随机云杉短纤维增强热塑性复合材料界面对拉伸行为的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随机云杉短纤维增强聚丙烯热塑性复合材料因质轻、断裂韧性高,逐渐受到汽车、高速列车和大飞机内承力构件的青睐;现今对自然资源再利用、环境保护要求迫切,此种材料可降解、可循环使用、环境友好的性能,使得该材料的应用、研究价值较为突出。
     本文将弹塑性有限元方法与生成随机分布云杉纤维的程序相结合,考虑不同含量云杉短纤维的随机分布和随机方向等微结构特征,同时采用Cohesive Zone Model(CZM)描述界面相因素的影响,建立该复合材料二维拉伸数值模型,模拟了随机云杉短纤维增强聚丙烯热塑性复合材料的拉伸和循环加载行为。
     本文计算了纤维体积含量为10%、20%和49%的云杉/PP复合材料的整体拉伸真应力-真应变曲线,并确定了其CZM界面模型参数;与现有的七种复合材料有效弹性模量理论模型的预测结果和实验结果进行了比较,本文界面数值模型预测的材料整体刚度与实验结果吻合得最好。
     通过调控(CZM)界面模型Traction-Separation曲线参数,定量分析界面相强度、断裂能和界面牵引分离曲线形式对复合材料整体强度的影响,分析结果能够较好地用界面强度解释随纤维含量提高材料整体强度降低的实验现象。在此基础之上,本文预测了纤维含量为30%的材料的拉伸行为和剑麻增强聚丙烯复合材料的拉伸行为的结果。
     采用本文CZM界面拉伸有限元模型,预测了随机云杉短纤维增强聚丙烯热塑性复合材料拉伸卸载和重新加载、拉压循环应变载荷下的应力应变曲线,并给出了材料某局部区域云杉纤维与聚丙烯基体界面牵引分离曲线随总体载荷变化的响应,定量讨论了界面参数和界面断裂能对拉伸卸载和重新加载、拉压循环应变载荷下材料力学行为的影响。
     研究表明,本文CZM界面数值模型,能够定量描述随机云杉短纤维增强聚丙烯热塑性复合材料不同纤维含量随机微结构、纤维/基体界面性能等因素对材料整体拉伸、卸载和重新加载以及循环载荷下力学行为的影响;本文对随机纤维含量、微结构特征和纤维/基体界面性能影响的定量分析,有助于增加人们对随机短纤维复合材料界面载荷传递规律的理解,研究对定量调控随机短纤维微结构界面力学性能、对该类复合材料整体刚度、强度的优化设计具有重要的理论意义和指导作用。
Because of light-weighted, high fracture toughness of Random Spruce Short Fiber reinforced polypropylene composites; they are preferred by automotive, high-speed trains and aircraft for load-bearing component increasingly. Owing to the urgent demand of the re-use of natural resources and environmental protection,the recycled, environmentally friendly properties of the biodegradable material make the application and research value of the materials become more prominent.
     Elastic-plastic finite element method and the random distribution of spruce fiber element program in common code are combined for this simulation, and simulated the tensile behavior of this composites in ABAQUS numerically, with the consideration of the interphase factor, by using the CZM. The tensile behavior and the cyclic loading behavior were simulated with this 2D tensile numerical model.
     The 10%, 20%and 49% volume content are simulated in terms of the true stress-strain curve, the parameters of the CZM were determined. The result from the CZM tensile model had been compared with the experiment result correctly. The interphase fracture energy, strength and the form of the traction-separation law were analyzed quantitatively through the parameter of the CZM. The result proved the experimental phenomenon that the interphse strength was decreasing with the increasing in fiber content. On basis of the conclusion, the tensile behavior of this material with the 30% fiber content is predicted and the sisal fiber reinforced PP composite has been compared with the experiment result through this CZM model.
     The CZM interphase tensile FEM predicted the true stress-strain curve for the tensile-unload and the reload, the cyclical strain and compressive load of the composite. The local CZM response for the Traction-Separation was changed with the overall load changing. The CZM parameters and the interphase fracture energy were discussed under the tensile-unload and the reload, the cyclical strain and compressive load of the composite quantitatively.
     The research showed that the CZM interphase model could quantitatively represent the influence of the different fiber volume content, random microstructure, and the interphase for the tensile-unload and the reload, the cyclical strain and compressive load of the composite. The quantitative analysis could help to understand the mechanism which the interface transfers the stress between fiber/PP. Also, it must have been guiding significance for the research on the quantitatively controlling random short fiber microstructure and interface mechanical performance, the global stiffness of composite material, the optimal design for the strength
引文
[1]雷芳,陈福林,岑兰,陈广汉.聚丙烯基木塑复合材料的研究进展.塑料工业
    [2]赵梓年,王立多.天然纤维复合材料中化学方法处理纤维的进展.塑料.2009, 38(1):35
    [3]李兰杰,胡娅婷,刘得志,陈占勋.木粉的碱化处理对木塑复合材料性能的影响.合成树脂材料.2005, 22(6):53
    [4]秦特夫.木粉加入量对木/塑复合材料性能影响的研究.木材工业,2002,(5):17
    [5] Hristov V N,Lach R,Gellman W.Polymer Test,2004, (5) :581
    [6] Hee Soo Kim,Byoung Ho Lee, Hyun Joong Kim, et al. The effect of types of maleic anhydride-grafted polypropylene (MAH-g-PP) on the interfacial adhesion p roperties of bioflour-filled polypropylene [J] Composites (Part A): App lied Science andManufacturing, 2007, 38 (6) : 1477– 1481
    [7]秦特夫.木粉加入量对木/塑复合材料性能影响的研究.中国林科院木材工业研究所. 2002, 16(5):17
    [8]姚正军,孟召辉,刘小洪等,麦秸纤维/聚丙烯复合材料,宇航材料工艺2008年,第3期
    [9]陈家瑞.汽车构造(下册)[M]北京:机械工业出版社, 2005.372—388.
    [10]曹勇,合田公一,吴义强.甘蔗渣纤维增强聚丙烯复合材料的制备和力学性能,复合材料学报第24卷,第6期, 2007年12月
    [11]杨国文编.塑料材料[M]成都:成都科技大学出版社, 1987: 98-102.
    [12]张波,陆绍荣,杨小王等,环保型剑麻纤维/聚丙烯复合材料的研究进展,中国人造板, 2008 :6
    [13] Joseph PV, Joseph K, ThomasS. Effect of processing variables on the mech- anical properties of sisal- fiber reinforced polypropylene composites.[J] Composites Science and Technology, l999, 59 (11):1625.
    [14] Jayaraman Krishnan. Manufacturing sisal-polypropylene composites with m- inimum fiber degradation [J] Composite Science and Technology, 2003, 63(3- 4):367
    [15]梁小波,杨桂成,曾汉民.剑麻纤维增强聚丙烯复合材料的冲击特性研究[J]塑料工业, 2003, 31(7): 18
    [16] T.Q.Lam, Mechanical characterization of recycled polymer composites reinforced by natural fiber. Indentification of fracture mechanisms by digital image correlation technique. PhD.Thesis, LAPMENSMA.
    [17] T.Q.Lam, F.Lagattu and J.Barbier, Influence of natural fiber reinforcement on microstructural and mechanical properties of polypropylene. ECCM11 congress in Greece, May, 2004.
    [18] Tuck CL,Liang E. Stiffness predictions for unidirectional short fiber composites. Comp SciTechnol, 2000, 60:2671-80
    [19] Papathanasiou T. D, M. S. Ingber, Stiffness enhancement in aligned, short-fiber composites: A computational and experimental investigation. Composites Science and Technology , 54 (1995) l-9
    [20] Aghdam M.M, Dezhsetan A., Micromechanics based analysis of randomly distributed fiber reinforced composites using simplified unit cell model. Composite Structures, 71 (2005) 327–332
    [21] Price C.D, P.J. Hine. Modeling the elastic and thermoelastic properties of short fiber composites with anisotropic phases. Composites Science and Technology 66 (2006) 69–79
    [22] Andriyana A, N. Billon, L. Silva. Mechanical response of a short fiber-reinforced thermoplastic: Experimental investigation and continuum mechanical modeling. European Journal of Mechanics A/Solids 29 (2010) 1065e1077
    [23] MéléP., Marceaua, S., Browna, D., de Puydtb, Y., Albérola, N.D., 2002. Reinforcement effects in fractal-structure-filled rubber. Polymer 43, 5577~5586.
    [24] Vendramini J., Mélé, P., Merle, G., Albérola, N.D., 2000. Mechanical modeling of the transcrystalline interphase behavior in commingled PBT/glass fiber composites. J. Appl. Polym. Sci, 77, 2513~2524.
    [25] Jones R A L,Polymer interfaces and the molecular basis of adhesion. Current Opinion n Solid State& Materials Science,1997,2:673~677)
    [26]何莉萍,田永,吴振军等,剑麻纤维增强聚丙烯复合材料的拉伸性能,材料科学与工程学报,第26卷,第3期,2008年6月
    [27]白树林,陈建康,王建祥等,共混/填充高分子复合材料界面力学行为实验研究进展[J],力学进展,第36卷,第四期,2006年11月
    [28]李兰杰,胡娅婷,刘得志,陈占勋.木粉的碱化处理对木塑复合材料性能的影响.合成树脂材料.2005, 22(6):53
    [29]丁辉,姚鹏,张然,徐世民.木纤维的表面特性.天津大学学报.2010. (2):43
    [30] Interfacial studies of sisal fiber reinforced high density polyethylene (HDPE) composites. Yan Li, Chunjing Hu, Yehong Yu. Composites: Part A ,39 (2008) 570–578
    [31]戴瑛,单纤维段裂试验评述,力学进展,第36卷,第2期,2006年5月
    [32] Suresh S, Needleman A. Interfacial phenomena in composites. New York: Applied Science, 1989.
    [33] Godara A. , Raabe D., Influence of additives on the global mechanical behavior and the microscopic strain localization in wood reinforced polypropylene composites during tensile deformation investigated using digital image, Composites Science and Technology, 69 (2009) 139–146
    [34]许金泉,界面力学,科学出版社,2006年9月
    [35] Margetan F J, Thompson R B, Gray T A. Interfacial spring model for ultrasonic interactions with imperfect interfaces: theory of oblique incidence and application to diffusion-bonded butt joints. J Nonde struct Eval, 1988, 7:131~152
    [36]牛鑫瑞,余寿文,冯西桥.汉圆形夹杂两相材料界面变形与损伤特性的数值模拟.机械强度,2005,(5):681~686)
    [37]李旭东,张跃.陶瓷基复合材料界面结合强度影响断裂过程的有限元研究.复合材料学报.第26卷,第5期,2009年10月
    [38] Wacker G, A. K. Bledzki. Effect of interphase on the transverse Young’s modulus of glass/epoxy composites. Composites Part A ,29A (1998) 619-626.
    [39] Fisher F.T, L.C. Brinson .Viscoelastic interphases in polymer–matrix composites: theoretical models and finite-element analysis. Composites Science and Technology, 61 (2001) 731–748.
    [40] Jianlin Wang. Numerical modeling of the elastic behavior of fiber-reinforced composites with inhomogeneous interphases. Composites Science and Technology ,66 (2006) 1–18.
    [41] Matzenmiller A. Parameter identification of elastic interphase properties in fiber composites. Composites: Part B ,37 (2006) 117–126.
    [42] Marek Romanowicz, Effect of interfacial debonding on the failure behavior in a fiber-reinforced composite subjected to transverse tension. Computational Materials Science, 47 (2009) 225–231.
    [43] [美] R.M.琼斯著.朱颐龄等译校,《复合材料力学》[M],上海科学技术出版社,1981
    [44] Halpin JC,Tsai SW.Effects of environmental factors on composite materials. AFML-TR 7-423 June1969
    [45] P.J.Herrera-Franco, A. Valadez-Gonzalez, A study of the mechanical properties of short natural-fiber reinforced composites. Composites: Part B ,36(2005)597-608.
    [46] Nairn JA. On the use of shear-lag methods for analysis of stress transfer in unidirectional composites. Mech Mater ,1997;26:63-80.
    [47]王勖成著,《有限单元法》北京,清华大学出版社,2003年7月
    [48] Peijs,T.,”Composites for recyclability”, Materialstoday,(2003),36-43.
    [49] T. Quynh Truong Hoang, Fabienne Lagattu. Natural Fiber-Reinforced Recycled Polypropylene: Microstructural and Mechanical Properties. Journal of Reinforced Plastics and Composites. 2010, 29~209
    [50]周储伟,杨宁,内聚力界面单元与复合材料的界面损伤分析,力学学报,1999年5月,第31卷,3期
    [51] ABAQUS, Version6.10, Hibbitt, Karlsson, and Sorensen, Inc., USA, 2003
    [52] J.L.Chaboche. Interface debonding models: a viscous regularization with a limited rate dependency. International Journal of Solids and Structures, 38 (2001) 3127-3160
    [53] Turon, A.: Simulation of Delamination in Composites under Quasi-Static and Fatigue Loading using Cohesive ZoneModels. Ph.d thesis, University of Girona, 2006.
    [54] Anders Libak Hansen, Erik Lund. A mixed mode constitutive damage model for multi-scale fracture analysis of composite structures. XXII ICTAM, 25–29 August 2008, Adelaide, Australia
    [55] M.Elices. The cohesive zone model: advantages, limitations and challenges. Engineering Fracture Mechanics, 69 (2002) 137-163
    [56] Pizhong Qiao, Ying Chen.Cohesive fracture simulation and failure modes of FRP–concrete bonded interfaces. Theoretical and Applied Fracture Mechanics, 49 (2008) 213–225
    [57] A.Turon. An engineering solution for mesh size effects in the simulation of delamination using cohesive zone models. Engineering Fracture Mechanics, 74 (2007) 1665–1682
    [58] Godara A. , Raabe D., Influence of additives on the global mechanical behavior and the microscopic strain localization in wood reinforced polypropylenecomposites during tensile deformation investigated using digital image, Composites Science and Technology, 69 (2009) 139–146
    [59] Davis J N , Sundsrud G J. Fatigue data on a variety of nonwo2 ven glass compo sites fo r helicop ter ro to r blades [ J ] ASTM STP , 1979, 674: 137- 169
    [60]余剑英,周祖福.GMT-PP复合材料的界面粘结状况与动态疲劳关系研究.复合材料学报.第18卷,第2期,5月2001年
    [61] N. Dourado, M.F.S.F. de Moura. A numerical study on the SEN-TPB test applied to mode I wood fracture characterization. International Journal of Solids and Structures, 48 (2011) 234–242
    [62]刘建勇钟圣兆夏成林.木塑复合材料及其研究进展.华南理工大学材料学院

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700