P, et al. Fermentation of municipal primary sludge: effect of SRT and solids concentration on volatile fatty acid production. Environ. Technol. 2002,23:863~875
    75 Ahn Y H, Speece R E. Elutriated acid fermentation of municipal primary sludge. Water Res. 2006,40:2210~2220
    76 Thomas M, Wright P, Blackall L, et al. Optimization of Noosa BNR plant to improve performance and reduce operating costs. Water Sci. Technol. 2003,47:141~148
    77 Ahmed Suheyl Ucisik, Mogens Henze. Biological hydrolysis and acid?ication of sludge under anaerobic conditions: The effect of sludge type and origin on the production and composition of volatile fatty acids. Water Res. 2008,42:3729~3738
    78 R Moser Engeler, M Kuhni, C Bernhard and H Siegrist. Fermentation of raw sludge on an industrial scale and applications for elutriating its dissolved products and non-sedimentable solids. Water Res. 1999,33(16):3503~3511

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700