海洋底栖硅藻的筛选、培养和应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用海区悬挂网袋的方法对大连近海底栖硅藻进行了采集,并通过平板法分离出单一的底栖硅藻。对筛选到的底栖硅藻分别从生物学特征、营养成分、生长环境条件以及饵料应用等方面进行了研究和分析,探讨单一底栖硅藻作为海洋经济动物幼体的饵料的可行性及其潜在应用价值。
     本文共分离出50余株单细胞底栖硅藻,并从其中筛选出8种有潜在开发价值的单一底栖硅藻。经鉴定它们分别为双菱缝舟藻、半裸舟形藻、双尖菱板藻细头变种、易变双眉藻眼状变种、盔状舟形藻、菱形藻、小形舟形藻和咖啡形双眉藻;其细胞大小在6.7μm×3.3μm-35.9μ×9.6μm之间,生长速率为0.44 div/d-0.73 div/d,生长过程中均能分泌胞外多聚物且细胞壁较薄,使其具有一定的附着能力和可消化性;上述特点可适宜不同生长阶段海洋经济动物幼体的摄食习性。
     研究结果表明:在不同生长时期内8种底栖硅藻细胞内的蛋白质、胞内总糖、胞外总糖、粗脂肪和灰分含量分别为1.21%-9.73%、2.67%-20.76%、2.08mg/L-16.23 mg/L、26.03%-50.71%和18.18%-4810%。其中蛋白质含量较高的是半裸舟形藻、双尖菱板藻细头变种、菱形藻和咖啡双眉藻;后两种胞内、外总糖含量也均较高;粗脂肪含量最高的是易变双眉藻眼状变种;灰分含量最高的是双菱缝舟藻。脂肪酸组成因硅藻种类和不同生长时期而差异较大。盔状舟形藻脂肪酸组成最丰富,半裸舟形藻、双尖菱板藻细头变种、盔状舟形藻、小形舟形藻和咖啡双眉藻含有EPA和DHA。8种底栖硅藻矿物元素含量也很丰富,半裸舟形藻、双尖菱板藻细头变种和菱形藻部分矿物元素含量最高。
     随着培养时间的延长,硅藻胞内蛋白质含量在第8-15天达到较高;胞内、外总糖含量的总体趋势升高;粗脂肪在第8天含量最高;灰分是第3天和第25天含量较高;脂肪酸在培养后期组成较丰富。
     8种底栖硅藻的适宜和最适生长温度、光照、盐度和pH范围分别为15℃-30℃和20℃-25℃、500 lx-9500 lx和1500 lx-5500 lx、25-50和30-35、7-9和8-8.5。温度和pH对各营养成分含量的影响均较小,低温更利于蛋白质的积累,温度过低或过高都不利于脂肪的合成。光照和盐度对蛋白质和胞内总糖含量的影响相对较小,对胞外总糖和粗脂肪的含量影响相对较大,略低或略高于最适光照更利于营养物质的合成,低盐度条件下合成蛋白质较多,高盐度条件下更利于胞内、外总糖和粗脂肪的合成。
     藻密度相同条件下,部分单种底栖硅藻饵料效果优于海区混合种。菱形藻、双菱缝舟藻和易变双眉藻眼状变种硅藻能强烈诱导虾夷马粪海胆幼体附着,附着率分别高出海区混合底栖硅藻对照组的18.33%、13.35%和6.68%。摄食盔状舟形藻、易变双眉藻眼状变种和菱形藻硅藻的海胆与海区混合硅藻对照组相比生长快、存活率高,壳径分别比对照组长55.2μm、42.82μm和39.45μm,存活率分别高出19.36%、18.77%和9.24%。皱纹盘鲍幼体在菱形藻、双尖菱板藻细头变种、半裸舟形藻和盔状舟形藻硅藻板上的附着率均高于海区混合底栖硅藻对照组,分别高出20.00%、18.33%、13.33%和6.67%。以菱形藻、双菱缝舟藻和盔状舟形藻硅藻为食的鲍幼体比海区对照组生长快,而存活率高只有菱形藻硅藻高于海区对照组,存活率为95.33%,超过海区对照组8.96%。
Benthic diatoms collected from hanging cages which were suspended beneath the surface of the coastal seawater near the seed production hatcheries were isolated by spreading plating method and their potential as food for aquaculture evaluated based on their biology characteristics, nutritional component, growth conditions and application to sea animals.
     The results show that there are eight benthic diatoms which are Rhaphoneis surirella, Navicula seminulum, Hantzschia amphioxys var. leptocephala, Amphora proteus var. oculata, Navicula corymbosa, Nitzschia sp., Navicula parva and Amphora coffeaeformis. All species were within the size range ingested by juvenile sea urchins and postlarval abalone, i.e. 6.7μm×3.3μm-35.9μm×9.6μm. Cellular growth rates ranged from 0.44 divisions·day~(-1)(Rhaphoneis surirella) to 0.73 divisions-day~(-1)(Navicula seminulum).
     The contents of protein, intracellular carbohydrate, extracellular carbohydrate, lipid and ash weight from eight benthic diatom species at four growth rates are 1.21%-9.73%、2.67%-20.76%、2.08mg/L-16.23mg/L、26.03%-50.71%and 18.18%-48.10%, respectively. Protein contents of N. seminulum, H. amphioxys var. leptocephala, Nitzschia sp. and A. coffeaeformis are higher than other diatoms. The contents of intracellular carbohydrate and extracellular carbohydrate from Nitzschia sp. and A. coffeaeformis are higher. Lipid content of A. proteus var. oculata is the highest in all diatoms. Ash weight of R. surirella is highest than the others. The fatty acid composition differs between diatoms at different growth phases. Among them, N. corymbosa is most abundant in fatty acid composition, and there are EPA and DHA in N. seminulum, H. amphioxys var. leptocephala, N. corymbosa, N. parva and A. coffeaeformis. Moreover, all diatoms are also rich in Mineral-element composition
     Nutritional component showed significant differences between diatoms at 3, 8, 15 and 25 days. Highest contents of protein and intracellular carbohydrate from diatoms are found at 8 and 15 days. Extracellular carbohydrate contents of diatoms increase always during the experiment. Highest lipid content is found at day 8. Diatoms have the highest amounts of ash at 3 and 25 days. Fatty acid is most abundant at day 15.
     The favourable and optimum temperature, light intensity, salinity and pH conditions for eight benthic diatom species are 15℃-30℃and 20℃-25℃, 500 lx-9500 lx and 1500 lx-55001x, 25-50 and 30-35, 7-9 and 8-8.5. Temperature and pH do less significantly affect all nutrient contents of diatoms. Protein contents of diatoms increase under lower temperature condition, while lower and higher temperature affect lipid contents of diatoms. Light intensity and salinity do less significantly affect protein and intracellular carbohydrate contents of diatoms, and significantly affect extracellular carbohydrate and lipid contents of diatoms. Nutritent contents are higher at lower and higher light intensity than at optimum one. Protein contents of diatoms cultured under lower salinity condition are higher, and intracellular carbohydrate, extracellular carbohydrate and lipid contents cultured under higher salinity condition are higher.
     A significantly higher number of larval abalone settled on N. seminulum, H. amphioxys var. leptocephala and compared to the control and others plates. Moreover, Nitzschia sp. and N. corymbosa strongly induce larval settlement of Strongylocentrotus intermedius and Haliotis discus hannai. Growth and survival of abalone are also greatest on R. surirella, and that of sea urchin on Amphora proteus var. oculata are higher than ones on other diatoms. Nitzschia sp. and N. corymbosa also accelerate growth and survival of S. intermedius and H. discus hannai. These results indicate the effectiveness of Nitzschia sp., R. surirella, A. proteus var. oculata and N. corymbosa as single species over mixed diatoms and natural diatoms in larval settlement and juvenile growth of S. intermedius and H. discus hannai.
引文
[1]Smetacek V. Diatoms and the ocean carbon cycle. Protist, 1999, 150: 25-32.
    [2]Norton T A, Melkonian M, Andersen R A. Algal biodiversity. Phycologia, 1996, 35: 308-326.
    [3]Van Den Hock C, Mann D G, Johns H M. Algae. An introduction to phycology. Cambridge: Cambridge University Press, 1997.
    [4]Scala S, Bowler C. Molecular insights into the novel aspects of diatom biology. Cell Mol Life Sci, 2001, 58: 1666-1673.
    [5]Falkowski P G, Barber R T, Smetacek V. Biogeochemical controls and feedbacks on ocean primary production. Science, 1998, 281: 200-206.
    [6]Lee R E. Heterokontophyta, Bacillariophyceae. In: Lee RE (ed) Phycology. Cambridge: Cambridge University Press, 1999, pp 415-458.
    [7]Falciatore A, Bowler C. Revealing the molecular secrets of marine diatoms. Annu Rev Plant Biol, 2002, 53: 109-130.
    [8]金德祥.海洋硅藻学.福建:厦门大学出版社,1991.
    [9]李永函,赵文.水产饵料生物学.大连:大连出版社,2002.
    [10]小泉格编,王开发,郭蓄民译.硅藻.北京:地质出版社,1984.
    [11]Hendey, N I. An introductory account of the smaller algae of British coastal waters. Fishery Investigations Series Ⅳ:partⅤ, Bacillariophyceae (Diatoms). London: Her Majesty's Stationery Office, 1964.
    [12]Selected Handouts for Biology 324. Diatom Division & Life History. www.bio.utexas.edu.
    [13]Kawamura, T. Taxonomy and ecology of marine benthic diatoms. Marine Fouling, 1994, 10, 7-25.
    [14]Perkins E J. The diurnal rhythm of the littoral diatoms of the river Ouse estuary, Fife. J Ecol, 1960, 48: 725-728.
    [15]Hoagland K D, Rosowski J R, Gretz M R et al. Diatom extracellular polymeric substances: function, fine structure, chemistry, and physiology. J Phycol, 1993, 29: 537-566.
    [16]王大志,黄世玉,程兆第.三种海洋硅藻胞外多聚物形态、微细结构及组成的微细研究.海洋与湖沼,2004,35(3):273-278.
    [17]Staats N, de Winder B, Stal L J et al. Isolation and characterization of extracellular polysaccharides from the epipelic diatoms Cylindrotheca closterium and Navicula salinarum. Eur. J. Phycol., 1999, 34: 161-169.
    [18]Wustman B A, Gertz M R, Hoagland K D. Extracellular matrix assembly in diatoms (Bacillariophyceae). Ⅰ. A model of adhesives based on chemical characterization and localization of polysaccharides from the marine diatom Achnanthes longipes. Plant Physiology, 1997, 113: 1059-1069.
    [19]Cox E J. Mucilage tube morphology of three tube-dwelling diatoms and its diagnostic value. Phycology, 1981, 17: 72-80.
    [20]Houpt P M. Observations on the marine tube-dwelling diatom Navicular pseudocomoides in culture. Diatom Res, 1987, 2: 47-53.
    [21] Millie D F, Wee J L. Observations on tube-dwelling diatom Navicula tripunctata var. schizonemoides (V. H) Patr. using light and electron microscopy. Proc Iowa Acad Sci, 1981, 88: 74-78.
    [22] Sicko-Goad L, Kociolek J P, Stoermer E F. Patterns of Mucilage Production and Secretion in Pennate Diatoms. Proc 47~(th) Ann Meet Electron Microsc Soc Am, 1989, 1016-1017.
    
    [23] Edgar L A. Fine structure of Caloneis amphisbaena (Bacillariophyceae). J Phycol, 1980, 16: 62-72.
    
    [24] Blunn G W, Evans L V. Microscopical observations on Achnanthes subsessilis, with particular reference to stalk formation. Bot Mar, 1981,24: 193-199.
    [25] Edgar L A. The mechanism of diatom locomotion I. An ultrastructure study of the motility apparatus. Proc R Soc Lond B, 1983, 218: 345-348.
    [26] Schmid A-M M. The special Golgi-ER-mitochondrium unit in the diatom genus Coscinodiscus. Pl SystEvol, 1988,158:211-223.
    [27] Herth W. The site of J3-chitin fibril formation in centric diatom. II. The chitin-forming cytoplasmic structures. J Ultrastruct Res, 1979, 68: 16-27.
    [28] Riebesell U. Partical aggregation during a diatom bloom.II. Biolohical aspects. Mar Ecol Prog Ser, 1991,69:281-291.
    [29] Smith D C, Steward G F, Long R A et al. Bacterial mediation of carbon fluxes during a diatom bloom in amesocosm. Deep-Sea Res Part II. 1995, 42 (1): 75-97.
    [30] Goto N , Kawamura T, Mitamura O et al. Importance of extracellular organic carbon production in the total primary production by tidal-flat diatoms in comparison to phytoplankton. Mar Ecol Prog Ser, 1999,190:289-295.
    [31] Decho A W, Moriarty J W. Bacterial exopolymer utilization by a Harpacticoid Copepod-a methodology and results. Limnol Oceanogr, 1990, 35: 1039-1049.
    [32] Decho A W. Microbial exopolymer secretions in ocean environments: their role(s) in food web and marine processes. Oceanogr Mar. Biol. Annu. Rev. 1990, 28: 73-153.
    
    [33] 黄宗国,蔡如星.海洋污损生物及其防除(上卷).北京:海洋出版社,1984.
    
    [34] Greenland D J, Lindstrom B G, Quirk J P. Role of polysaccharides in stabilization of natural soil aggregates. Nature, 1961, 191: 1283-1284.
    [35] Sutherland T F, Grant J, Amos C L. The effect of carbohydrate production by the diatom Nitzschia curvelineata on the erodibility of sediment. Limnol Oceanogr, 1998, 43: 65-72.
    [36] Peterson C G. Influences of flow regime on development and desiccation response of lotic diatom communities . Ecology, 1987, (68): 946-954.
    [37] Myklestad S, Huang A, Larsen B. Production of carbohydrates by the same marine diatom Chaetoceros affinis var. willei (Gran) Hustedt II. Preliminary investigation of the extracellular polysaccharide. J. Exp. Mar. Biol. Ecol. 1972, 9: 137-144.
    [38] Jensen A. Excretion of organic carbon as function of nutrient stress [A]. Holm-Hansen O, Bolis L, Gilles R. Lecture Notes on Coastal and Estuarine Studies 8. Marine Phytoplankton and Productivity [M]. Berlin: Springer-Verlag, 1984, 61-74.
    
    [39] Myklestad S. Production of carbohydrates by marine planktonic diatoms II. Influence of the N/P ratio in the growth medium on the assimilation ratios, growth rate and production of cellular and extracellular carbohydrates by Chaetoceros affinis var. willei (Gran) Hustedt and Skeletonema costatum (Grev) Cleve. J. Exp. Mar. Biol. Ecol. 1977, 29: 161-179.
    [40]Myklestad S, Holm-Hansen O, Varum K M et al. Rate of release of extracellular amino acids and carbohydrates from the marine diatom Chaetoceros affinis. J. Plankton Res. 1989, 11: 763-773.
    [41]Penna A, Berlutis S, Penna N et al. Influence of nutrient ratios on the in vitro extracellular polysaccharide production by matine diatoms from the Adriatic Sea. J. Plankton Res. 1999, 21(9): 1681-1690.
    [42]Staats N, Lucas J S, Luuc R M. Exopolysaccharide production by the epipelic diatom Cylindrot heca closterium: effects of nut rient conditions. J Exp Mar Bio Eco, 2000, 249: 13-27.
    [43]Admiraal W. Influence of various concent rations of orthophosphate on the division rate of an stuarine bent hic diatom, Navicula arenaria, in culture. Mar. Biol., 1977, 42: 1-8.
    [44]Sullivan M J, Daiber F C. Light, nitrogen and phosphorus limitation of edaphic algae in a Delaware salt marsh. J Exp Mar Biol Ecol, 1975, 18: 79-88.
    [45]David J S, Underwood GJ C. Exopolymer production by intertidal epipelic diatoms. Limnol Oceanogr, 1998, 43 (7): 1578-1591.
    [46]Wolfstein K, Stal L J. Production of ext racellular polymeric substances (EPS) by bent hic diatoms: effect of irradiance and temperature. Mar Eco Progr Ser, 2002, 236:13-22.
    [47]Hillebrand H, Sommer U. Response of epilithic microphytobenthos of the Western Baltic Sea to in situ experiments with nut rient enrichment. Mar Ecol Progr Ser, 1997, 160: 35-46.
    [48]陈世杰,陈木,卢豪魁等.鲍苗的饵料-底栖硅藻培养试验初报.动物学报,1977,23(1):47-52.
    [49]陈明耀.生物饵料培养.北京:中国农业出版社,1997,82-87.
    [50]庄树宏,Sven H.光强和光质对底栖硅藻群落影响Ⅱ群落和种群的动态和适应模式.生态学报,2001,21(12):2057-2066.
    [51]邹宁,孙东红,郭小燕.培养条件对底栖硅藻生长的影响.水产养殖,2005,26(5):11-13.
    [52]卢永春.培养底栖硅藻的技术.水产养殖,1995,3:11.
    [53]马志珍,季梅芳,陈汇远.一种可作鲍和海参饵料的底栖舟形藻的培养条件的研究.海洋通报,1985,4(4):36-39.
    [54]湛江水产专科学校主编.海洋饵料生物培养.北京:农业出版社,1980,83-92,127-134.
    [55]Wang Q H, Wang S H, Ding M J et al. Studies on culture conditions of benthic diatoms for feeding abalone Ⅰ. Effects of temperature and light intensity on growth rate. Chin. J. Oceanol. Limnal., 1997, 15(4): 296-303.
    [56]庄树宏,Sven H.光照强度和波长对底栖藻群落的影响Ⅰ光合色素的变化.烟台大学学报,1999,12(2): 108-113.
    [57]Krinsky N I.The protective function of carotenoidpigments, In: Giese A.C. ed. Photophysiology[M].New York: Academic Press. 1986, 123-195.
    [58]Wetzel R G. Limnology Philadelphia: W.B. Saunders Co., 1975, 710-743.
    [59]Correa-Reyes J G, Sanchez-Saavedra M P, Siqueiros-Beltrones D A et al. Isolation and growth of eight strains of benthic diatoms, cultured under two light conditions. Journal of Shellfish Research, 2001, 20(2):603-610.
    [60]华汝成.单细胞藻类的培养与利用.北京:农业出版社,1986.70-84,100-105,109-114,124-128,159-181.
    [61]陈峰,姜悦.微藻生物技术.中国轻工业出版社,1999,46,58-68,116-124.
    [62]Wang Q H, Li M, Wang S H et al. Studies on culture conditions of benthic diatoms for feeding abalone Ⅱ. Effects of salinity, pH, nitrogenous and phosphate nutrients on growth rate. Chin. J. Oceanol. Limnal., 1998, 16(1): 78-83.
    [63]王渊源,姜庆国,江航宇.培养小形舟形藻的氮、磷肥料量.海洋科学,1986,10(5):35-37.
    [64]Simental J A, Sanchez-Saavedra M P. The effect of agricultural fertilizer on growth rate of benthic diatoms. Aquacultural Engineering, 2003, 27: 265-272.
    [65]Opkelley J C. Inorganic nutrients. In: Stewart W D P,ed. Algal Physiology and biochemistry. London: Black Well Science Publications, 1974.610-633.
    [66]袁有宪.螯合剂EDTA的性质及其在水生生物培养与育苗中的作用.水产学报,1991,15(3):260-266.
    [67]Wang Q H, Li M, Wang S H et al Studies on culture conditions of benthic diatoms for feeding abalone Ⅲ. Effects of iron and silicon nutrients and of orthogonal combinations of nitrogen, phosphorus, iron and silicon on growth rate. Chin. J. Oceanol. Limnal., 1999, 17(2): 105-111.
    [68]李雅娟,王起华.氮、磷、铁、硅营养盐对底栖硅藻生长速率的影响.大连水产学院学报,1998,13(4):7-14.
    [69]Wemer D. Silicate metabolism. In: Wemer Ded. The Biology of Diatoms. London: Black Well Scientific Publications, 1977, 110-149.
    [70]Wen Z Y, Chen F. Continuous cultivation of the diatom Nitzschia laevis for eciosapentaenoic acid production: Physiological study and process optimization. Biotechnol Prog, 2002, 18(1): 21-28.
    [71]胡晗华,高坤山.CO_2浓度倍增对牟氏角毛藻生长和光合作用的影响.水生生物学报,2001,25(6):636-639.
    [72]梁英,麦康森,孙世春等.NaHCO3浓度对塔胞藻、小球藻和新月菱形藻生长的影响.黄渤海洋,2001,19(2):71-76.
    [73]Makaoto K. Ritsulo M, Isao K. Enchanced eicosapentaenoic acid production by Navicula saprophils. J. Appl. Phycol., 1998, 10: 101-105.
    [74]李雅娟,李梅,毛连菊等.几种植物生长物质对底栖硅藻生长速率的影响.大连水产学院学报,1999,14(4):1-6.
    [75]李雅娟,刘淑范,李梅.3种植物生长激素对2种底栖硅藻生长速率的影响.中国水产科学,2002,9(1):18-22.
    [76]Fukami, K., T. Sakami, Y. Ishida et al. Effect of bacterial film on the growth of the attached diatom, Nitzschia sp. In: Miyachi, S., I. Karube & Y. Ishida (eds). Current Topics in Marine Biotechnology, Proceedings of the First International Marine Biotechnology Conference. Tokyo: Fuji Technology Press, 1989: 415-418.
    [77]Fukami K, Nishijima T, Ishida Y. Stimulative and inhibitory effects of bacteria on the growth of microalgae. Hydrobiologia, 1997, 3.58:185-191.
    [78]张光涛,孙松.硅藻对桡足类生长和生殖的作用.自然科学进展,2003,13(8):818-824.
    [79]李捷,李超伦.高浓度硅藻对桡足类繁殖的抑制作用.生态学报,2004,24(11):2664-2670.
    [80]李捷,李超伦,张展等.桡足类与硅藻相互作用的研究进展.生态学杂志,2005,24(9):1085-1089.
    [81]Knuckey R M, Brown M R, Barrett S M et al. Isolation of new nanoplanktonic diatom strains and their evaluation as diets for juvenile Pacific oysters (Crassostrea gigas). Aquaculture, 2002, 211: 253-274.
    [82]石娟,潘克厚.不同光照条件对小新月菱形藻和等鞭金藻8701生长和生化成分的影响.中国水产科学,2004,11(2):121-128.
    [83]周慈由,陈慈美,黄晓丹.环境因子对中肋骨条藻碳水化合物、氨基酸和蛋白质含量的影响.海洋技术,1998,17(9):66-69.
    [84]Liang Y, Mai K S, Sun S C et al. Effects of salinity on the growth and fatty acid composition of six strains of marine diatoms. Transactions of Oceanology and Limnlology, 2000, 4: 53-62.
    [85]Simental-Trinidad J A, Sanchez-Saavedra M P, Correa-Reyes J G. Biochemical composition of benthic marine diatoms using as culture medium a common agricultural fertilizer. J. Shellfish. Res., 2001, 20(2): 611-617.
    [86]辛福言,袁有宪,曲克明.镧-氨基酸络合物对牟氏角毛藻的影响.应用生态学报,1998,9(2):206-208.
    [87]Lincoln RA, Strupinski K, Walker JM. Biologically active compounds from diatoms. Diatom Res. 1990, 5: 337-349.
    [88]Sanchez Miron A, Contreras Gomez A, Garcia Camacho F et al. Comparative evaluation of compact photobioreactors for large-scale monoculture of microalgae. J Biotechnol, 1999, 70: 249-270.
    [89]Lee Y K. Commercial production of microalgae in the Asia-Pacific rim. J Appl Phycol, 1997, 9: 403-411.
    [90]Wen Z Y. A high yield and productivity strategy for eicosapentaenoic acid production by the diatom Nitzschia laevis in heterotrophic culture: (博士学位论文). Hong Kong: University of Hong Kong, 2001.
    [91]Lebeau T, Robert JM. Diatom cultivation and biotechnologically relevant products. Part Ⅱ: current and putative products. Appl Microbiol Biotechnol, 2003, 60: 624-632.
    [92]Chu W L, Phang S M, Goh SH. Studies on the production of useful chemicals, especially fatty acids in the marine diatom Nitzschia conspicua Grunow. Hydrobiol, 1994, 285: 33-40.
    [93]Wen Z Y, Chen F A. perfusion-cell bleeding culture strategy for enhancing the productivity of eicosapentaenoic acid by Nitzschia laevis. Appl Microbiol Biotechnol, 2001, 57:316-322.
    [94]Wen Z Y, Chen F. Heterotrophic production of eicosapentaenoic acid by the diatom Nitzschia laevis: effects of silicate and glucose. J Ind Microbiol Biotechno, 2000, 25:218-224.
    [95]Wen Z Y, Chen F. Production potential of eicosapentaenoic acid by the diatom Nitzschia laevis. Biotechnol Lett, 2000, 22:727-733.
    [96]Wen Z Y, Chen F. Application of statistically-based experimental designs for the optimisation of eicosapentaenoic acid production by the diatom Nitzschia laevis.Biotechnol Bioeng,2001,75: 159-169.
    [97]Acien Fernandez F G, Sanchez Perez J A, Fernandez Sevilla J M et al. Modeling of eicosapentaenoic acid (EPA) production from Phaeodactylum tricornutum cultures in tubular photobioreactors. Effects of dilution rate, tube diameter, and solar irradiance. Biotechnol Bioeng, 2000, 68:173-183.
    [98]Alonso D L, Del Castillo C I S, Grima E M et al. First insights into improvement of eicosapentaenoic acid content in Phaeodactylum tricornutum (Bacillariophyceae) by induced mutagenesis. J Phycol, 1996, 32(2): 339-345.
    [99] Ceron Garcia MC, Fernandez Sevilla JM, Acien Fernandez FG, Molina Grima E, Garcia Camacho F. Mixotrophic growth of Phaeodactylum tricornutum on glycerol: growth rate and fatty acid profile. J Appl Phycol, 2000, 12: 239-248.
    [100] Chrismadha T, Borowitzka MA. Effect of cell density and irradiance on growth, proximate composition and eicosapentaenoic acid production of Phaeodactylum tricornutum grown in a tubular photobioreactor. J Appl Phycol, 1994, 6: 67-74.
    [101] Fidalgo J P, Cid A, Abalde J, Herrero C. Culture of the marine diatom Phaeodactylum tricornutum with different nitrogen sources: growth, nutrient conversion and biochemical composition. Cah Biol Mar, 1995,36: 165-173.
    [102] Molina Grima E, Sanchez Perez J A, Garcia Camacho F et al. Effect of dilution rate on eicosapentaenoic acid productivity of Phaeodactylum tricornutum utex 640 in outdoor chemostat culture. Biotechnol Lett, 1994, 16: 1035-1040.
    [103] Molina Grima E, Sanchez Perez J A, Garcia Camacho F et al. Biomass and eicosapentaenoic acid productivities from an outdoor batch culture of Phaeodactylum tricornutum UTEX 640 in an airlift tubular photobioreactor. Appl Microb Biotechnol, 1995, 42: 658-66.
    [104] Otero A, Garcia D, Fabregas J. Factors controlling eicosapentaenoic acid production in semicontinuous culture of marine microalgae. J Appl Phycol, 1997, 9: 465-469.
    [105] Reis A, Gouveia L, Veloso V et al. Eicosapentaenoic acid-rich biomass production by the microalga Phaeodactylum tricornutum in a continuous-flow reactor. Bioresour Technol, 1996, 55: 83-88.
    [106] Veloso V, Reis A, Gouveia L et al. Lipid production by Phaeodactylum tricornutum. Bioresour Technol, 1991,38:115-119.
    [107] Yongmanitchai W, Ward O P. Growth of and omega-3 fatty acid production by Phaeodactylum tricornutum under different culture conditions. Appl Environ Microb, 1991, 57: 419-425.
    [108] Kitano M, Matsukawa R, Karube 1 J. Changes in eicosapentaenoic acid content of Navicula saprophila, Rhodomonas alina and Nitzschia sp. under mixotrophic conditions Appl Phycol, 1997, 9: 559-563.
    [109] Kitano M, Matsukawa R, Karube 1 J. Enhanced eicosapentaenoic acid production by Navicula saprophila. Appl Phycol, 1998, 10: 101-105.
    [110] Koletzko B, Decsi T, Demmelmair H. Arachidonic acid supply and metabolism in human infants born at full term. Lipids, 1996, 31: 79-83.
    [111] Derrien A, Coiffard L J M, Coiffard C et al. Free amino acid analysis of five microalgae. J Appl Phycol, 1998, 10: 131-134.
    [112] Taraldsvik M, Myklestad SM. The effect of pH on growth rate, biochemical composition and extracellular carbohydrate production of the marine diatom Skeletonema costatum. Eur J Phycol, 2000,35: 189-194.
    
    [113] Princen LH. Economic Botany. 1982, 36: 302-312.
    [114] Sriharan S, Bagga D, Sriharan T P. Effects of nutrients and temperature on lipid and fatty acid production in the diatom Hantzschia D1-60. Appl Biochem Biotechnol, 1990, 24/25: 309-316.
    [115] McGinnis K M, Dempster T A, Sommerfeld M R. Characterization of the growth and lipid content of the diatom Chaetoceros muelleri. J Appl Phycol, 1997, 9: 19-24.
    [116] Dunahay T G, Jarvis E E, Dais S S et al. Manipulation of microalgal lipid production using genetic engineering. Appl Biochem Biotechnol, 1996, 57/58: 223-231.
    [117] Wright J L L, Boyd R C, De Freitas A S W et al. Identification of domoic acid, a neuroexcitatiry amino acid, in toxic mussels from eastern Prince Edward Island. Can J Chem, 1989,67:481-490.
    [118] Kotaki Y, Koike K, Yoshida M et al. Domoic acid production in Nitzschia sp. (Bacillariophyceae) isolated from a shrimp culture pond in Do Son, Vietnam. J Phycol, 2000, 36: 1057-1060.
    [119] Pan Y, Subba Rao D V, Mann K H. Changes in domoic acid production and cellular chemical composition of the toxigenic diatom Pseudo-Nitzschia multiseries under phosphate limitation. J Phycol, 1996, 32(3): 371-381.
    [120] Pesando D Antibacterial and antifungical activities of marine algae. In: Akatsuka I, ed. Introduction to applied phycology. 1990, pp 3-26.
    [121] Viso A C, Pesando D, Baby C. Antibacterial and antifungical properties of some marine diatoms in culture. Bot Mar, 1987, 30: 41-45.
    [122] Naviner M, Berge J P, Durand P et al. Antibacterial activity of the marine diatom Skeletonema costatum against aquacultural pathogens. Aquaculture, 1999, 174: 15-24.
    [123] Berge J P, Bourgougnon N, Carbonnelle D et al. Antiproliferative effects of an organic extract from the marine diatom Skeletonema costatum (Grev.) Cleve. against a non-small-cell bronchopulmonary carcinoma line (NSCLC-N6). Anticancer Res, 1997, 17:2115-2120.
    [124] Berge J P, Bourgougnon N, Pojer F et al. Antiviral and anticoagulant activities of a water-soluble fraction of the marine diatom Haslea ostrearia. Plant Med, 1999, 65: 604-609.
    [125] Rowland S J, Belt S T, Wraige E J et al. Effects of temperature on polyunsaturation in cytostatic lipids of Haslea ostrearia. Phytochem, 2001, 56: 597-602.
    [126] Wraige E J, Johns L, Belt S J et al. Highly branched C25 isoprenoids in axenic cultures of Haslea ostrearia. Phytochem, 1999, 51: 69-73.
    [127] Carbonnelle D, Pondaven P, Morancais M et al. Antitumor and antiproliferative effects of an aqueous extract from the marine diatom Haslea ostrearia (Simonsen) against solid tumors: lung carcinoma (NSCLC-N6), kidney carcinoma (E39) and melanoma (M96) cell lines. Anticancer Res, 1999, 19: 621-624.
    [128] Kawamura T, Takami H. Analysis of feeding and growth rate of newly metamorphosed abalone Haliotis discus hannai fed on four species of benthic diatom. Fisheries Sci. 1995, 61(2): 357-358.
    [129] Daume S, Brand-Gardner S, Woelkerling W J. Preferential settlement of abalone larvae: diatom films vs. non-geniculate coralline red algae. Aquaculture, 1999, 174: 243-254.
    [130] Daume S, Krsinich A, Farrell S et al. Settlement, early growth and survival of Haliotis rubra in response to different algal species. J. Appl. Phycol., 2000, 12: 479-488.
    [131] Roberts R D, Nicholson C M. Variable response from abalone larvae (Haliotis iris, H. virginea) to a range of settlement cues. Moll. Res. 1997, 18: 131-142.
    [132] Roberts R. A review of settlement cues for larval abalone (Haliotis spp.). J. Shellfish Res. 2001, 20: 571-586.
    [133] Kawamura T, Kikuchi H. Effects of benthic diatoms on settlement and metamorphosis of abalone larvae. Suisanzoshoku. 1992, 40: 403-409.
    
    [134] Kawamura T, Saido T, Takami H et al. Dietary value of benthic diatoms for the growth of post-larval abalone Haliotis discus hannai. J. Exp. Mar. Biol. Ecol. 1995, 194: 189-199.
    [135]Faraloni C, Philippis R D, Sili C et al. Carbohydrate synthesis by two Navicula strains isolated from benthic and pelagic mucilages in the Tyrrhenian Sea (Tuscan Archipelago). J Appl Phycot, 2003, 15: 259-261.
    [136]Bryan P J, Qian P Y. Induction of larval attachment and metamorphosis in the abalone Haliotis diversicolor (Reeve). Journal of Experimental Marine Biology and Ecology, 1998, 223:39-51.
    [137]Takami H, Kawamura T, Yamashita Y. Survival and growth rates of post-larval abalone Haliotis discus hannai fed conspecific trail mucus and/or benthic diatom Cocconeis scutellum var parva. Aquaculture, 1997, 152: 129-138.
    [138]康庆浩,郑家声,金炳鹤.诱导皱纹盘鲍浮游幼体附着和变态的物质.水产学报,2003,27(2):131-136.
    [139]Kawamura T, Roberts R D, Nicholson C M. Factors affecting the food value of diatom strains for post-larval abalone Haliotis iris. Aquaculture, 1998, 160: 81-88.
    [140]Zhang G F, Que H Y, Liu X, Xu H S. Abalone mariculture in China. J. shellfish Res., 2004, 23: 947-950.
    [141]Nie Z Q, Wang S P. The status of abalone culture in China. J. shellfish Res., 2004, 23:941-945.
    [142]Ebert E, Houk J. Elements and innovations in the cultivation of red abalone Haliotis rufescens. Aquaculture, 1984, 39: 375-392.
    [143]Simental J A, Sanchez-saavedra M P, Flores-acevedo N. Growth and survival of juvenile red abalone (Haliotis rufescens) fed with macroalgae enriched with a benthic diatom film. Journal of Shellfish Research, 2004, 23(4): 995-999.
    [144]Gallardo W G, Buen S M A. Evaluation of mucus, Navicula, and mixed diatoms as larval settlement inducers for the tropical abalone Haliotis asinine. Aquaculture, 2003, 221: 357-364.
    [145]Martinez-Ponce D R, Searcy-Bernal R. Grazing rates of red abalone (Haliotis rufescens) postlarvae feeding on the benthic diatom Navicula incerta. J Shellfish Res., 1998, 17(3): 627-630.
    [146]Roberts R D, Kawamura T, Nicholson C M. Growth and survival of post-larval abalone (Haliotis iris) in relation to development and diatom diet. J. Shellfish Res., 1999, 18: 243-250.
    [147]王子臣,常亚青.虾夷马粪海胆人工育苗的研究.中国水产科学,1997,4(1):60-67.
    [148]Cameron R A, Schroeter S C. Sea urchin recruitment: effect of substrate selection on juvenile distribution. Mar. Ecol. Prog. Ser., 1980, 2: 243-247.
    [149]Takahashi Y, Itoh K, Ishii M, Suzuki M et al. Induction of larval settlement and metamorphosis of the sea urchin Strongylocentrotus intermedius by glycoglycerolipids from the green alga Ulvella lens. Mar. Biol., 2002, 140: 763-771.
    [150]Rahim S A K A, Li J H, Kitamura H. Larval metamorphosis of the sea urchins, Pseudocentrotus depressus and Anthocidaris crassispina in response to microbial films. Mar. Biol., 2004, 144: 71-78.
    [151]Vidal G B, Cartes I. Isolation, cultivation and evaluation of an endemic Navicula species as a diet for recently metamorphosed juveniles of the sea urchin Loxechinus albus. In: Lawrence, J.M., Guzman, O. (Eds.), Sea Urchins: Fisheries and Ecology. DEStech Publications, Inc., Lancaster. 2004: 318-326.
    [152]常亚青,丁君,宋坚等.海参、海胆生物学研究与养殖.北京:海洋出版社,2004.
    [153]Tajima. Test of mass production af artifical seeds of sea urchin. Hokkaido Institute of Mariculture Annual Report., 1986: 125-140.
    [154]Zamora S, Stotz W. Cultivo masivo en laboratorio de juveniles de erizo Loxechinus albus (Molina, 1782) (Echinodermata: Echinoidea). Invest. Pesq. (Chile) 1994, 38: 37-54.
    [155]Lebeau T, Robert J M. Diatom cultivation and biotechnologically relevant products. Part Ⅰ: Cultivation at various scales. Appl. Microbiol Biotechnol, 2003, 60: 612-623.
    [156]Braek G S, Malnes D, Jensen A. Heavy metal tolerance of marine phytoplankton. Ⅳ. Combined effect of zinc and cadmium on growth and uptake in some marine diatoms. J Exp Mar Biol Ecol, 1980, 42: 39-54.
    [157]Morelli E, Pratesi E. Production of phytochelatins in the marine diatom Phaeodactylum tricornutum in response to copper and cadmium exposure. Bull Environ Contam Toxicol, 1997, 59: 657-664.
    [158]Pistocchi R, Mormile A M, Guerrini F et al. Increased production of extra-and intracellular metal-ligands in phytoplankton exposed to copper and cadmium. J Appl Phycol, 2000, 12: 469-477.
    [159]Schmitt D, Muller A, Csogor Z et al. The adsorption kinetics of metal ions onto different microalgae and siliceous earth. Water Res, 2001, 35: 779-785.
    [160]Torres E, Cid A, Herrero C et al. Removal of cadmium ions by the marine diatom Phaeodactylum tricornutum Bohlin accumulation and long-term kinetics of uptake. Bioresour Technol, 1998, 63: 213-220.
    [161]Craggs R J, Smith V J, McAuley P J. Wastewater nutrient removal by marine microalgae cultured under ambient conditions in mini-ponds. Water Sci Technol, 1995, 31:151-160.
    [162]Craggs R J, McAuley P J, Smith V J. Wastewater nutrient removal by marine microalgae grown on a corrugated raceway. Water Res, 1997, 31: 1701-1707.
    [163]Thompson F L, Abreu P C, Wasielesky W. Importance of biofilm for water quality and nourishment in intensive shrimp culture. Aquaculture, 2002, 203: 263-278.
    [164]Lefebvre S, Hussenot J, Brossard N. Water treatment of land-based fish farm effluents by outdoor culture of marine diatoms. J Appl Phycol, 1996, 8: 193-200.
    [165]Lefebvre S, Barille L, Clerc M. Pacific oyster (Crassostrea gigas) feeding responses to a fish-farm effluent. Aquaculture, 2000, 187:185-198.
    [166]董旭辉,羊向东,潘红玺.长江中下游地区湖泊现代沉积硅藻分布基本特征.湖泊科学,2004,16(4):298-303.
    [167]齐雨藻,黄伟建,骆育敏等.用硅藻群集指数(DAIpo)和河流污染指数(RPId)评价珠江广州河段的水质状况.热带亚热带植物学报,1998,6(4):329-335.
    [168]李伟,徐建红,辛晓芸等.用硅藻评价历山老摇河水质.山西煤炭管理干部学院学报,2002,2:75-76.
    [169]吕亚红,顾泳洁.苏州河沉积物中的硅藻及其污染指示作用.上海环境科学,2002,21(10):633-636,646.
    [170]Parkinson J, Gordon R. Beyond micromatching: the potential of diatoms. Trends Biotechnol, 1999, 17: 190-196.
    [171]Korunic Z. Diatomaceous earths, a group of natural insecticides. J St Prod Res, 1998, 34: 87-97.
    [172]王伟.硅藻.生物学杂志,1997,14(1):14,20.
    [173]Lopez P J, Descles J, Allen A E et al. Prospects in diatom research. Current Opinion in Biotechnology, 2005, 16: 180-186.
    [1]陈明耀.生物饵料培养.北京:中国农业出版社,1997,82-87.
    [2]陈世杰.鲍的饵用海藻及配合饲料营养的若干问题.台湾海峡,1998,17(增刊):56-60.
    [3]李永函,赵文.水产饵料生物学.大连:大连出版社,2002,43-44.
    [4]Kawamura T, Saido T, Takami H et al. Dietary value of benthic diatoms for the growth of post-larval abalone Haliotis discus hannai. Journal of Experimental Marine Biology and Ecology, 1995, 194: 189-199.
    [5]Vidal G B, Cartes I. Isolation, cultivation and evaluation of an endemic Navicula species as a diet for recently metamorphosed juveniles of the sea urchin Loxechinus albus. In: Lawrence J M, Guzman O. (Eds.), Sea Urchins: Fisheries and Ecology. DEStech Publications, Inc., Lancaster, 2004 pp. 318-326.
    [6]Simental J A, Sanchez-saavedra M P, Flores-acevedo N. Growth and survival of juvenile red abalone (Haliotis rufescens) fed with macroalgae enriched with a benthic diatom film. Journal of Shellfish Research, 2004, 23(4): 995-999.
    [7]WANG Qi-hua, LI Mei, WANA Shu-hong et al. Studies on culture conditions of benthic diatoms for feeding abalone. Chin. J. Oceanol. Limnol, 1998, 16(1): 78-83.
    [8]Carbajal-Miranda M J, Sanchez-Saavedra M P, Simental J A. Effect of monospecific and mixed benthic diatom cultures on the growth of red abalone postlarvae Haliotis rufescens (Swainson 1822)[J]. Journal of Shellfish Research, 2005, 24(2): 401-405.
    [9]郭峰,朱凌俊,柯才焕等.两种海洋底栖硅藻的培养条件研究.厦门大学学报(自然科学版),2005,44(6):831-835.
    [10]陈世杰,陈木,陈炳能等.鲍苗的饵料—底栖硅藻培养试验初报.动物学报,1977,23(1):47-52.
    [11]Correa-Reyes J G, Sanchez-Saavedra M P, Siqueiros-Beltrones D A et al. Isolation and growth of eight strains of benthic diatoms cultured under two light conditions. Journal of Shellfish Research, 2001, 20(2): 603-610.
    [12]王起华,林碧琴,丁明进等.大连石庙鲍育苗池冬、春季底栖藻类组成初探.海洋科学,1998,1:51-54.
    [13]McLachlan J. Growth media-marine. In: Janet R. Stein. Handbook of Phycological Methods: Culture Methods and Growth Measurements. Cambridge: Cambridge University Press, 1973, 25-51.
    [14]Wen Z Y, Chen F. Continuous cultivation of the diatom Nitzschia laevis for eciosapentaenoic acid production: Physiological study and process optimization. Biotechnol Prog, 2002, 18(1): 21-28.
    [15]金德祥,程兆第,林均民等.中国海洋底栖硅藻类(上卷).北京:海洋出版社,1982,63-236.
    [16]金德祥,程兆第,刘师成等.中国海洋底栖硅藻类(下卷).北京:海洋出版社,1992,49-253.
    [17]Kawamura T. Taxonomy and ecology of marine benthic diatoms. Marine Fouling, 1994, 10, 7-25.
    [18]Kawamura T, Takami H. Analysis of feeding and growth rate of newly metamorphosed abalone Haliotis discus hannai fed on four species of benthic diatom. Fisheries Sci., 1995, 61(2): 357-358.
    [19]Knuchey R M, Brown M R, Barrett S M et al. Isolation of new nanoplanktonic diatom strains and their evaluation as diets for juvenile Pacific oysters (Crassostrea gigas). Aquaculture, 2002, 211: 253-274.
    [20]高亚辉.海洋微藻分类生态及生物活性物质研究.厦门大学学报(自然科学版).2001,40(2): 565-573.
    [21] Hoagland K D, Rosowski J R, Gretz M R et al. Diatom extracellular polymeric substances: function, fine structure, chemistry, and physiology. J Phycol, 1993, 29: 537-566.
    [22] Staats N, de Winder B, Sta] L J et al. Isolation and characterization of extracellular polysaccharides from the epipelic diatoms Cylindrotheca closterium and Navicula salinarum. Eur. J. Phycol, 1999, 34: 161-169.
    [23] de Brouwer J F C, Wolfstein K, Ruddy G K et al. Biogenic stabilization of intertidal sediments: the importance of extracellular polymeric substances produced by benthic diatoms. Microbial Ecol., 2005, 49:501-512.
    [24] Takami H, Kawamura T, Yamashita Y. Survival and growth rates of post-larval abalone Haliotis discus hannai fed conspecific trail mucus and/or benthic diatom Cocconeis scutellum var. parva. Aquaculture, 1997, 152: 129-138.
    [25] Gallardo W G, Buen S M A. Evaluation of mucus, Navicula, and mixed diatoms as larval settlement inducers for the tropical abalone Haliotis asinine. Aquaculture, 2003, 221:357-364.
    [26] Kawamrua T, Hirano R. Seasonal changes in benthic diatom communities colonizing glass slides in Aburatsubo Bay, Japan . Diatom Res., 1992, 7: 227-239.
    [1]陈明耀.生物饵料培养.北京:中国农业出版社,1997,1-2.
    [2]Laing I, Child A R, Janke A. Nutritional value of dried algae diets for larvae of manila clam (Tapes philippi narum). J Mar Boil Ass, 1990, 70:1-12.
    [3]Reitan K I, Rainuzzo J R, Φie G et al. A review of the nutritional effects of algae in marine fish larvae. Aquaculture, 1997, 155:207-221.
    [4]Renaud S M, Thinh L-V, Parry D L. The gross chemical composition and fatty acid composition of 18 species of tropical Australian microalgae for possible use in mariculture. Aquaculture, 1999, 170: 147-159.
    [5]俞建江,李荷芳,周汉秋.10种海洋微藻总脂、中性脂和极性脂的脂肪酸组成.水生生物学报,1999,23(5):481-488.
    [6]Knuchey R M, Brown M R, Barrett S M et al. Isolation of new nanoplanktonic diatom strains and their evaluation as diets for juvenile Pacific oysters (Crassostrea gigas). Aquaculture, 2002, 211: 253-274.
    [7]McLachlan J. Growth media-marine. In: Janet R. Stein. Handbook of Phycological Methods: Culture Methods and Growth Measurements. Cambridge: Cambridge University Press, 1973, 25-51.
    [8]Wen Z Y, Chen F. Continuous cultivation of the diatom Nitzschia laevis for eciosapentaenoic acid production: Physiological study and process optimization. Biotechnol Prog, 2002, 18(1): 21-28.
    [9]Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 1976, 72: 248-254.
    [10]李合生.植物生理生化试验原理和技术.北京:高等教育出版社,2000.
    [11]Clayton J R, Dortch Q, Thoreson S S et al. Evaluation of methods for the separation and analysis of proteins and free amino acids in phytoplankton samples. J. Plankton Res., 1988, 10: 341-358.
    [12]Brown M R. The amino-acid and sugar composition of 16 species of microalgae used in mariculture. J Exp Mai Biol Ecol, 1991, 145: 79-99.
    [13]苏秀榕,娄永江,李丹等.藻类脂肪酸分离提纯及检测.中国海洋药物,2002,5:22-25.
    [14]Bligh E G, Dyer W J. A rapid method lipid extraction and purification. Can J Biochem Physiol, 1959, 37:911-923.
    [15]黄伟坤.食品检验与分析(第二版).北京:中国轻工业出版社,1989.
    [16]谢苏婧,谢树莲,谢宝妹.藻类植物中钙、镁、铁、锰、铜和锌含量分析.光谱学与光谱分析,2003,23(3):615-616.
    [17]Hoagland K D, Rosowski J R, Gretz M R et al. Diatom extracellular polymeric substances: function, fine structure, chemistry, and physiology. J Phycol, 1993, 29: 537-566.
    [18]Staats N, de Winder B, Stal L J et al. Isolation and characterization of extracellular polysaccharides from the epipelic diatoms Cylindrotheca closterium and Navicula salinarum. Eur. J. Phycol, 1999, 34: 161-169.
    [19]Roberts R. A review of settlement cues for larval abalone (Haliotis spp.). J. Shellfish Res. 2001, 20: 571-586.
    [20]Dunstan G A, Volkmanj K, Barrett S M, et al. Essential polyunsaturated fatty acids from14 species of diatom. Phytochemistry, 1994, 35:155-161.
    [21]Zhukova N V, Aizdaicher N A. Fatty acid composition of 15 species of marine microalgae. Phytochemistry, 1995, 39(2): 351-356.
    [22]张小葵,麦康森,郭健等.十四株海洋微藻脂肪酸组成的研究.青岛海洋大学学报,2001,31(2):205-210.
    [23]曹春晖,孙世春,麦康森等.30株海洋绿藻的总脂含量和脂肪酸组成.青岛海洋大学学报,2000,30(3):428-434.
    [24]McLachlan J. Growth media-marine. In: Janet R. Stein. Handbook of Phycological Methods: Culture Methods and Growth Measurements. Cambridge: Cambridge University Press, 1973, 25-51.
    [25]Tan Bei-ping, Kangsen Mai. Zinc methionine and zinc sulfate as sources of dietary zinc for juvenile abalone, Haliotis discus hannai Ino. Aquaculture, 2001, 192: 67-84.
    [1]陈明耀.生物饵料培养.北京:中国农业出版社,1997.
    [2]陈峰,姜悦.微藻生物技术.北京:中国轻工业出版社,1999.
    [3]华汝成.单细胞藻类的培养与利用.北京:农业出版社,1986.70-84,100-105,109-114,124-128,159-181.
    [4]湛江水产专科学校主编.海洋饵料生物培养.北京:农业出版社,1980,83-92,127-134.
    [5]马志珍,季梅芳,陈汇远.一种可作鲍和海参饵料的底栖舟形藻的培养条件的研究.海洋通报,1985,4(4):36-39.
    [6]Wang Q H, Wang S H, Ding M J et al. Studies on culture conditions of benthic diatoms for feeding abalone Ⅰ. Effects of temperature and light intensity on growth rate. Chin. J. Oceanol. Limnal., 1997, 15(4): 296-303.
    [7]Correa-Reyes J G, Sanchez-Saavedra M P, Siqueiros-Beltrones D A et al. Isolation and growth of eight strains of benthic diatoms cultured under two light conditions. Journal of Shellfish Research, 2001,20(2): 603-610.
    [8]Wang Q H, Li M, Wang S H et al. Studies on culture conditions of benthic diatoms for feeding abalone Ⅱ. Effects of salinity, pH, nitrogenous and phosphate nutrients on growth rate. Chin. J. Oceanol. Limnal., 1998, 16(1): 78-83.
    [9]Thompson P A, Guo M-X, Harrison P J. Effects of variation in temperature Ⅰ. On the biochemical composition of eight species of marine phytoplankton. J. Phycol., 1992, 28:481-488.
    [10]Thompson P A, Guo M-X et al. Harrison P J. Effects of variation in temperature Ⅱ. On the fatty acid composition of eight species of marine phytoplankton. J. Phycol., 1992, 28: 488-497.
    [11]Renaud S M, Thinh L-V, Lambrinidis G et al. Effect of temperature on growth, chemical composition and fatty acid composition of tropical Australian microalgae grown in batch cultures. Aquaculture, 2002, 211: 195-214.
    [12]Taraldsvik M, Myklestad S M. The effect of pH on growth rate, biochemical composition and extracellular carbohydrate production of the marine diatom Skeletonema costatum. Eur. J. Phycol. 2000, 35: 189-194.
    [13]卢永春.培养底栖硅藻的技术.水产养殖,1995,3:11.
    [14]De Castro Araujo S, Maria Tavano Garcia V. Growth and biochemical composition of the diatom Chaetoceros cf. wighamii brightwell under different temperature, salinity and carbon dioxide levels. Ⅰ. Protein, carbohydrates and lipids. Aquaculture, 2005, 246:405-412.
    [15]Hoagland K D, Rosowski J R, Gretz M R et al. Diatom extracellular polymeric substances: function, fine structure, chemistry, and physiology. J Phycol, 1993, 29: 537-566.
    [16]Staats N, de Winder B, Stal L J et al. Isolation and characterization of extracellular polysaccharides from the epipelic diatoms Cylindrotheca closterium and Navicula salinarum. Eur. J. Phycol, 1999, 34: 161-169.
    [17]Roberts R. A review of settlement cues for larval abalone (Haliotis spp.). J. Shellfish Res., 2001, 20: 571-586.
    [18]邹宁,孙东红,郭小燕.培养条件对底栖硅藻生长的影响.水产养殖,2005,26(5):11-13.
    [19]陈世杰,陈木,卢豪魁等.鲍苗的饵料-底栖硅藻培养试验初报.动物学报,1977,23(1):47-52.
    [20]庄树宏,Sven H.光照强度和波长对底栖藻群落的影响Ⅰ光合色素的变化.烟台大学学报,1999,12(2):108-113.
    [21]Krinsky N I.The protective function of carotenoidpigments, In: Giese A.C. ed. Photophysiology. New York: Academic Press. 1986, 123-195.
    [22]庄树宏,Sven H.光强和光质对底栖硅藻群落影响Ⅱ群落和种群的动态和适应模式.生态学报,2001,21(12):2057-2066.
    [1]Hagen N T. Echinoculure: from fishery enhancement to closed cycle cultivation. World Aquaculture. 1996, 27(4): 6-19.
    [2]Keesing J K, Hall K C. Review of harvests and status of world sea urchin fisheries points to opportunities for aquaculture. J. Shellfish Res., 1998, 17:1597-1604.
    [3]Lawrence J M. Edible sea urchins: biology and ecology. Elsevier: Amsterdam, 2001.
    [4]Sloan N A. Echinoderm fisheries of the world: a review. In: Keegan, B.F., O'Connor, B.D.S.(Eds). AA Balkema. Rotterdam, 1985: 109-124.
    [5]Andrew N L, Agatsuma Y, Dewees C M et al. State of sea-urchin fisheries 2003. In: Lawrence, J.M., Guzman, O.(Eds.), Sea Urchins: Fisheries and Ecology. DEStech Publications, Inc., Lancaster, 2004: 96-98.
    [6]王子臣,常亚青.虾夷马粪海胆人工育苗的研究.中国水产科学.1997,4(1):60-67.
    [7]Cameron R A, Schroeter S C. Sea urchin recruitment: effect of substrate selection on juvenile distribution. Mar. Ecol. Prog. Ser. 1980, 2: 243-247.
    [8]Takahashi Y, Itoh K, Ishii Met al. Induction of larval settlement and metamorphosis of the sea urchin Strongylocentrotus intermedius by glycoglycerolipids from the green alga Ulvella lens. Mar. Biol., 2002, 140: 763-771.
    [9]Rahim S.A.K.A., Li, J.H., Kitamura, H. Larval metamorphosis of the sea urchins, Pseudocentrotus depressus and Anthocidaris crassispinain response to microbial films. Mar. Biol. 2004, 144:71-78.
    [10]Vidal, G.B., Cartes, I. Isolation, cultivation and evaluation of an endemic Navicula species as a diet for recently metamorphosed juveniles of the sea urchin Loxechinus albus. In: Lawrence, J.M., Guzman, O.(Eds.), Sea Urchins: Fisheries and Ecology. DEStech Publications, lnc., Lancaster. 2004: 318-326.
    [11]常亚青,丁君,宋坚等.海参、海胆生物学研究与养殖.北京:海洋出版社,2004.
    [12]Tajima. Test of mass production of artifical seeds of sea urchin. Hokkaido Institute of Mariculture Annual Report., 1986: 125-140.
    [13]Zamora S, Stotz W. Cultivo masivo en laboratorio de juveniles de erizo Loxechinus albus(Molina, 1782)(Echinodermata: Echinoidea). Invest. Pesq.(Chile) 1994, 38: 37-54.
    [14]陈世杰,陈木,陈炳能等.鲍苗的饵料—底栖硅藻培养试验初报.动物学报.1977,23(1):47-53.
    [15]Correa-Reyes J G, Aanchez-Saavedra M D P, Siqueiros-Beltrones D A et al. Isolation and growth of eight strains of benthic diatoms cultured under two light conditions. J. Shellfish Res., 2001, 20(2): 603-610.
    [16]Lebeau T, Robert J M. Diatom cultivation and biotechnologically relevant products. Part Ⅰ: Cultivation at various scales. Appl. Microbiol Biotechnol., 2003, 60:612-623.
    [17]Kawamura T, Saido T, Takami H et al. Dietary value of benthic diatoms for the growth of post-larval abalone Haliotis discus hannai. J. Exp. Mar. Biol. Ecol., 1995, 194: 189-199.
    [18]Kawamura T, Roberts R D, Nicholson C M. Factors affecting the food value of diatom strains for post-larval abalone Haliotis iris. Aquaculture, 1998, 160:81-88.
    [19] Kawamura T, Takami H. Analysis of feeding and growth rate of newly metamorphosed abalone Haliotis discus hannai fed on four species of benthic diatom. Fisheries Sci., 1995, 61(2): 357-358.
    [20] Carbajal-Miranda M J, Sanchez-saavedra M P, Simental J. A. Effect of monospecific and mixed benthic diatiom cultures on the growth of red abalone postlarvae Haliotis rufescens (Swainson 1822). J. Shellfish Res., 2005,24(2): 401-405.
    [21] Daume S, Brand-Gardner S, Woelkerling W J. Preferential settlement of abalone larvae: diatom films vs. non-geniculate coralline red algae. Aquaculture, 1999,174: 243-254.
    
    [22] Roberts R. A review of settlement cues for larval abalone (Haliotis spp.). J. Shellfish Res., 2001, 20: 571-586.
    [23] Gallardo W G, Buen S M A. Evaluation of mucus, Navicula, and mixed diatoms as larval settlement inducers for the tropical abalone Haliotis asinine. Aquaculture. 2003, 221: 357-364.
    [24] Gorrostieta-Hurtado E, Searcy-Bernal R. Combined effects of light condition (constant illumination or darkness) and diatom density on postlarval survival and growth of the abalone Haliotis rufescens. i. Shellfish Res. 2004, 23: 1001-1008.
    [25] McLachlan J. Growth media-marine. In: Stein, J.R. (Ed.), Handbook of Phycological Methods: Culture Methods and Growth Measurements.Cambridge University Press: Cambridge, 1973:25-51.
    [26] Wen Z Y, Chen F. Continuous cultivation of the diatom Nitzschia laevis for eciosapentaenoic acid production: Physiological study and process optimization. Biotechnol Prog. 2002, 18(1): 21-28.
    [27] Kawamura T. Taxonomy and ecology of marine benthic diatoms. Marine Fouling. 1994,10: 7-25.
    [28] Ito S, Kitamura H. Induction of larval metamorphosis in the sea cucumber Stichopus japonicus by periphitic diatoms. Hydrobiologia. 1997, 358: 281-284.
    [29] VaYtilingon D, Morgan R, Grosjean Ph et al. Effects of delayed metamorphosis and food rations on the perimetamorphic events in the echinoid Paracentrotus lividus (Lamarck, 1816) (Echinodermata). J. Exp. Mar. Biol. Ecol. 2001, 262: 41-60.
    [30] Highsmith R C, Emlet R B. Delayed metamorphosis: effect on growth and survival of juveniles sand dollars (Echinoidea: Clypeasteroida). Bull. Mar. Sci. 1986, 39(2): 347-361.
    [31] Strathmann R R. The feeding behaviour of planktotrophic echinoderm larvae: mechanism, regulation and rates of suspension feeding. J. Exp. Mar. Biol. Ecol. 1971, 6: 109-160.
    [32] Boidron-Metairon I F. Morphological plasticity in laboratory-reared echinoplutei of Dendraster excentricus (Eschscholtz) and Lytechinus variegatus (Lamarck) in response to food conditions. J. Exp. Mar. Biol. Ecol. 1988, 119:31-41.
    [33] Hoagland K D, Rosowski J R, Gretz M R et al. Diatom extracellular polymeric substances: function, fine structure, chemistry, and physiology. J Phycol. 1993, 29: 537-566.
    [34] Staats N, de Winder B, Stal L J et al. Isolation and characterization of extracellular polysaccharides from the epipelic diatoms Cylindrotheca closterium and Navicula salinarwn. Eur. J. Phycol. 1999, 34: 161-169.
    [35] Decho A W. Microbial exopolymer secretions in ocean environments: their role(s) in food webs and marine processes. Oceanogr. Mar. Biol. Annu. Rev. 1990, 28: 73-153.
    [36] de Brouwer J F C, Wolfstein K, Ruddy G K et al. Biogenic stabilization of intertidal sediments: the importance of extracellular polymeric substances produced by benthic diatoms. Microbial Ecol. 2005, 49:501-512.
    [37] Knuckey R M, Brown M R, Barrett S M et al. Isolation of new nanoplanktonic diatom strains and their evaluation as diets for juvenile Pacific oysters (Crassostrea gigas). Aquaculture. 2002, 211: 253-274.
    [38] Webb K L, Chu F E. Phytoplankton as a food source for bivalve larvae. In: Pruder, G.D., Langdon, C.J., Conklin, D.E. (Eds.), Proceedings of the Second International Conference on Aquaculture Nutrition: Biochemical and Physiological Approaches to Shellfish Nutrition, 27 Oct-29 Oct, 1981. Division of Continuing Education, Louisiana State University, Lewes/Rehoboth Beach, DE, 1983, pp. 272-291.
    [39] Daume S, Krsinich A, Farrell S et al. Settlement, early growth and survival of Haliotis rubra in response to different algal species. J. Appl. Phycol. 2000, 12: 479-488.
    [40] Bhosle N B, Wagh A B. Amino acids in biofilm material on aluminium panels immersed in marine waters. Biofouling. 1997, 11: 149-166.
    [41] Tsurumi K, Fusetani N. Effects of early fouling communities formed in the field on settlement and metamorphosis of cyprids of the barnacle, Balanus amphitrite Darwin. Biofouling. 1998, 12: 119-131.
    [42] Simental-Trinidad J A, Sanchez-Saavedra M P, Correa-Reyes J G. Biochemical composition of benthic marine diatoms using as culture medium a common agriculture fertilizer. J. Shellfish Res. 2001,20:611-617.
    
    [43] Nie Z Q, Wang S P. The status of abalone culture in China. J. shellfish Res. 2004,23: 941-945.
    [44] Zhang G F, Que H Y, Liu X, Xu H S. Abalone mariculture in China. J. shellfish Res. 2004, 23: 947-950.
    [45] Ebert E, Houk J. Elements and innovations in the cultivation of red abalone Haliotis rufescens. Aquaculture. 1984, 39: 375-392.
    [46] Hahn K O Handbook of culture of abalone and other marine gastropods. CRC Press: Boca Raton, 1989:348 pp.
    [47] Roberts R D, Kawamura T, Nicholson C M. Growth and survival of post-larval abalone (Haliotis iris) in relation to development and diatom diet. J. Shellfish Res. 1999, 18: 243-250.
    [48] Sabine D, Sascha B-G, Woelkerling W J. Preferential settlement of abalone larvae: diatom films vs. non-geniculate coralline red algae. Aquaculture. 1999, 174: 243-254.
    [49] Matthews I, Cook P A. Short Communication: Diatom diet of abalone post-larvae (Haliotis midae) and the effect of pre-grazing the diatom overstory. Mar. freshwat. Res. 1995,46: 545-548.
    [50] Capinpin E C, Corre K G. Growth rate of the Philippine abalone, Haliotis asinina fed an artificial diet and macroalgae. Aquaculture. 1996, 144: 81-89.
    [51] Roberts R D, Nicholson C M. Variable response from abalone larvae (Haliotis iris, H virginea) to a range of settlement cues. Moll. Res. 1997, 18: 131-142.
    [52] Kawamura T, Kikuchi H. Effects of benthic diatoms on settlement and metamorphosis of abalone larvae. Suisanzoshoku. 1992, 40: 403-409.
    [53] Ohashi S. Yolk absorption of plantigrade juvenile abalone Nordotis discus discus (in Japanese with English abstract). Bull. Nagasaki Pref. Inst. Fish. 1993, 19: 23-25.
    [54] Kawamura T, Roberts R D., Takami H. A review of the feeding and growth of postlarva) abalone. J. Shellfish Res. 1998, 17: 615-625.
    [55] Seki T, Kan-no H. Induced settlement of the Japanese abalone, Haliotis discus hannai, veliger by the mucous trails of the juvenile and adult abalones. Bull. Tohoku Reg. Fish. Res. Lab. 1981, 43: 29-36.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700