Halbach 阵列同心式磁力齿轮全局解析法分析与优化设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Halbach阵列同心式磁力齿轮依靠磁场作用传递转矩,其输入和输出之间非接触性传递使它具有转矩密度高、运行效率高和过载保护等优点。此种磁力齿轮内外转子采用同心式结构,有效地提高了永磁体的利用率,其转矩密度和运行效率较传统结构有较大的提高,因此具有较好的应用前景。
     本课题是国家自然科学基金项目“磁通解耦型磁力变速永磁无刷电机研究”(51177097)的研究内容之一,对新型结构的磁力传动装置进行研究。
     本文采用矢量磁位全局解析法对Halbach阵列同心式磁力齿轮展开研究,具体做了以下几方面的研究:
     第一,采用二维全局解析法计算同心式磁力齿轮气隙磁场。求解场域划分为内外转子永磁体、内外两层气隙和调磁定子的槽形区域,3类子区域的拉普拉斯方程和泊松方程通过边界连续条件建立联系。得到内外两层气隙区域的矢量磁位磁通密度解析表达式,计算了内、外两层气隙磁场;利用Maxwell应力张量法计算了内外转子电磁转矩;将气隙磁场波形和内外转子电磁转矩波形分别与二维有限元FEMM软件计算波形作比较,两者结果一致性好;在此基础上,分析了两层气隙的谐波磁场和电磁转矩的静态特性。
     第二,根据Halbach阵列充磁原理,推导出Halbach阵列充磁下的数学模型,也是采用全局解析法计算Halbach阵列同心式磁力齿轮内、外气隙磁场及其转矩,分析对比了两种充磁方式下磁力线的分布,将全局解析法计算结果与有限元软件FEMM计算结果进行了比较;同时也对两种充磁方式下气隙谐波大小和转矩做了比较。两种充磁方式下计算的波形与有限元计算结果的吻合也为磁力齿轮的参数优化设计奠定了基础。
     第三,从提高磁力齿轮的转矩密度出发,首次将MATLAB优化工具箱中的遗传算法运用到磁力齿轮优化设计中,在优化的过程中,不再进行人工干预,较有限元法优化设计方便、快捷。根据所选模型的优化目标,选取对优化目标影响较大的参数作为优化变量,选择合适的算子及概率,同时根据各参数和静态转矩之间的关系确定各参数的取值范围;用全局解析法计算优化后磁力齿轮电磁转矩,并且与磁力齿轮优化前电磁转矩作比较,结果明显优于优化前,计算结果表明,该优化算法是正确的和有效的。
     第四,根据优化设计参数,画出图纸,制造了一台传动比为-4.25:1的Halbach阵列同心式磁力齿轮,磁力齿轮的铁损耗是其主要损耗,空载试验对其铁损耗进行了分析;而负载试验进行的是磁力齿轮传动装置在某一固定转速时,整个负载区间磁力齿轮传动装置的传递效率问题。从实验结果看,样机的电磁转矩密度和传递效率均较高,具有推广应用的价值。
     同心式磁力齿轮在采用Halbach阵列充磁方式下,气隙磁场相互迭加使得一侧的磁场强度大幅度提升,可以提高转矩密度;并且气隙磁场正弦分布程度较高,谐波含量小。为研究低转速大转矩磁力齿轮复合电机提供了可能。
A concentric magnetic gear with Halbach permanent-magnet arrays, whose input sides isphysically isolated with the output sides, transfers torque by magnetic field, it has many merits,for example: high torque density, efficiency and high overload protection and so on. Such innerand outer rotor’s magnetic gear adopts concentric structure, which effectively improves theutilization of the permanent magnet. Its torque density and efficiency are higher than traditionalstructures’; therefore, it has better prospects.
     This project is one part of the National Natural Science Foundation of flux decoupling-typemagnetic variable speed permanent magnet brushless motor (51177097), and its purpose is toresearch on the new structure of the magnetic transmission.
     In this thesis, the works focus on an exact analytical method for a concentric magnetic gearwith Halbach permanent-magnet arrays, and the main works include the following ones:
     Firstly, an exact2-dimensional analytical method is used to calculate the magnetic fielddistribution in a concentric magnetic gear. The analytical method is based on the resolution ofLaplace’s and Poisson’s equations for each sub-domain, i.e., inner and outer permanent magnetrotors, inner and outer air-gaps, and slots. The globe solution is obtained using boundary andcontinuity conditions. It’s easy to obtain the analytical expressions of air-gap flux density, andcalculate the internal and external rotor electromagnetic torque by Maxwell stress tensor method.Compared air-gap magnetic field distributions and electromagnetic torque computed by theanalytical method with those obtained from the2-dimensional finite element method (FEM). Inaddition, it analyzes the harmonics of the air-gap magnetic field and the static characteristics ofelectromagnetic torque
     Secondly, according to the magnetizing principle of Halbach arrays, it deduces themathematical model of Halbach array magnetization. An exact2-dimensional analytical methodhas also been adopted to calculate the magnetic field distribution and its torque, Analyzed andcompared the distribution of magnetic lines in the two magnetic modes, the exact analyticmethod calculation results are compared with finite element software FEMM calculated results, at the same time, it also do a comparison of air gap harmonics size and torque. The agreement ofthe results between the analytical method and FEM can lay the foundation for parameteroptimization design of magnetic gear.
     Thirdly, in order to enhance the magnetic gear’s torque density, it is the first time to applythe genetic algorithm optimization toolbox of Matlab(GAOT) to optimal design of magnetic gear,in the optimization process, it is no longer human intervention and it’s quicker and easier thanthe finite element method. Depending on the optimal targets, it selects some parameters for moreoptimization goals as optimization variables, and selects the appropriate operator and probability.Based upon the relationships between various parameters and static torque, the ranges of valuesfor the parameter are determined. After then, an exact analytical method is calculated theelectromagnetic torque of magnetic gear, the results are compared with the before tuning ofmagnetic gear, the better results show that the optimization algorithm is correct and valid.
     Finally, based on the optimum design parameters and drawings, the magnetic gear withHalbach arrays is manufactured, which ratio is-4.25:1. From the no-load test, Iron loss is themain loss of magnetic gear, and the load test is about transmission efficiency of the magneticgear when the magnetic gear drives at a fixed speed. From the experimental results, the torquedensity and transmission efficiency of prototype are very high, it has the value of promotion andapplication.
     Under using Halbach arrays of magnetization for a concentric magnetic gear, because ofmagnetic field mutual superposition, which makes one side of the air-gap magnetic fieldsstrength improved significantly, and can improve the torque density. At the same time, theair-gap magnetic field distribution of sinusoidal is very high and the harmonic is small. It ispossible to study on combination electrode for a low speed large torque magnetic gear.
引文
1.国务院办公厅,《“十二五”国家战略性新兴产业发展规划》和《全国游牧民定居工程建设“十二五”规划》,2012.5.30.
    2. K. Atallah, D. Howe. A novel high-performance magnetic gear. IEEE Transactions onMagnetics[J].2001,37(4):2844-2846.
    3. K. Atallah, S. D. Calverley, D. Howe. Design, analysis and realization of a high-performancemagnetic gear[J]. IEE Proceedings-Electric Power Applications,2004,151(2):135-143.
    4. T. Haring, K. Forsman, T. Huhtanen, et al. Direct drive—opening a new era in manyapplications, Pulp and Paper Industry Technical Conference,2003. Conference Record of the2003Annual,16-20June2003:171-179.
    5. A. J. Mitcham. Transverse flux motor for electric propulsion of ships[C]. Proceedings ofIEEE, London UK,1997.
    6. D. H. Kang, Y. H. Chun, H. Weh. Analysis and optimal design of transverse flux linear motorwith PM excitation for railway traction[C]. IEEE Proceedings-Electric Power Applications,2003(4):493-499.
    7. M. G. Simoes, P. J. Vieira. A high torque low speed multiphase brushless machine aperspective application for electric vehicles[J]. IEEE Transactions on Industrial Electronics,2002,49(5):1154-1164.
    8. G. h. Feng, L. f. Wang, B.Y. Zhang, et al. Analysis of magnetic field for low speed and hightorque permanent magnet synchronous machine, ICEMS2003. Sixth InternationalConference on Electrical Machines and Systems,2003,(2):778-781.
    9. M. R. Dubois, H. Polinder, J. A. Ferreira. Comparison of generator topologies fordirect-drive wind turbines[C]. NORPIE2000.
    10. H. Polinder, B. C. Mecrow, A. G. Jack, et al. Conventional and TFPM linear generators fordirect-drive wave energy conversion[J]. IEEE Transactions on Energy Conversion,2005,20(2):260-267.
    11.包广清.大功率聚磁式横磁通永磁电机设计及其优化技术研究[D].上海,上海大学,2006年5月.
    12. W. M. Arshad, T. Backstrom, C. Sadarangani. Analytical design and analysis procedure for atransverse flux machine[C]. IEEE International Electric Machines and Drives Conference,2001, IEMDC2001,2001:115–121.
    13. A. Masmoudi, A. Elantably, A simple assessment of the cogging torque in a transverse fluxpermanent magnet machine[C]. International Electric Machines and Drives Conference,2001. IEMDC2001,2001:754-759.
    14. T. Y. Lun, D. H. Kang, J. M. Kim, et al. A study on control of drive for vibrator usingPM-type transverse flux linear motor[C]. Power Conversion Conference,2002. PCC Osaka2002,2002:43-47.
    15.袁琼.聚磁式横向磁场永磁电机的研究[D].上海,上海大学,2003年3月.
    16.李永斌,袁琼,江建中.一种新型聚磁式横向磁通永磁电机研究[J].电工技术学报,2003,18(5):46-49.
    17.江建中,李永斌,施进浩.横向磁场永磁电机的研究与发展现状[J].微特电机,2003,(5):3-5.
    18. P. O. Rasmussen, T. O. Andersen, F. T. Jorgensen, et al. Development of a high-Performancemagnetic gear[J]. IEEE Transactions on Industry Applications,2005,41(3):764-770.
    19.刘新华.新型磁场调制式磁性齿轮的设计研究[D].上海,上海大学,2008年6月.
    20.胡之光.电机电磁场的分析与计算[M].北京:机械工业出版社,1980.
    21.唐任远等.现代永磁电机理论与设计[M].北京:机械工业出版社,1996.
    22.章名涛,肖如鸿等.电机的电磁场[M].北京:机械工业出版社,1988.
    23. T. Lubin, S. Mezani, A. Rezzoug. Exact analytical method for magnetic field computation inthe air-gap of cylindrical electrical machines considering slotting effects[J]. IEEETransaction on Magnetics,2010,46(4):1092-1099.
    24. T. Lubin, S. Mezani, A. Rezzoug. Analytical computation of the magnetic field distributionin a magnetic gear[J]. IEEE Transaction on Magnetics,2010,46(7):2611-2621.
    25.李节宝,井立兵,周晓燕等.表贴式永磁无刷电机直接解析计算方法[J].电工技术学报.2012,27(11):83-88.
    26.井立兵,章跃进.同心式磁力齿轮磁场及转矩全局解析法分析[J].中国电机工程学报.2012,32(30):139-146.
    27.李琛,章跃进,仇志坚.无轴承交替极永磁电机空载气隙磁场全局解析模型[J].电工技术学报,2012,27(11):104-110.
    28. Y. J. Zhang, J. Z. Jiang, G. Z. Tu. Numerical-analytical method for magnetic fieldcomputation in rotational electric machines[J]. Journal of Shanghai University,2003,7(3):270-274.
    29. Y. j. Zhang, L. b. Jing, C. j. Li, et al. Semi-analytical method for air-gap main magnetic fieldcomputation of direct drive permanent magnet torque motors[C].2011InternationalConference on Electrical Machines and Systems, ICEMS2011.
    30.章跃进,江建中,屠关镇.应用数值解析结合法计算旋转电机磁场[J].电工技术学报,2004,19(1):7-11.
    31.章跃进,江建中,屠关镇.旋转电机磁场计算中转子的自由转动[C].2004台达电力电子新技术研讨会论文集,369-372.
    32.章跃进,崔巍,张东等.高性能永磁电机感应电动势计算[C].2005台达电力电子新技术研讨会论文集,168-171.
    33.章跃进,崔巍,张东等.旋转电机电磁转矩精确计算[C].2005台达电力电子新技术研讨会论文集,160-163.
    34.杜世勤,江建中,章跃进等. Halbach磁体结构磁场调制式同心磁性齿轮传动装置:中国,200910196525.6[P],2010.03.03.
    35.章跃进,江建中,杜世勤等.直驱式正弦复合型永磁电机:中国,201010608927.5[P],2011,04.27.
    36.杜世勤.新型磁齿轮复合电机的设计研究[D].上海,上海大学,2010年4月.
    37. K. T. Chau, D. Zhang, J. Z. Jiang, et al. Design of a magnetic-geared outer-rotor permanentmagnet brushless motor for electric vehicles[J]. IEEE Transactions on Magnetics.2007,43(6):2504-2506.
    38. L. N. Jian, K. T. Chau, D. Zhang, et al. A magnetic-geared outer-rotor permanent-magnetbrushless machine for wind power generation.2007IAS, New Orleans, USA, September,23-27,2007:573–580.
    39. L. Jian, K. T. Chau, J. Z. Jiang. A magnetic-geared outer-rotor permanent-magnet brushlessmachine for wind power generation[J]. IEEE Transactions on Industry Applications,2009,35(3):954–992.
    40.井立兵,章跃进.基于MATLAB遗传算法工具的同心式磁力齿轮优化设计[C].2012第十七届中国小电机技术研讨会论文集.上海,2012,11:41-45.
    41. K. Atallah, J. Wang, D. Howe. A high-performance linear magnetic gear[J]. Journal ofApplied Physics.97,10N516,2005.
    42. S. Mezani, K. Atallah, D. Howe. A high-performance axil-field magnetic gear[J]. Journal ofApplied Physics.99,08R303,2006.
    43.杨超君,李志宝,芦玉根等.高性能同轴式磁力齿轮结构设计与实验研究[J].中国机械工程,2012,23(9):1083-1088.
    44.杨超君,李直腾,李志宝等.高性能磁力齿轮传动扭矩与效率的数值计算[J].中国电机工程学报,2011,31(32):107-114.
    45.葛研军,辛强,聂重阳.磁场调制式永磁齿轮结构参数与转矩关系[J].机械传动,2012,36(4):5-13.
    46.葛研军,聂重阳,辛强.调制式永磁齿轮气隙磁场及转矩分析计算[J].机械工程学报,2012,48(11):153-158.
    47. D. H. Wang, X. H. Wang. Analysis of static performance for flux-switching motor bynonlinear equivalent magnetic circuit Model[C]. International Conference on ElectricalMachines and Systems (ICEMS),2010,10-13Oct.2010:1661-1665.
    48. J. K. Kim, S. W. Joo, S. C. Hahn, et al. Static characteristics of linear BLDC motor usingequivalent magnetic circuit and finite element method[J]. IEEE Transactions on Magnetics,2004,40(2):742-745.
    49. J. M. Seo, Y. K. Kim, S. H. Rhyu, et al. A design of slotless BLDC motor for robot usingequivalent magnetic circuit model[C]. The8th International Conference on UbiquitousRobots and Ambient Intelligence,2011, Nov.23-26,Korea,2011:719-725.
    50.包广清,江建中,施进浩.多相聚磁式横磁通永磁电机的自定位力矩研究[J].中国电机工程学报,2006,26(15):139-143.
    51. M. Amrhein, P. T. Krein. Force calculation in3-D magnetic equivalent circuit networks witha Maxwell stress tensor[J]. IEEE Transactions on Energy Conversion,2009,24(3):587-593.
    52. J. Hur, I. S. Jung, D. S. Hyun. Analysis of radial force density according to magnetizationdistribution in BLDC motor using3-D equivalent magnetic circuit network method[C].International Conference Electric Machines and Drives, ICEMD’1999, Seoul,Korea1999:78-80.
    53. Y. D. Chun, S. Wakao, T. H. Kim, et al. Multi-objective design optimization of brushlesspermanent magnet motor using3D equivalent magnetic circuit network method[J]. IEEETransactions on Applied Superconductivity,2004,14(2):1910-1913.
    54.周淼,陈孝明,黄海舟等.电机电磁场问题的改进区域分解配点法求解[J].哈尔滨理工大学学报,2012,17(3):10-13.
    55. P. O. Rasmussen, T. M. Jahns, H. A. Motor integrated permanent magnet gear with a widetorque-speed range[C]. Energy Conversion Congress and Exposition,2009. ECCE2009:1510-1518.
    56.严岚、贺益康.基于场路结合的永磁无刷直流电动机仿真[J].微电机,2001,34(1):3-6.
    57.方瑞明,吴明,曾国树.基于场路结合法的永磁无刷直流电机性能分析[J].微电机,2003(5):11-13.
    58. Z. Q. Zhu,D. Howe. Instantaneous magnetic field distribution in brushless permanentmagnet dc motors,Part I Open-circuit field[J]. IEEE Transactions on Magnetics,1993,29(1):124-135.
    59. Z. Q. Zhu,D. Howe. Instantaneous magnetic field distribution in brushless permanentmagnet dc motors, Part II Armature-reaction field[J]. IEEE Transactions on Magnetics.1993,29(1):136-142.
    60. Z. Q. Zhu,D. Howe. Instantaneous magnetic field distribution in brushless magnet dcmotors, Part III Effect of stator slotting[J]. IEEE Transactions on Magnetics,1993,29(1):143-151.
    61. Z. Q. Zhu,D. Howe. Instantaneous magnetic field distribution in brushless permanentmagnet dc motors Part IV Magnetic field on load[J]. IEEE Transactions on Magnetics,1993,29(1):152-158.
    62. D. Zarko, D. Ban, T. A. Lipo. Analytical calculation of magnetic field distribution in theslotted air gap of a surface permanent-magnet motor using complex relative air-gappermeance[J]. IEEE Transactions on Magnetics,2006,42(7):1828-1837.
    63. K. Boughrara, R. Ibtiouen, D. Zarko, et al. Magnetic field analysis of external rotorpermanent-magnet synchronous motors using conformal mapping[J]. IEEE Transactions onMagnetics,2010,46(9):3684-3693.
    64. Y. Zhilichev. Analysis of permanent magnet machines using crossing macro-elements[J].IEEE Transactions on Magnetics,2000,36(5):3122-3124.
    65.丁晔,章跃进.表面磁钢永磁无刷电机空载气隙磁场半解析法研究[J].电机与控制应用,2007,(3):7-10.
    66.郑成勇,章跃进,薛波等.表贴式分数槽电机永磁气隙磁场矢量位半解析法[J].微特电机,2010,38(4):24-26.
    67.李春江,章跃进,卢铁斌等.解析数值结合法在直驱轮毂式永磁无刷电机气隙磁场分析中的应用[J].微电机,2010,43(12):21-28.
    68. T. Lubin, S. Mezani, A. Rezzoug.2-D exact analytical model for surface-mountedpermanent-magnet motors with semi-closed slots[J]. IEEE Transactions on Magnetics,2011,47(2):479-492.
    69.黄哲理,赵建刚,王六平等.单相电机铁心系列优化方法[J].中国电机工程学报,1995,15(2):124-129.
    70.丘昌涛,胡冰,武亚光等.计算机辅助电机优化设计系统[J].中国电机工程学报,1995,15(4):261-266.
    71.黄哲理,汪国梁,王六平.电机设计中两种混合离散的优化方法的对比研究-广义坐标轮换法和离散惩罚函数法[J].电工技术学报,1994,(4):1-5.
    72.钱巍,周鹗.一种用于电机优化设计的启发式约束非线性优化算法[J].微特电机,1994,(1):2-8.
    73.周洁臣,张德怡.电机优化设计中的混合规划总极值问题与水轮发电机优化技术[J].哈尔滨电工学院学报,1987,10(1):1-8.
    74.徐光杰,吴越,梅玮.实用的异步电动机最小成本优化设计方法[J].中小型电机,1991,(4):17-19.
    75.陈贵葆. Nd-Fe-B稀土永磁同步电动机的优化设计研究[J].中小型电机,1993,20(2):12-14.
    76.张文修,梁怡.遗传算法数学基础[M].西安:西安交通大学出版社,2000.
    77.李敏强,寇纪淞,林丹等.遗传算法的基本理论与应用[M].北京:科学出版社,2002.
    78.赵继俊.优化技术与MATLAB优化工具箱[M].北京:机械工业出版社,2011.
    79. N. Bianchi, S. Bolognani. Brushless DC motor design: an optimization procedure based ongenetic algorithms[C]. Electrical Machines and Drives,1997Eighth InternationalConference on (Conf. Publ. No.444), Padova Univ., Italy, September,1-3,1997:16-20.
    80. L. Shi,S. Olafsson, Q. Chen. A new hybrid optimization algorithm[J]. Computers&industrial engineering,1999,36.
    81. P. Yadav, R. Kumar, S. K. Panda, et al. Improved harmony search algorithm based optimaldesign of the brushless DC wheel motor[C]. International Conference on Sustainable EnergyTechnologies (ICSET), Singapore, Singapore, Dec6-9,2010:1-6.
    82. G. F. Uler, O. A. Mohammed, C.S. Koh. Utilizing genetic algorithms for the optimal designof electromagnetic devices[J]. IEEE Transactions on Magnetics.1994,30(6):4296-4298.
    83.汪洁,樊叔维,鱼振民等.遗传算法的改进及其在电机全局优化中的应用[J].西安交通大学学报,1982,32(1):5-8.
    84.吴新振,金明.改进的遗传算法在单相电机优化设计中应用[J].青岛大学学报,1997,12(3):54-58.
    85.吴德荣,李景川,励庆孚等.遗传算法在电机系列优化中的应用研究[J].西安交通大学学报,1999,33(2):14-19.
    86.赵运才,任继华,左亮涛.基于MATLAB的齿轮参数优化设计[J].有色金属科学与工程,2011,2(1):96-100.
    87.董云海,殷晨波,何茂先等.基于MATLAB优化工具箱的齿轮传动优化设计[J].组合机床与自动化加工技术,2005,(11):108-112.
    88.游进军,纪昌明,付湘.基于遗传算法的多目标问题求解方法[J].水利学报,2003,(7):64-69.
    89.房立存,秦世引.基于多目标遗传算法的混合电动汽车参数优化[J].汽车工程,2007,29(12):1036-1040.
    90.陈中.无刷直流电动机优化设计和参数分析[D].合肥,合肥工业大学,2004年7月.
    91.刘瑞芳.基于电磁场数值计算的永磁电机性能分析方法研究[D].南京,东南大学,2002年12月.
    92.胡敏强,黄学良.电机运行性能数值计算方法及其应用[M].南京,东南大学出版社,2003:170-172.
    93.傅为农.斜槽异步电机的场路祸合时步法有限元模型及其应用[D].上海,上海大学,1997年8月.
    94.章跃进.旋转电机磁场计算数值解析结合法研究[D].上海,上海大学,2005年5月.
    95.龚宇.永磁电机有限元时步法的研究与应用[D].上海,上海大学,2006年2月.
    96. C. Schlensok, M. H. Gracia, K. Hameyer. Combined numerical and analytical method forgeometry optimization of a PM motor[J]. IEEE Transactions on Magnetics,2006,42(4):1211-1214.
    97. M. A. Jabbar,H. N. Phyu,Z. j. Liu, et al. Modeling and numberical simulation of a brushlesspermanent-magnet DC motor in dynamic conditions by time-stepping technique[J]. IEEETransactions on Industry Applications,2004,40(3):763-770.
    98. A. Bellara,Y. Amara,G. Barakat,et al. Two-dimensional exact analytical solution ofarmature reaction field in slotted surface mounted pm radial flux synchronousmachines[J].IEEE Transactions on Magnetics,2009,45(10):4534-4538.
    99.王兴华,励庆孚,王曙鸿.永磁无刷直流电机负载磁场及其电磁转矩的计算[J].中国电机工程学报,2003,23(4):140-144.
    100.章跃进,江建中,崔巍.数值解析结合法提高电机磁场后处理计算精度[J].中国电机工程学报,2007,27(3):68-72.
    101. Z. J. Liu,J. T. Li.Accurate prediction of magnetic field and magnetic forces in permanentmagnet motor using an analytical solution [J].IEEE Transactions on Energy Conversion,2008,23(3):717-726.
    102.陈阳生,林友仰,陶志鹏.无刷直流电机力矩的解析计算[J].中国电机工程学报,1995,15(4):253-260.
    103.蒙亮,罗应力,刘晓芳等.汽轮发电机转子铁心表面电磁力分布的实例研究[J].中国电机工程学报,2005,25(1):81-86.
    104. R. H. Richard, P. Y. Peterson, A. D. Gallimore. A high specific impulse two stage hallthruster with plasma lens focusing[C]. The27thInternational Electric Propulsion Conference,Pasadena, CA,15-19October,2001.
    105. Z. Q. Zhu, D. Howe. Influence of design parameters on cogging torque in permanentmagnet machines [J]. IEEE Transactions on Energy Conversion.2000,15(4):407-412.
    106. W. J. Kim. High precision planar magnetic levitation [D]. MIT:1997.
    107. H. Ohsaki, Y. Ueda. Numerical simulation of mover motion of surface motor using Halbachpermanent magnets[C]. International Symposium on Power Electronics, Electrical Drives,Automation and Motion,SPEEDAM2006:364-367.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700