Port-Hamiltonian系统的能量整形镇定设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
机械系统、机电系统和电磁系统等非线性系统是构成工业应用的基本系统,一般可表示为Port-Hamiltonian (PH)系统形式。如何利用PH系统的特点,研究系统的镇定控制器设计方法,为实际应用提供有效手段,具有重要的理论意义和应用前景。论文针对PH系统的镇定控制器设计问题开展研究,取得主要研究成果如下。
     (1)提出了基于期望动能函数的动能整形方法。
     针对时不变PH系统,利用Hamiltonian函数的特点,提出了一种动能整形方法,利用系统动能函数构造一个正定的期望动能函数,与时不变PH系统建立相应的匹配方程,通过求解匹配方程获得系统的镇定控制律,实现了局部能量对整体能量的匹配,有效避免了传统方法求解期望Hamiltonian函数的复杂过程和求解偏微分方程的困难。
     同时,针对时变PH系统,利用期望动能整形方法构造一种时不变期望动能函数,与系统的时变Hamiltonian函数建立匹配方程,通过求解匹配方程获得系统的镇定控制律,实现了状态变量匹配和时间变量匹配的分离,有效避免了传统方法要求时间微分非增性条件的依赖,更具普遍性。
     (2)分析和证明了期望阻尼矩阵在时不变PH系统镇定设计的作用。
     在时不变PH系统具有相同期望能量函数的情况下,证明了期望阻尼矩阵在能量整形镇定设计的作用,即期望阻尼矩阵越大,被控系统到达期望平衡点的镇定速度越快。同时,通过三相电机系统进行仿真实验,验证了所得结论的有效性。
     (3)提出了带输入饱和的时不变PH系统的能量整形镇定设计方法。
     针对带输入饱和的时不变PH系统,提出了一种无期望阻尼注入的能量整形方法,利用系统Hamiltonian函数和期望Hamiltonian函数直接建立一种能量平衡模式匹配方程,通过求解匹配方程获得系统的镇定控制律,克服了带输入饱和的系统在能量整形过程中无法进行有效期望阻尼注入的局限性。
     (4)建立了带时滞的Hamiltonian控制系统模型,提出了一种基于二对一匹配原则的系统镇定设计方法。
     针对仿射非线性控制系统,利用向量场分解方法建立了带时滞的Hamiltonian控制系统模型,提出了一种二对一匹配原则,将系统的两个Hamiltonian函数与期望能量函数进行匹配来实现能量整形,获得系统的镇定控制律,有效避免了传统方法对于Lyapunov-Krasovskii泛函的依赖。
In the industrial applications, the mechanical systems, the electromechanical systems, and the electromagnetic systems are the basic roles, which can be represented as the Port-Hamiltonian (PH) systems. To research the stable method for those systems via the features of PH system, it is with the academic meanings and the pratical backgrounds. For the PH systems, their stable designing methods have been deeply researched in this paper. The main results and innovations are listed as follows.
     (1) A kinetic energy-shaping has been proposed via the desired kinetic function.
     For the time-invariant PH systems, a kinetic energy-shaping method is proposed via the features of the Hamiltonian function. Depending on it, a matching equation is established such that the original Hamiltonian function is matched with a positive desired kinetic energy function. Solving the equation obtains the control law. For the part energy matched with the whole energy, the proposed methos effectively avoid the complex procedure of desired Hamiltonian function in the tranditional method and the difficult of solving the partial differential equation.
     Meanwhile, for the time varying PH system, a time-invariant desired kinetic energy function via the kinetic energy-shaping method is matched with the time varying original Hamiltonian function. Solving this matching equation obtains the control law. Depending on this method, the state variables matching and the time variables matching are separated, thus, it effectively avoids the non-increasing condition of time variable in the tranditional method and is with more application flieds
     (2) The effectiveness of desired damping matrix in the procedure of energy-shaping has been analyzed and proven
     As the PH systems match with the same desired Hamiltonian functions in the matching equations, the effectiveness of desired damping matrix has been analyzed and proven:when the desired damping matrix is bigger, the stable speed of Hamiltonian system is faster. In the end, examples and their simulations prove the effectiveness of the proposed methods.
     (3) A stabilization of PH systems subject to actuator saturation (AS) has been proposed.
     For the PH systems subject to AS, an energy-shaping method without the desired damping injection has presented. Due to this method, an energy-balance matching equation is established, which matches the original Hamiltonian function with the desired one. Solving this equation obtains the control law, which effectively avoids the obstacle that energy-shaping with the desired damping injection is employed.
     (4) Time-invariant Hamiltonian control systems with a time delay and time varying Hamiltonian control systems with a time delay have been estabilished. In the meantime, the stabilizations of them are also proposed.
     For the nonlinear afflne control systems with a time delay, the time-invariant Hamiltonian control systems with a time delay and time varying Hamiltonian control systems with a time delay are established via the vector decomposing methods. To stabilize the two mentioned systems, energy-shaping and two-to-one matching principle are applied to establish some new matching equations. Solving them yields the control laws stabilizing the systems, as a result, the proposed methods avoid the Lyapunov-Krasovskii function of the tranditional method.
引文
[1]V. I. Arnold. Mathematical methods of classical mechanics[M]. New York: Springer,1999.
    [2]P. Crouch, A. J. Van Der Schaft. Variational and Hamiltonian Control Systems, Series Lecture Notes on Control and Information Science[M]. Berlin: Springer-Verlag,1987.
    [3]A. J. Van Der Schaft. L2-Gain and passivity techniques in the nonlinear contro[M]. London:Springer,2000.
    [4]A. J. Van Der Schaft. Port-Hamiltonian systems:network modeling and control of nonlinear physical systems[M]. University of Groningen,2004.
    [5]A. J. Van Der Schaft. Port-controlled Hamiltonian systems:toward a theory for control and design of nonlinear physical systems[J]. Journal of the Society of Instrument and Control Engineers of Japan,2000,39(2):91-98.
    [6]A. J. Van Der Schaft. Port-Hamiltonian systems:an introductory survey[C]. Proceeding of the international congress of mathematicians. Madrid, Spain, 2006,1339-1365.
    [7]王玉振.广义Hamilton控制系统理论——实现、方法与应用[M].北京:科学出版社,2007.
    [8]A. J. Van Der Schaft, B. Maschke. On the Hamiltonian formation of nonholonomic mechanical systems[J]. Reports on Mathematical Physics,1994, 34(2):225-233.
    [9]S. Stramigioli, A. J. Van Der Schaft, B. Maschke, et al. Geometric scattering in robotic telemanipulation[J]. IEEE Transactions on Robotics and Automation, 2002,18(4):588-596.
    [10]Y. Wang, S. S. Ge. Augmented Hamiltonian formulation and energy-based control design of uncertain mechanical systems[J]. IEEE Transactions on Control Systems Technology,2008,16(2):202-213.
    [11]H. Hoang, F. Couenne, C. Jallut, et al. The port Hamiltonian approach to modeling and control of continuous stirred tank reactors[J]. Journal of Process Control,2011,21(10):1449-1458.
    [12]D. Jeltsema, J. M. A. Scherpen. A power-based description of standard mechanical systems[J]. Systems & Control Letters,2007,56(6):349-356.
    [13]Z. Xi, D. Cheng. Passivity-based stabilization and H∞ control of Hamiltonian control systems with dissipation and its application to power systems [J]. International Journal of Control,2000,73(18):1686-1691.
    [14]M. Galaz, R. Ortega, A. Bazanella, et al. An energy-shaping approach to excitation control of synchronous generators [J]. Automatica,2003,39(1): 111-119.
    [15]Z. Xi, J. Lam. Stabilization of generalized Hamiltonian systems with internally generated energy and applications to power systems[J]. Nonlinear Analysis: Real World Applications,2008,9(2):1202-1223.
    [16]张利军,孟杰,兰海.基于Hamilton函数方法的船舶发电机组综合协调控制[J].控制理论与应用,2011,28(11):1541-1548.
    [17]S. Xu, X. Hou. A family of robust adaptive excitation controllers for synchronous generators with steam valve via Hamiltonian function method[J]. Journal of Control Theory and Application,2012,10(1):11-18.
    [18]A. Donaire, T. Perez. Dynamic positioning of marine craft using a port-Hamiltonian framework[J]. Automatica,2012,48(5):851-856.
    [19]Y. Wang, G. Feng, D. Cheng. Adaptive L2 disturbance attenuation control of multmachine power systems with SMES units[J]. Automatica,2006,42(7): 1121-1132.
    [20]B. Maschke, A. J. Van Der Schaft, P. Breedveld. An intrinsic Hamiltonian formation of network dynamics:Non-standard Possion structures and gyrators[J]. Journal of The Franklin Institute,1992,329(5):923-966.
    [21]B. Maschke, A. J. Van Der Schaft, P. Breedveld. An intrinsic Hamiltonian formation of the dynamics of LC-circuits[J]. IEEE Transactions on Circuits and Systems,1995,42(2):73-82.
    [22]P. Tabuaba, G. Pappas. From nonlinear to Hamiltonian via feedback[J]. IEEE Transactions on Automatic Control,2003,48(8):1439-1442.
    [23]P. Tabuaba, G. Pappas. Abstractions of Hamiltonian control systems[J]. Automatica,2003,39(12):2025-2033.
    [24]M. Belabbas. Networks of Hamiltonian control systems and feedback[J]. Systems & Control Letters,2009,58(10):217-224.
    [25]A. J. Van Der Schaft, B. Maschke. The Hamiltonian formation of energy conserving physical systems with external ports[J]. Arch Elektron Obertrag, 1995,49(5-6):362-371.
    [26]G. Escobar, A. J. Van Der Schaft, R. Ortega. A Hamiltonian viewpoint in the modeling of switching power converters[J]. Automatica,1999,35(3):445-452.
    [27]M. Dalsmo, A. J. Van Der Schaft. On representation and integrability of mathematical structures in energy-conserving physical system[J]. SIAM Journal on Control and Optimization,1999,37(1):54-91.
    [28]J. Cervera, A. J. Van Der Schaft, A. Banos. Interconnection of port-Hamiltonian systems and composition of Dirac structures[J]. Automatica,2007,43(2): 212-225.
    [29]A. J. Van Der Schaft. Implicit Hamiltonian systems with symmetry[J]. Reports on Mathematical Physics,1998,41(2):203-221.
    [30]A. J. Van Der Schaft, B. Maschke. Hamiltonian formulation of distributed-parameter systems with boundary energy flow[J]. Journal of Geometry and Physics,2002,42(11):166-194.
    [31]G Blankenstein, A. J. Van Der Schaft. Symmetry and reduction in implicit generalized Hamiltonian systems [J]. Reports on Mathematical Physics,2001, 47(1):57-100.
    [32]A. J. Van Der Schaft, J. Cervera. Composition of Dirac structures and control of port-Hamiltonian systems[C]. Proceedings of the 15th International Symposium on the Mathematical Theory of Networks and Systems, USA,2002,1-13.
    [33]K. Fujimoto, J. M. A. Scherpen, W. Gray. Hamiltonian realizations of nonlinear adjoint operators[J].Automatica,2002,38(10):1769-1775.
    [34]P. Crouch, F. Lamnabhi-Lagarrigue, A. J. Van Der Schaft. Adjoint and Hamiltonian input-output differential equations[J]. IEEE Transactions on Automatic Control,1995,40(4):603-615.
    [35]S. Heberrt. A general canonical form for feedback passivity of non-linear systems[J]. International Journal of Control,1998,71(5):891-905.
    [36]Y. Wang, C. Li, D. Cheng. Generalized Hamiltonian realization of time-invariant nonlinear systems[J]. Automatica,2003,39(8):1437-1443.
    [37]Y. Wang, D. Cheng, C. Li, Y. Ge. Dissipative Hamiltonian realization and energy-based L2-disturbance attenuation control of multimachine power systems[J]. IEEE Transactions on Automatic Control,2003,48(8):1428-1433.
    [38]Y. Wang, D. Cheng, S. S. Ge. Approximate dissipative Hamiltonian realization and construction of local Lyaunov functions[J]. Systems & Control Letters, 2007,56 (2):141-149.
    [39]J. Cortes, A. J. Van Der Schaft, P. Crouch. Gradient realization of nonlinear control systems[C]. Proceedings of the IFAC Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control, Seville, Spain,2003,73-78.
    [40]J. Cortes, A. J. Van Der Schaft, P. Crouch. Characterization of gradient control systems[J]. SIAM Journal on Control and Optimization,2005,44(4): 1192-1214.
    [41]D. Jeltsema, J. M. A. Scherpen. A dual relation between port-Hamiltonian systems and the Brayton-Moser equations for nonlinear switched RLC circuits[J]. Automatica,2003,39(6):969-979.
    [42]A. Donaire, S. Junco. Derivation of input-state-output port-Hamiltonian systems from bond graphs[J]. Simulation Modelling Practice and Theory,2009, 17(1):137-151.
    [43]F. Castanos, D. Gromov, V. Hayward, et al. Implicit and explicit representations of continuous-time port-Hamiltonian systems [J]. Systems & Control Letters, 2013,62(4):324-330.
    [44]H. Yoshimura, Jerrold E. Marsden. Dirac structures and the Legendre transformation for implicit Lagrangian and Hamiltonian systems[C]. Proceedings from the 3rd IFAC Workshop, Nagoya, Japan,2006,233-248.
    [45]M. Struwe. Variational method:Applications to nonlinear partial differential equations and Hamiltonian systems[M]. London:Springer-Verlags,2008.
    [46]K. Fujimoto, D. Tsubakino. Computation of nonlinear balanced realization and model reduction based on Taylor series expansion[J]. Systems & Control Letters, 2008,57(4):283-289.
    [47]K. Fujimoto, H. Kajiura. Balanced realization and model reduction of port-Hamiltonian systems[C]. Proceedings of the 2007 American Control Conference,2007, New York, USA,930-934.
    [48]R. Polyuga, A. J. Van Der Schaft. Structure preserving model reduction of port-Hamiltonian systems by moment matching at infinity[J]. Automatica,2010, 46(4):665-672.
    [49]R. Polyuga, A. J. Van Der Schaft. Effort- and flow- constraint reduction methods for structure preserving model reduction of port-Hamiltonian system[J]. Systems & Control Letters,2012,61(3):412-421.
    [50]R. Polyuga. Model reduction of Port-Hamiltonian systems[D]. Groningen: University of Groningen,2010.
    [51]A. Astolfi. Model reduction by moment matching for linear and nonlinear systems[J]. IEEE Transactions on Automatic Control,2010,55(10):2321-2336.
    [52]K. Fujimoto. Synthesis and analysis of nonlinear control systems based on transformations and factorizations[D]. Kyoto:University of Kyoto,2001.
    [53]Y. Wang, D. Cheng, X. Hu. Problems on time-varying port-controlled Hamiltonian systems:geometric structure and dissipative realization[J]. Automatica,2005,41(5):717-723.
    [54]M. Schoberl, K. Schlacher. On an intrinsic formulation of time-variant Port-Hamiltonian systems[J]. Auotmatica,2012,48(9):2194-2200.
    [55]Y. Guo, D. Cheng. Stabilization of time-varying Hamiltonian systems[J]. IEEE Transactions on Control Systems Techonlogy,2006,14(5):871-880.
    [56]K. Fujimoto, T. Sugie. Stabilization of Hamiltonian systems with nonholonomic constraints based on time-varying generalized canonical transformations[J]. Systems & Control Letters,2001,44(4):309-319.
    [57]L. Cai, Y. He, M. Wu. Asymptotical stabilization for time-invariant and time-varying port-Hamiltonian systems via a new kinetic energy-shaping[J]. International Journal of Innovative Computing, Information and Control,2012, 8(8):5513-5522.
    [58]K. Fujimoto, K. Sukurama, T. Sugie. Trajectory tracking control of port-controlled Hamiltonian systems via generalized canonical transformations[J]. Systems & Control Letters,2003,39(12):2059-2069.
    [59]K. Fujimoto, T. Sugie. Iterative learning control of Hamiltonian systems:I/O based optimal control approach[J]. IEEE Transactions on Automatic Control, 2003,48(10):1756-1761.
    [60]J. Mulero-Martinez. Canonical transformations used to derive robot control laws from a port-controlled Hamiltonian system perspective[J]. Automatica, 2008,44(9):2435-2440.
    [61]C. Valentin, M. Magos, B. Maschke. A port-Hamiltonian formation of physical switching systems with varying constraints [J]. Automatica,2007,43(7): 1125-1133.
    [62]L. Zhu, Y. Wang. Study on the stability of switched dissipative Hamiltonian systems[J]. Science in China Series F:Information Sciences,2006,49(5): 578-591.
    [63]C. Valentin, M. Magos, B. Maschke. Hybrid port-Hamiltonian systems:from paramterized incidence matrices and to hybrid automata[J]. Nonlinear Analysis: Theory, Methods & Applications,2006,65(6):1106-1122.
    [64]W. Haddad, S. Nersesov, V. Chellaboina. Energy-based control for hybrid port-controlled Hamiltonian systems[J]. Automatica,2003,39(8):1425-1435.
    [65]孙炜伟.时滞及饱和Hamilton系统的分析与综合[D].山东:山东大学,2009.
    [66]W. Sun, Y. Wang, G. Feng. Stability analysis for time-delay Hamiltonian systems[C]. Control, Automation, Robotics and Vision, ICARCV,2006,1-6.
    [67]W. Sun, Y. Wang. L2 disturbance attenuation for a class of time-delay Hamiltonian systems[J]. Journal of Systems Science and Complexity.2011, 24(4):672-682.
    [68]R. Yang, Y. Wang. Finite-time stability analysis and H∞ control for a class of nonlinear time-delay Hamiltonian systems[J]. Automatica,2013,49(2): 390-401.
    [69]L. Cai, Y. He, M. Wu. Energy-shaping for Hamiltonian control systems with time delay[C]. Proceeding of 31th Chinese Control Conference. Hefei, China. 2012 562-566.
    [70]L. Sun, Y. Wang. Stabilization and H∞ control of a class of nonlinear Hamiltonian descriptor systems with application to non-linear descriptor systems[J]. IET Control Theory and Application,2010,4(1):16-26.
    [71]A. Macchelli, C. Melchiorri. Control by interconnection of mixed port Hamiltonian systems[J]. IEEE Transactions on Automatic Control,2005,50(11): 1839-1844.
    [72]A. Isidori. Nonlinear Control Systems Ⅰ[M]. London:Springer-Verlag,1999.
    [73]A. Isidori. Nonlinear Control Systems Ⅱ[M]. London:Springer-Verlag,1999.
    [74]钱祥征,戴斌祥,刘开宇.非线性常微分方程理论方法应用[M].长沙:湖南大学出版社,2006.
    [75]R. Ortega, A. J. Van Der Schaft, I. Mareels, et al. Putting energy back in control[J]. IEEE Control Systems Magazine,2001,21(2):18-33.
    [76]H. Rodriguez, A. J. Van Der Schaft, R. Ortega. On stabilization of nonlinear distributed parameter port-controlled Hamiltonian systems via Energy-shaping[C]. Proceeding of the 40th IEEE Conference on Decision and Control, Oriando, USA.2001,131-136.
    [77]B. Maschke, R. Ortega, A. J. Van Der Schaft. Energy-based Lyapunov function for forced Hamiltonian systems with dissipation[J]. IEEE Transactions on Automatic Control,2000,45(8):1498-1502.
    [78]V. Petrovic, R. Ortega, A. Stankovic. Interconnection and damping assignment approach to control of PM Synchronous Motor[J]. IEEE Transactions on Control Systems Technology,2001,9(6):811-820.
    [79]R. Ortega, A. J. Van Der Schaft, B. Maschke, et al. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems[J]. Automatica,2002,38(4):585-596.
    [80]T. Ionescu, K. Fujimoto, J. M. A. Scherpen. Dissipativity preserving balancing for nonlinear systems:A Hankel operator approach[J]. Systems & Control Letters,2010,59(3-4):180-194.
    [81]R. Lopezlena, J. M. A. Scherpen, K. Fujimoto. Energy-storage balanced reduction of port-Hamiltonian systems[C]. Proceeding in the 2nd IFAC workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control, Seville,2003,79-84.
    [82]K. Fujimoto, J. M. A. Scherpen. Nonlinear input-normal realizations based on differential eigenstructure of Hankel operators[J]. IEEE Transactions on Automatic Control,2005,50(1):2-18.
    [83]A. J. Van Der Schaft. Balancing of lossless and passive systems[J]. IEEE Transactions on Automatic Control,2008,53(9):2153-2157.
    [84]S. Prajna, A. J. Van Der Schaft, G. Meinsma. An LMI approach to stabilization of linear port-controlled Hamiltonian systems[J]. Systems & Control Letters, 2002,45(5):371-385.
    [85]C. Batlle, E. Fossas, R. Grino. Generalized state space averaging for port controlled Hamiltonian system[C]. Proceedings of 16th IFAC World Congress, 16(1),2005.
    [86]C. Gaviria, E. Fossas, R. Grino. Robust Controller for a full-bridge rectifier using the IDA approach and GSSA Modeling[J]. IEEE Transactions on Circuits and Systems-Ⅰ:Regular Paper,2005,52(3):609-616.
    [87]R. Horn, C. Johnson. Matrix analysis[M]. Cambridge University Press.1986.
    [88]J. C. Willems. Dissipative dynamic systems Part Ⅰ:General Theory[J]. Archive for Rational Mechanics and Analysis,1972,45(5):321-351.
    [89]J. C. Willems. Dissipative dynamical systems[J]. European Journal of Control, 2007,13(2):134-151.
    [90]D. Jeltsema, R. Ortega, J. M. A. Scherpen. On passivity and power-balance inequailities of nonlinear RLC circuits [J]. IEEE Transactions on Circiuts and Systems Part-Ⅰ Fund Theory Appliaction,2003,50(9):1174-1179.
    [91]D. Jeltsema, R. Ortega, J. M. A. Scherpen. An energy-balancing perspective of inter connection and damping assignment control of nonlinear systems [J]. Automatica,2004,40(9):1643-1646.
    [92]R. Ortega, M. Spong, F. Gomez, et al. Stabiliztion of underactuated mechanical systems via interconnection and damping assignment[J]. IEEE Transactions on Automatic Control,2002,47(8):1218-1233.
    [93]J. Acosta, R. Ortega, A. Astolfi, et al. Interconnection and damping assignment passivity-based control of mechanical systems with underactuation degree one[J]. IEEE Transactions on Auomatic Control,2005,50(12):1936-1955.
    [94]R. Ortega, E. Garcia-Canseco. Interconnection and damping assignment passivity-based control:a survey[J]. European Journal of Control,2004,10(5): 432-450.
    [95]R. Ortega, A. J. Van Der Schaft, F. Castanos, et al. Control by interconnection and standard passivity-based control of port-Hamiltonian systems [J]. IEEE Transactions on Automatic Control,2008,53(11):2527-2542.
    [96]A. Donaire, S. Junco. On the addition of integral action to port-controlled Hamiltonian systems[J]. Automatica,2009,45(8):1910-1916.
    [97]R. Ortega, J. Romero. Robust integral control of port-Hamiltonian systems:The case of non-passive outputs with unmatched disturbances [J]. Systems & Control Letters,2012,61(6):11-11.
    [98]M. Perez, R. Ortega, J. Espinoza. Passivity-based PI control of switched power converters [J]. IEEE Transactions on Control Systems Technology,2004,12(6): 881-890.
    [99]B. Jayawardhana, R. Ortega, E. Garcia-Canseco, et al. Passivity of nonlinear in cremental systems:Application to PI stabilization of nonlinear RLC circuits[C]. Proceeding of the 45th IEEE Conference on Decision & Control, San Diego, USA,2006,3808-3812.
    [100]R. Ortega, D. Jeltsema, J. M. A. Scherpen. Power shaping:a new paradigm for stabilization of nonlinear RLC circuits[J]. IEEE Transactions on Automatic Control,2003,48(10):1762-1767.
    [101]E. Garcia-Canseco, D. Jeltsema, R. Ortega, et al. Power-based control of physical systems[J]. Automatica,2010,46(1):127-132.
    [102]A. Favache, D. Dochain. Power-shaping control of reaction systems:The CSTR case[J]. Automatica,2010,46(11):1877-1883.
    [103]D. Dirksz, J. M. A. Scherpen. Power-based control:Canonical coordinate transformations, integral and adaptive control[J]. Automatica,2012,48(6): 1045-1056.
    [104]D. Dirksz, J. M. A. Scherpen. Power-based setpoint control:Experimental results on a planar manipulator[J]. IEEE Transactions on control systems technology,2012,20(5):1384-1391.
    [105]L. Cai, Y. He, M. Wu, et al. Improved potential energy-shaping for port-controlled Hamiltonian systems[J]. Journal of Control Theory and Application,2012,10(3):385-390.
    [106]K. Fujimoto, T. Sugie. Canonical transformation and stabilization of generalized Hamiltonian systems[J]. Systems & Control Letters,2001,42(3): 217-227.
    [107]G. Viola, R. Ortega, R. Banavar, et al. Total energy shaping control of mechanical systems:simplifying the matching equations via coordinate changes[J]. IEEE Transactions on Automatic Control,2007,52(6):1093-1099.
    [108]A. Macchelli. Energy shaping of distributed parameter port-Hamiltonian systems based on finite element approximation[J]. Systems& Control Letters, 2011,60(8):579-589.
    [109]D. Cheng, A. Astofli, R. Ortega. On the feedback equivalence to port-controlled Hamiltonian systems[J]. Systems & Control Letters,2005,54(9):911-917.
    [110]F. Castanos, R. Ortega. Energy-balancing passivity-based control is equivalent to dissipation and output invariance[J]. Systems & Control Letters,2009,58(8): 553-560.
    [111]A. Astolfi, R. Ortega. Dynamic extension is unnecessary for stabilization via interconnection and damping assignment passivity-based control[J]. Systems & Control Letters,2009,58(2):133-135.
    [112]T. Kloiber, P. Kotyczka. Estimating and enlarging the domain of attraction in IDA-PBC[C]. Proceeding of the 51st IEEE Conference on Decision and Control, Maui, USA.2012,1852-1858.
    [113]P. Kotyczka. Local linear dynamics assignment in IDA-PBC[J]. Auomatica, 2013,49(4):1037-1044.
    [114]L. Cai, Y. He, M. Wu. On the effects of desired damping matrix and desired Hamiltonian function in the matching equation for Port-Hamiltonian systems [J]. Nonlinear Dynamics,2013,72(1-2):91-99.
    [115]K. Fujimoto, S. Sakai, T. Sugie. Passivity based control of a class of Hamiltonian systems with nonholonomic constraints [J]. Automatica,2012, 48(12):3054-3063.
    [116]J. Johnson, F. Allgower. Interconnection and damping assignment passivity-based control of a four-tank system[C]. Proceedings from the 3rd IFAC Workshop, Nagoya, Japan,2006,111-122.
    [117]L. Gentili, A. Paoli, C. Bonivento. Input disturbance suppression for port-Hamiltonian systems:an internal model approach[C]. Proceedings of Advanced in Control Theory and Applications,2007,85-98.
    [118]R. Ortega, M. Galaz, A. Astolfi, et al. Transient stabilization of Multimachine power systems with nontrivial transfer conductances[J]. IEEE Transactions on Automatic Control,2005,50(1):60-75.
    [119]H. Cormerais, J. Buisson, P. Y. Richard. Modelling and passivity based control of switched systems from bond graph formalism:Application to multicellular converters[J]. Journal of The Franklin Institute,2008,345:468-488.
    [120]R. Munoz-Aguilar, A. Doria-Cerezo, P. Puleston. Direct synchronous-asychronous conversion system for hybrid electrical vehicle applications. An energy-based modeling approach[J]. International Journal of Electrical Power and Energy Systems,2013,47:264-279.
    [121]M. Hangos, J. Bokor, G Szederkenyi. Hamiltonian view on process systems[J]. American Institute of Chemical Engineer Journal,2001,47(8):1819-1831.
    [122]O. Rojas, J. Bao, P. Lee. On dissipativity, passivity and dynamic operability of nonlinear processes[J]. Jounral of Process Control,2008,18(5):515-526.
    [123]F. Dorfler, J. Johnsen, F. Allgower. An introduction to interconnection and damping assignment passivity-based control in process engineering[J]. Journal of Process Control,2009,19(9):1413-1426.
    [124]H. Ramirez, D. Sbarbaro, R. Ortega. On the control of non-linear processes:an IDA-PBC approach[J]. Journal of Process Control,2009,19(3):405-414.
    [125]H. Ramirez, B. Maschke, D. Sbarbaro. Irreversible port-Hamiltonian systems:A general formulation of irreversible processes with application to the CSTR[J]. Chemical Engineering Science,2013,89:223-234.
    [126]Y. Wang, D. Cheng, Y. Liu, et al. Adaptive Ha, excitation control of multimachine power systems via the Hamiltonian function method[J]. International Journal of Control,2004,77(4):336-350.
    [127]A. Wei, Y. Wang. Stabilization and H∞ control of nonlinear port-controlled Hamiltonian systems subject to actuator saturation[J]. Automatica,2010,46(12): 2008-2013.
    [128]D. Dirksz, J. M. A. Scherpen. Structure preserving adaptive control of port-Hamiltonian systems[J]. IEEE Transactions on Automatic Control,2012, 57(11):2880-2885.
    [129]A. Venkatraman, R. Ortega, I. Sarras, et al. Speed observation and position feedback stabilization of partially linearizable mechanical systems[J]. IEEE Transactions on Automatic Control,2010,55(5):1059-1074.
    [130]A. Venkatraman, A. J. Van Der Schaft. Full-order observer design for a class of port-Hamiltonian systems[J]. Automatica,2010,46(3):555-561.
    [131]F. Castanos, R. Ortega, A. J. Van Der Schaft. Asymptotic stabilization via control by interconnection of port-Hamiltonian systems[J]. Automatica,2009, 45(7):1611-1618.
    [132]R. Pasumarthy, C. Kao. On stability of time delay Hamiltonian systems[C]. Proceeding of 2009 American Control Conference, USA,2009,4909-4914.
    [133]Y. Wang, G Feng, D. Cheng. Simultaneous stabilization of a set of nonlinear port-controlled Hamiltonian systems[J]. Automatica,2007,43(3):402-407.
    [134]A. Wei, Y. Wang. Parallel simultaneous stabilization of two nonlinear port-controlled Hamiltonian subject to actuator saturation[C]. Proceeding of the 27th Chineses Control Conference, Kunming, China,2008,388-392.
    [135]Z. Xi, D. Cheng, Q. Lu, et al. Nonlinear decentralized controller design for multimachine power systems using Hamiltonian function method[J]. Automatica,2002,38(3):527-534.
    [136]Z. Xi, G Feng, D. Cheng, et al. Nonlinear decentralized saturated controller design for power systems [J]. IEEE Transactions on Control Systems Technology, 2003,11(4):539-547.
    [137]R. Escarela-Perez, T. Campero-Littlewood. A study of the variation of synchronous machine parameters due to saturation:a numerical approach[J]. Electric Power System Research,2004,72(15):1-11.
    [138]L. Lv, Z. Lin. Analysis and design of singular linear systems under actuator saturation and L2/L∞ disturbances[J]. Systems & Control Letters,2008,57(11): 904-912.
    [139]Z. Lin, L. Lv. Set invariance condition for singular linear systems subject to actuator saturation[J]. IEEE Transactions on Automatic Control,2007,52(12): 2351-2355.
    [140]M. Wu, Y. He, J. She, et al. Delay-dependent criteria for robust stability of time-varying delay systems[J]. Automatica,2004,40(8):1435-1439.
    [141]M. Wu, Y. He, J. She. Stability analysis and robust control of time-delay systems[M]. Beijing:Springer,2009.
    [142]俞立.鲁棒控制——线性矩阵不等式处理方法[M].北京:清华大学出版社,2002.
    [143]D. Casagrande, A. Astolfi, R. Ortega. Asymptotic stabilization of passive systems without damping injection:A sampled integral technique[J]. Automatica,2011,47(2):262-271.
    [144]C. Zhang, Y. He, M. Wu. Improved Global Asymptotical synchronization of chaotic Lur'e systems with sampled-data control[J]. IEEE Transaction on Circuits and Systems,2009,56-11(4):320-324.
    [145]C. Zhang, Y. He, M. Wu. Exponential synchronization of neural networks with time-varying mixed delays and sampled-data[J]. Neurocomputing,2010, 74(1-3):265-273.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700