高保真的可逆信息隐藏
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着因特网和多媒体信息技术的发展,存储、修改和传播数字多媒体信息(文本、音频、图像、视频等)变得越来越容易。人们可以很容易地下载这些多媒体信息,并加以修改和发布。这不仅损害了版权所有者的合法权益,也会引发关乎国家安全、企业机密和个人隐私等一系列信息安全问题。信息隐藏是一种隐蔽通信、版权保护和内容完整性认证的有效技术手段。近年来提出的可逆信息隐藏技术能够将特定信息嵌入到载体,并允许合法用户在提取该信息后无失真地恢复出原始载体,因而在军事、医学、司法等对图像内容敏感的领域受到了广泛关注。
     本论文以高保真的可逆信息隐藏技术为主要研究内容,探讨在给定嵌入容量的情况下如何更有效地减少嵌入失真,提升图像视觉质量。论文取得的主要创新性研究成果包括:
     1.提出了一种基于可自适应选择预测误差直方图的高容量可逆信息隐藏方法。该方法设计了两种预测器,通过参数调节得到不同的预测误差直方图。对比上层嵌入,自适应地得到当前嵌入层的最优预测误差直方图,使得像素补偿的收益最大化。实验结果表明该方法在高嵌入率情况下的图像质量明显优于基于直方图移位的传统方法。
     2.提出了一种基于偏微分方程预测器的可逆信息隐藏方法。偏微分预测器能够根据图像的局部相关性迭代更新得到最优预测值。在每一次迭代中,通过计算当前预测值在上下左右四个方向上的梯度,来自适应地分配权重,因而预测更准确。实验结果表明在同等嵌入率下该方法带来的失真更小。
     3.提出了一种基于非局部均值预测的可逆信息隐藏方法。通过全局地利用图像的自相似性来提升像素预测的准确性,不仅能在图像平滑区准确预测,也能在纹理区取得较好效果。实验结果表明,该方法对于自然图像尤其是纹理图像可取得更好的嵌入性能。
     4.提出了一种基于像素值排序的可逆信息隐藏方法。以像素块为基本嵌入单元,利用块内像素值的大小顺序在信息嵌入前后保持不变这一特性,将图像的嵌入划分了多个层级。通过容量划分和像素选择技术,根据容量自适应地在不同类型的像素块嵌入信息,得到最优的嵌入效果。实验结果表明该方法在小嵌入容量下对图像的改动更小。
     5.提出了一种基于二维直方图的可逆信息隐藏框架。利用预测误差间的相关性,将邻近的两个预测误差作为嵌入单元来设计一种二维的可逆嵌入方案,并给出了多个新的、更有效的二维可逆映射,理论证明了该方法的优越性。实验结果表明该方法明显优于当前主流的可逆信息隐藏方法。
As the development of Internet and multimedia technology, it is possible for world-wide people to store, copy, edit and distribute multimedia data (including text, audio, image and video) nowadays. Peoples can freely download the digital content from the Internet, and then edit it for their personal uses. However, it harms the rights of copyright owners, and also brings a great number of information security problems. Data hiding offers a way of content protection. Recent years, reversible data hiding (RDH) is pro-posed to embed data imperceptibly into cover media in a reversible way, such that the authorized users can losslessly recover the original content after extracting the hidden message. It has aroused great concern in the medical, military, judical fields where any permanent distortion on the original content is strictly forbidden.
     In this paper, we mainly focus on the high-fidelity RDH which introduces less dis-tortion for a given capacity. The research achievements are listed as follows.
     1. Propose RDH using optional prediction-error histogram modification. By consid-ering the pixel compensation during the multiple layer embedding, an optional predictor is designed to generate the most appropriate prediction-error histogram, which results in less distortion at the same embedding rate. Unlike other histogram based schemes, the generated prediction-error histogram can be tuned through the selection of threshold for each layer to strike the balance between capacity and pixel compensation. Experimental results demonstrate that the proposed method introduces less distortion at high embedding rate.
     2. Propose RDH using partial differential equation (PDE) predictor. The general idea of PDE is to implement anisotropic diffusion by encouraging intra-region smooth-ing in preference to inter-region smoothing. As for the prediction in PEE, such property can also be utilized to make context pixels with high correlations being weighted larger than the ones with low correlations. Since PDE predictor can bet-ter exploit image redundancy, the proposed method introduces less distortion for embedding the same payload.
     3. Propose RDH using non-local means (NLM) predictor. By globally utilizing the potential self-similarity contained in image itself, the proposed method aims to achieve better prediction even in texture regions. The incorporation of NLM makes the proposed method possible to achieve accurate prediction in both smooth and texture regions. Compared with other methods, the proposed method can yield a better capacity-distortion performance, especially for texture images.
     4. Propose RDH using invariant pixel-value-ordering and PEE. In the method, an im-age is divided into non-overlapped blocks and the pixel block is used as the basic u-nit for data embedding. For each block, the maximum-valued (or minimum-valued) pixels are first predicted and then modified together such that they are either un-changed or increased by1(or decreased by1) in value at the same time. Compared with the prior art, more blocks suitable for RDH are utilized and image redundan-cy is better exploited. Moreover, a mechanism of advisable payload partition and pixel-block-selection is adopted to optimize the embedding performance in terms of capacity-distortion behavior.
     5. Propose pairwise prediction-error expansion (PEE) for efficient RDH, which for-mulates a new paradigm of PEE in a higher dimensional space to exploit correla-tions among adjacent prediction-errors. Here, every two adjacent prediction-errors are considered jointly to generate a sequence consisting of prediction-error pairs. Then, based on the sequence and the resulting two-dimensional prediction-error histogram, a more efficient embedding strategy, namely, pairwise PEE, can be de-signed to achieve an improved performance. The superiority of our method is the-oretically proved, and then verified through extensive experiments.
引文
① http://sipi.usc.edu/database/
    ① http://homepages.lboro.ac.uk/cogs/datasets/ucid/ucidhtml
    ① http://sipi.usc.edu/database/database.php?volume=misc
    ① http://sipi.usc.edu/database/database.php?volume=misc
    ① http://www.r0k.us/graphics/kodak/
    ① http://www.agents.cz/boss/BOSSFinal/
    [1]Wu M, Liu B. Data hiding in image and video.1. fundamental issues and solutions. IEEE Trans. Image Process.,2003,12(6):685-695.
    [2]Wu M, Yu H, Liu B. Data hiding in image and video.II. designs and applications. IEEE Trans. Image Process.,2003,12(6):696-705.
    [3]Shi Y Q, Ni Z, Zou D, et al. Lossless data hiding:fundamentals, algorithms and applications. Proceedings of IEEE International Symposium on Circuits and Systems, volume 2,2004.33-36.
    [4]Shi Y Q. Reversible data hiding. Proceedings of International Workshop on Digital-forensics and Watermarking, volume 3304 of Springer LNCS,2004.1-12.
    [5]Cox I, Miller M, Bloom J, et al. Digital watermarking and steganography,2nd Edition. San Francisco, CA, USA:Morgan Kaufmann Publishers Inc.,2007.
    [6]Caldelli R, Filippini F, Becarelli R. Reversible watermarking techniques:an overview and a classification. EURASIP Journal on Information Security,2010,2010.
    [7]Honsinger C W, Jones P, Rabbani M, et al. Lossless recovery of an original image containing embedded data. US patent:6278791,2001.
    [8]Mobasseri B, Berger R, Marcinak M, et al. Data embedding in JPEG bitstream by code map-ping. IEEE Trans. Image Process.,2010,19(4):958-966.
    [9]De Vleeschouwer C, Delaigle J F, Macq B. Circular interpretation of bijective transforma-tions in lossless watermarking for media asset management. IEEE Trans. Multimedia,2003, 5(1):97-105.
    [10]Ni Z, Shi Y, Ansari N, et al. Robust lossless image data hiding designed for semi-fragile image authentication. IEEE Trans. Circuits Syst. Video Technol.,2008,18(4):497-509.
    [11]Gao X, An L, Yuan Y, et al. Lossless data embedding using generalized statistical quantity histogram. IEEE Trans. Circuits Syst. Video Technol.,2011,21(8):1061-1070.
    [12]An L, Gao X, Li X, et al. Robust reversible watermarking via clustering and enhanced pixel-wise masking. IEEE Trans. Image Process.,2012,21(8):3598-3611.
    [13]Cichowski J, Czyzewski A. Reversible video stream anonymization for video surveillance systems based on pixels relocation and watermarking. Proceedings of IEEE International Con-ference on Computer Vision,2011.1971-1977.
    [14]Nishimura A. Reversible audio data hiding using linear prediction and error expansion. Pro-ceedings of IEEE International Conference on Intelligent Information Hiding and Multimedia Signal Processing,2011.318-321.
    [15]Li J, Li X, Yang B. Reversible data hiding scheme for color image based on prediction-error expansion and cross-channel correlation. Signal Processing,2013,93(9):2748-2758.
    [16]Tsai H M, Chang L W. A high secure reversible visible watermarking scheme. Proceedings of IEEE International Conference on Multimedia& Expo,2007.2106-2109.
    [17]Yang Y, Sun X, Yang H, et al. A contrast-sensitive reversible visible image watermarking technique. IEEE Trans. Circuits Syst. Video Technol.,2009,19(5):656-667.
    [18]Liu T Y, Tsai W H. Generic lossless visible watermarking-a new approach. IEEE Trans. Image Process.,2010,19(5):1224-1235.
    [19]Fridrich J, Goljan M, Du R. Invertible authentication. Proceedings of Security and Watermark-ing of Multimedia Contents Ⅲ, volume 4314 of SPIE,2001.197-208.
    [20]Fridrich J, Goljan M, Du R. Lossless data embedding-new paradigm in digital watermarking. EURASIP Journal on Applied Signal Processing,2002,2002(2):185-196.
    [21]Xuan G, Zhu J, Chen J, et al. Distortionless data hiding based on integer wavelet transform. IEE Electron. Lett.,2002,38(25):1646-1648.
    [22]Celik M U, Sharma G, Tekalp A M, et al. Lossless generalized-LSB data embedding. IEEE Trans. Image Process.,2005,14(2):253-266.
    [23]Celik M U, Sharma G, Tekalp A M. Lossless watermarking for image authentication:a new framework and an implementation. IEEE Trans. Image Process.,2006,15(4):1042-1049.
    [24]Zhang W, Chen B, Yu N. Improving various reversible data hiding schemes via optimal codes for binary cover. IEEE Trans. Image Process.,2012,21(6):2991-3003.
    [25]Qian Z, Zhang X. Lossless data hiding in JPEG bitstream. Journal of Systems and Software, 2012,85(2):309-313.
    [26]Zhang W, Hu X, Li X, et al. Recursive histogram modification:establishing equivalency be-tween reversible data hiding and lossless data compression. IEEE Trans. Image Process.,2013, 22(7):2775-2785.
    [27]Tian J. Reversible data embedding using a difference expansion. IEEE Trans. Circuits Syst. Video Technol.,2003,13(8):890-896.
    [28]Alattar A. Reversible watermark using difference expansion of triplets. Proceedings of IEEE International Conference on Image Processing, volume 1,2003.501-504.
    [29]Alattar A. Reversible watermark using difference expansion of quads. Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, volume 3,2004.377-380.
    [30]Alattar A M. Reversible watermark using the difference expansion of a generalized integer transform. IEEE Trans. Image Process.,2004,13(8):1147-1156.
    [31]Kamstra L, Heijmans H J A M. Reversible data embedding into images using wavelet tech-niques and sorting. IEEE Trans. Image Process.,2005,14(12):2082-2090.
    [32]Weng S, Zhao Y, Pan J S, et al. A novel reversible watermarking based on an integer transform. Proceedings of IEEE International Conference on Image Processing, volume 3,2007.241-244.
    [33]Kim H J, Sachnev V, Shi Y Q, et al. A novel difference expansion transform for reversible data embedding. IEEE Trans. Inf. Forens. Security,2008,4(3):456-465.
    [34]Hu Y, Lee H K, Chen K, et al. Difference expansion based reversible data hiding using two embedding directions. IEEE Trans. Multimedia,2008,10(8):1500-1512.
    [35]Tai W L, Yeh C M, Chang C C. Reversible data hiding based on histogram modification of pixel differences. IEEE Trans. Circuits Syst. Video Technol.,2009,19(6):906-910.
    [36]Hu Y, Lee H K, Li J. DE-based reversible data hiding with improved overflow location map. IEEE Trans. Circuits Syst. Video Technol.,2009,19(2):250-260.
    [37]Ni Z, Shi Y Q, Ansari N, et al. Reversible data hiding. IEEE Trans. Circuits Syst. Video Technol.,2006,16(3):354-362.
    [38]Lee S K, Suh Y H, Ho Y S. Reversible image authentication based on watermarking. Proceed-ings of IEEE International Conference on Multimedia & Expo,2006.1321-1324.
    [39]Hwang J, Kim J, Choi J. A reversible watermarking based on histogram shifting. Proceedings of International Workshop on Digital-forensics and Watermarking, volume 4283 of Springer LNCS,2006.348-361.
    [40]Hwang J, Kim J W, Choi J U. A reversible watermarking based on histogram shifting. Pro-ceedings of International Workshop on Digital-forensics and Watermarking, volume 4283 of Springer LNCS,2006.348-361.
    [41]Xuan G, Shi Y Q, Chai P, et al. Optimum histogram pair based image lossless data embedding. Proceedings of International Workshop on Digital-forensics and Watermarking, volume 5041 of Springer LNCS,2007.264-278.
    [42]Fallahpour M, Sedaaghi M H. High capacity lossless data hiding based on histogram modifi-cation. IEICE Electronics Express,2007,4(7):205-210.
    [43]Tsai P, Hu Y C, Yeh H L. Reversible image hiding scheme using predictive coding and his-togram shifting. Signal Processing,2009,89(6):1129-1143.
    [44]Wang X, Li X, Yang B, et al. A reversible watermarking scheme for high-fidelity applications. Proceedings of Pacific-Rim Conference on Multimedia, volume 5879 of Springer LNCS,2009. 613-624.
    [45]Gao X, An L, Li X, et al. Reversibility improved lossless data hiding. Signal Processing,2009, 89(10):2053-2065.
    [46]Li Y C, Yeh C M, Chang C C. Data hiding based on the similarity between neighboring pixels with reversibility. Digital Signal Processing,2010,20(4):1116-1128.
    [47]Arabzadeh M, Helfroush M, Danyali H, et al. Reversible watermarking based on generalized histogram shifting. Proceedings of IEEE International Conference on Image Processing,2011. 2741-2744.
    [48]Jung S W, Ha L T, Ko S J. A new histogram modification based reversible data hiding algorithm considering the human visual system. IEEE Signal Process. Lett.,2011,18(2):95-98.
    [49]Tsai Y Y, Tsai D S, Liu C L. Reversible data hiding scheme based on neighboring pixel differences. Digital Signal Processing,2013,23(3):919-927.
    [50]Li X, Li J, Li B, et al. High-fidelity reversible data hiding scheme based on pixel-value-ordering and prediction-error expansion. Signal Processing,2013,93(1):198-205.
    [51]Thodi D, Rodriguez J. Prediction-error based reversible watermarking. Proceedings of IEEE International Conference on Image Processing, volume 3,2004.1549-1552.
    [52]Thodi D M, Rodriguez J J. Expansion embedding techniques for reversible watermarking. IEEE Trans. Image Process.,2007,16(3):721-730.
    [53]Fallahpour M. Reversible image data hiding based on gradient adjusted prediction. IEICE Electronics Express,2008,5(20):870-876.
    [54]Kim K S, Lee M J, Lee H Y, et al. Reversible data hiding exploiting spatial correlation between sub-sampled images. Pattern Recognition,2009,42(11):3083-3096.
    [55]Sachnev V, Kim H J, Nam J, et al. Reversible watermarking algorithm using sorting and prediction. IEEE Trans. Circuits Syst. Video Technol.,2009,19(7):989-999.
    [56]Hong W, Chen T S, Shiu C W. Reversible data hiding for high quality images using modifica-tion of prediction errors. Journal of Systems and Software,2009,82(11):1833-1842.
    [57]Wang C, Li X, Yang B. Efficient reversible image watermarking by using dynamical prediction-error expansion. Proceedings of IEEE International Conference on Image Processing,2010. 3673-3676.
    [58]Luo L, Chen Z, Chen M, et al. Reversible image watermarking using interpolation technique. IEEE Trans. Inf. Forens. Security,2010,5(1):187-193.
    [59]Hong W, Chen T S, Chang Y P, et al. A high capacity reversible data hiding scheme using or-thogonal projection and prediction error modification. Signal Processing,2010,90(11):2911-2922.
    [60]Hong W. An efficient prediction-and-shifting embedding technique for high quality reversible data hiding. EURASIP Journal on Advances in Signal Processing,2010,2010.
    [61]Xuan G, Shi Y, Teng J, et al. Double-threshold reversible data hiding. Proceedings of IEEE International Symposium on Circuits and Systems,2010.1129-1132.
    [62]Li X, Yang B, Zeng T. Efficient reversible watermarking based on adaptive prediction-error expansion and pixel selection. IEEE Trans. Image Process.,2011,20(12):3524-3533.
    [63]Coltuc D. Improved embedding for prediction-based reversible watermarking. IEEE Trans. Inf. Forens. Security,2011,6(3):873-882.
    [64]Dragoi C, Coltuc D. Improved rhombus interpolation for reversible watermarking by difference expansion. Proceedings of EUSIPCO,2012.1688-1692.
    [65]Feng G, Fan L. Reversible data hiding of high payload using local edge sensing prediction. Journal of Systems and Software,2012,85(2):392-399.
    [66]Chang C C, Huang Y H, Tsai H Y, et al. Prediction-based reversible data hiding using the difference of neighboring pixels. AEU-International Journal of Electronics and Communica-tions,2012,66(9):758-766.
    [67]Wu H T, Huang J. Reversible image watermarking on prediction errors by efficient histogram modification. Signal Processing,2012,92(12):3000-3009.
    [68]Ou B, Li X, Zhao Y, et al. Reversible data hiding based on PDE predictor. Journal of Systems and Software,2013. To appear.
    [69]Hong W. Adaptive reversible data hiding method based on error energy control and histogram shifting. Optics Communications,2012,285(2):101-108.
    [70]Qin C, Chang C C, Huang Y H, et al. An inpainting-assisted reversible steganographic scheme using histogram shifting mechanism. IEEE Trans. Circuits Syst. Video Technol.,2013, 23(7):1109-1118.
    [71]Coltuc D, Dragoi I C. Context embedding for raster-scan rhombus based reversible watermark-ing. Proceedings of ACM Workshop on Information Hiding and Multimedia Security,2013. 215-220.
    [72]Coatrieux G, Pan W, Cuppens-Boulahia N, et al. Reversible watermarking based on invariant image classification and dynamic histogram shifting. IEEE Trans. Inf. Forens. Security,2013, 8(1):111-120.
    [73]Zhang X. Reversible Data Hiding With Optimal Value Transfer. IEEE Trans. Multimedia, 2013,15(2):316-325.
    [74]Ou B, Li X, Zhao Y, et al. Pairwise prediction-error expansion for efficient reversible data hiding. IEEE Trans. Image Process.,2013,22(12):5010-5021.
    [75]Lee S, Yoo C D, Kalker T. Reversible image watermarking based on integer-to-integer wavelet transform. IEEE Trans. Inf. Forens. Security,2007,2(3):321-330.
    [76]Coltuc D, Chassery J M. Very fast watermarking by reversible contrast mapping. IEEE Signal Process. Lett.,2007,14(4):255-258.
    [77]Weng S, Zhao Y, Pan J S, et al. Reversible watermarking based on invariability and adjustment on pixel pairs. IEEE Signal Process. Lett.,2008,15:721-724.
    [78]Wang X, Li X, Yang B, et al. Efficient generalized integer transform for reversible watermark-ing. IEEE Signal Process. Lett.,2010,17(6):567-570.
    [79]Wang C, Li X, Yang B. High capacity reversible image watermarking based on integer trans-form. Proceedings of IEEE International Conference on Image Processing,2010.217-220.
    [80]Chen X, Li X, Yang B, et al. Reversible image watermarking based on a generalized integer transform. Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing,2010.2382-2385.
    [81]Coltuc D. Low distortion transform for reversible watermarking. IEEE Trans. Image Process., 2012,21(1):412-417.
    [82]Peng F, Li X, Yang B. Adaptive reversible data hiding scheme based on integer transform. Signal Processing,2012,92(1):54-62.
    [83]Gui X, Li X, Yang B.A novel integer transform for efficient reversible watermarking. Pro-ceedings of International Conference on Pattern Recognition,2012.947-950.
    [84]Kalker T, Willems F. Capacity bounds and constructions for reversible data-hiding. Proceed-ings of DSP, volume 1,2002.71-76.
    [85]Zhou J, Au O. Determining the capacity parameters in pee-based reversible image watermark-ing. IEEE Signal Process. Lett.,2012,19(5):287-290.
    [86]Zhang W, Chen B, Yu N. Improving various reversible data hiding schemes via optimal codes for binary covers. IEEE Trans. Image Process.,2012,21(6):2991-3003.
    [87]Lin S J, Chung W H. The scalar scheme for reversible information-embedding in gray-scale signals:capacity evaluation and code constructions. IEEE Trans. Inf. Forens. Security,2012, 7(4):1155-1167.
    [88]Zhang X. Reversible data hiding in encrypted image. IEEE Signal Process. Lett.,2011, 18(4):255-258.
    [89]Zhang X. Reversibility improved data hiding in encrypted images. Signal Processing,2014, 94(0):118-127.
    [90]Zhang X. Lossy compression and iterative reconstruction for encrypted image. IEEE Trans. Inf. Forens. Security,2011,6(1):53-58.
    [91]Bao F, Deng R H, Ooi B C, et al. Tailored reversible watermarking schemes for authentication of electronic clinical atlas. Information Technology in Biomedicine, IEEE Transactions on, 2005,9(4):554-563.
    [92]De Queiroz R, Braun K. Color to gray and back:color embedding into textured gray images. IEEE Trans. Image Process.,2006,15(6):1464-1470.
    [93]Pei S C, Ding J J. Reversible integer color transform. IEEE Trans. Image Process.,2007, 16(6):1686-1691.
    [94]Li R, Au O, Yuk C, et al. Enhanced image trans-coding using reversible data hiding. Proceed-ings of IEEE International Symposium on Circuits and Systems,2007.1273-1276.
    [95]Lien B, Pei W D. Reversible data hiding for ordered dithered halftone images. Proceedings of IEEE International Conference on Image Processing,2009.4237-4240.
    [96]Fallahpour M, Megias D, Ghanbari M. High capacity, reversible data hiding in medical images. Proceedings of IEEE International Conference on Image Processing,2009.4241-4244.
    [97]Coatrieux G, Le Guillou C, Cauvin J M, et al. Reversible watermarking for knowledge digest embedding and reliability control in medical images. Information Technology in Biomedicine, IEEE Transactions on,2009,13(2):158-165.
    [98]Chen Y S, Wang R Z. Steganalysis of reversible contrast mapping watermarking. IEEE Signal Process. Lett.,2009,16(2):125-128.
    [99]Chung K L, Huang Y H, Chang P C, et al. Reversible data hiding-based approach for intra-frame error concealment in H.264/AVC. IEEE Trans. Circuits Syst. Video Technol.,2010, 20(11):1643-1647.
    [100]Zhang Z, Zhu C, Zhao Y. Two-description image coding with steganography. Signal Processing Letters, IEEE,2008,15:887-890.
    [101]Wang X, Shao C, Xu X, et al. Reversible data-hiding scheme for 2-D vector maps based on difference expansion. IEEE Trans. Inf. Forens. Security,2007,2(3):311-320.
    [102]Tai W L, Yeh C M, Chang C C. reversible data hiding based on histogram modification of pixel differences. IEEE Trans. Circuits Syst. Video Technol.,2009,19(6):906-910.
    [103]Perona P, Malik J. Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell.,1990,12(7):629-639.
    [104]Buades A, Coll B, Morel J M. A non-local algorithm for image denoising. IEEE Computer Society Conference on Computer Vision and Pattern Recognition,2005,2:60-65.
    [105]Buades A, Coll B, Morel J M. Non-local image and movie denoising. International Journal of Computer Vision,2008,76(2):123-139.
    [106]Salmon J, Strozecki Y. Patch reprojections for non-local methods. Signal Processing,2012, 92(2):477-489.
    [107]Weinberger M J, Seroussi G, Sapiro G. The LOCO-I lossless image compression algorithm: principles and standardization into JPEG-LS. IEEE Trans. Image Process.,2000,9(8):1309-1324.
    [108]Wu X, Memon N. Context-based, adaptive, lossless image coding. IEEE Trans. Commun., 1997,45(4):437-444.
    [109]Bas P, Filler T, Pevny T. Break our steganographic system-the ins and outs of organizing BOSS. Proceedings of 13th Int. Workshop on Information Hiding, volume 6958 of Springer LNCS,2011.59-70.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700