列车节能操纵理论模型与参数标定方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
交通运输业是国家的基础性服务业,为社会经济的发展提供重要的支撑作用,但交通运输业也消耗了大量的能源,在能源形势日趋紧张的当今社会值得深切关注。铁路运输是最重要的交通运输方式之一,完成了全社会相当比例的运量,近年来,铁路进行了大规模的建设,在综合运输网络中的主导地位进一步加强,但随之而来的是铁路运输业的能耗日趋庞大。为有效降低占铁路能耗主体的牵引能耗,进行了列车节能运行的基础理论研究,重点研究列车节能操纵的基本原理,以期为优秀的列车节能操纵指导系统的研制和开发奠定理论基础。
     本文在借鉴国内外已有研究成果的基础上,充分考虑到列车运行线路复杂多变的特性,引入连续陡坡的概念,对列车在陡坡区段的最优控制策略进行了深入的研究与探讨,主要研究内容及结论如下:
     (1)根据列车运行受力分析,构建了基于机械能的列车运行理论模型,引入协态变量,基于Pontryagin极值原理,采用状态变量、协态变量和控制变量联合表达Hamiltonian函数,然后应用Karush-Kuhn-Tucker条件求得最优控制策略的必要条件,即符合列车节能运行的状态仅有四种:最大加速相位、均速相位、惰行相位和制动相位;借助协态变量满足的微分方程,分析出相位转换关系,再根据列车运行的现实环境,寻找正确的相位序列和相位转换点位置,即确定了列车的最优控制策略。
     (2)列车匀速运行时,阻力所做的功最少,均速相位成为各种运行状态的纽带,依此对列车运行全程划分阶段,即启动阶段、途中运行阶段和制动阶段,把列车控制全局优化问题化解为由均速速度决定的局部优化问题。采用四阶Runge-Kutta方法来求解列车控制的微分方程,针对陡坡区段,先计算出陡坡临界点,反推出首个相位转换点的初始范围,然后利用二分法逐渐缩小搜索区间,得到了陡坡区段的最优控制策略及相应的最优轨线。随着总运行时分的增加,列车的能耗随之减少,但两者并不呈线性关系,本文算例中,当总旅程时间从2142.54s逐渐增加至2473s时,全程最优控制的能耗值从1845.01J下降至1527.23J。
     (3)列车行驶在陡上坡时,速度会下降,局部的最优控制策略为均速—最大加速—均速相位序列,且最优控制的必要条件要求最大加速相位切换回均速相位时,协态变量恰等于1,据此条件可确定陡上坡区段各相位转换点的具体位置。为提高数值计算的效率,结合列车运动方程,构造陡上坡区段新的目标泛函Jp和变量μ,当列车操纵策略为最优时,Jp取极值,且μ在陡上坡区段的始末值均为零,因μ在某些坡段不发生变化,使得数值计算范围缩小而效率得到提升。列车行驶在陡下坡时,速度会上升,局部的最优控制策略为均速—惰行—均速相位序列,且惰行相位转入均速相位时,协态变量恰等于1,为提高计算效率,同样可构造出陡下坡区段的新目标泛函Jp和变量μ,当列车操纵策略为最优时,μ在陡下坡区段的始末值均为零。利用μ和协态变量θ解算最优控制策略的方法在本文中分别被称为间接法和直接法,本文算例中,间接法较直接法在陡上坡区段提高计算效率60.46%,在陡下坡区段提高计算效率95.81%
     (4)天气状况不同或列车运行线路不同都会导致列车基本阻力参数变化,因此,列车的每趟旅程的基本阻力参数都需进行实时标定,以便为最优控制策略的计算提供坚实的基础条件。考虑到列车现有的信息设备,利用串口通信,获取列车运行信息的实时数据,由于列车运行线路中存在基本线路切换和长短链,公里标会出现突变,设计专门的算法来同时进行数据纠错和公里标突变识别,实时数据的误码率低至0.02%。在此基础上,通过介绍Sigma点的选取办法,建立列车运动的随机动力学模型,设计UKF(无味卡尔曼滤波)的递推算法,快速地标定出精确的基本阻力参数,以宁西线合肥东—大顾店区段的列车为测试对象,结果表明:实时参数标定器能在某较长的下坡道上,约100个时间步长内完成参数的标定,较参考值符合实际情形。
     本文致力于列车节能操纵的理论和实践研究,重点研究列车节能运行的基本原理,为优秀的列车节能操纵指导系统的研制和开发奠定坚实基础,以期降低列车运行的牵引能耗,有利于铁路运输业的节能降耗。
Transport industry is the fundamental service department of China, and playing an important supportive role for the development of society and economy. But a great deal of energy are consumed meanwhile, it should be paid great attention especially when the energy shortage become more and more serious in China. Rail transportation is an important part of transport industry, and complets a large portion of traffic volume of whole society. In recent years, large-scale rail infrastructural constructions have been carried out, and rail transportation will be more dominant in integrated transport network, but energy consumption is growing increasingly come with it. For reducing the energy consumption effectively in train traction, fundamental theoritical research of train energy-efficient movement is conducted, and ultimate principles of it are stressed, in order to provide theoretical basis for the research and development of excellent guide system for train operation.
     Based on the well known research achievements, the concept of continuous steep gradient is introduced due to complexity of rail line, and optimal control strategies of train movement on the steep sections are dug deeply. The main contents and results are as following:
     (1) According to the mechanical anaylsis of train movement, theoretical model with general applicability is established. The adjoint variable is introduced based on the Pontryagin maximum principle, subsequently Hamiltonian function jointly expressed by state variables, adjoint variables and control variables are put forward, which contribute to the acquisition of necessary condition of optimal control strategy by applying Karush-Kuhn-Tucker conditions. There are only four phases in the train optimal movement:power, speedhold, coast and brake. With the analysis on differential equation of adjoint variable, transfer relation of phases are established, combined with the comprehension of practical environment, the exact phase sequence and phase transfer position are obtained, immediately the optimal control strategy appears obviously.
     (2) When train moves uniformly, the negative work done by resistance is minimized. So the speedhold phase becomes the link between different train states. Due to this, the total journey is divided into three stages:start-up, middle and brake, thus the global optimal problem of train operation is decomposed into local optimization induced by speedhold. Afterwards, the numerical solutions of train control system are solved by the fourth order Runge-Kutta method. For steep sections, the critical identification points of steep gradient are calculated first, the initial search interval of phase switch point is determined as a result. Then bisection searching method is adopted to obtain the optimal position, consequently the optimal control strategy and corresponding trajectory is achieved. The total energy consumption has a decreasing tendency as journey time increasing, but there exists no linearity relations between them. A numerical example is given to show that the energy consumption of total journey is falling from 1845.01 Joules to 1527.23 Joules while total journey time increases from 2142.54 seconds to 2473 seconds gradually.
     (3) When train moves on the uphill steep gradient, the speed of train will decline definitely, the local optimal control strategy comprise holdspeed-power-holdspeed phase sequence, and the necessary condition of optimal control asks for the adjoint variable equal to one exactly while train switching from power phase back to holdspeed phase. Based on that fact, the position of phase switching point can be determined precisely. To improve the efficiency of numerical computation, in terms of equation of train motion, the new objective functional Jρand new variableμis introduced. When the control strategy is optimal, Jρreaches the minimum and the two endpoint values ofμduring the uphill steep sections equal zero. Becauseμdoes not change within some interval, it causes computational efficiency improved. When train moves on the downhill steep gradient, the speed of train will incline, and the local optimal control strategy comprise holdspeed-coast-holdspeed phase sequence, the adjoint variable equal to one while train switching from coast phase back to holdspeed phase. Similar to uphill steep section, Jp attains its minimum and the two endpoint values ofμequal zero when the control strategy is optimal. For convenience, the method using the property of adjoint variable 6 is called "direct method" and the method usingμcalled "indirect method" throughout this study. Simulation results show that indirect method has better performance, and enhance the computational efficiency by 60.46% during uphill steep section and by 95.81% during downhill steep section.
     (4) The resistance parameters of train varies with weather conditions and rail lines, thus train parameters of every journey require real time calibration in order to provide a solid basis for the calculation of optimal control strategy. Take the existing information devices into consideration, the real time information concerning with train movement are acquired through serial communication. According to the existence of the discontinuity of milestones and base line among rail lines, special algorithm is designed, which is capable of correcting data error and identifying the discontinuity simultaneously, and bit error rate is down to 0.02% consequently. In this foundation, in terms of selection method of Sigma points and stochastic dynamic model of train movement, recursive algorithm of UKF is proposed, which calibrates the resistance parameters of train instantly. Taking the trains from Hefei-Dagudian section of Ningxi line for studying object, test result shows that true value of resistance parameters are calibrated within about 100 time steps on some long downhill gradient by designed calibration device.
     This paper makes efforts to analyze the theory and practice of train energy-efficient movement, mainly probe the mechanism of train optimal control in order to lay a solid foundation for the development of outstanding optimal guide system for train operation. Hopefully, it can promote the efficiency of train movement and reduce the energy consumption of rail transportation.
引文
[1]Asnis I A, Dmitruk A V, Osmolovskii N P. Solution of the problem of the energetically optimal control of the motion of a train by a maximum principle[J]. U.S.S.R. Comput. Maths. Math. Phys,1985a,25(6):37-44.
    [2]Asnis I A, Dmitruk A V, Osmolovskii N P. Using the maximum principle to solve the problem of energy-optimal control of the motion of the train[J]. Zh. Vychisl. Mat. Mat. Fiz,1985b, 25(11):1644-1656.
    [3]Bai Y, Zhou F M, Mao B H, et al. Energy-efficient driving strategy for freight trains based on power consumption analysis [J]. Journal of Transportation Systems Engineering and Information Technology,2009,4(2):43-50.
    [4]Bengea S C, DeCarlo R A. Optimal control of switching systems[J]. Automatica,2005,41(1): 11-27.
    [5]Birkhoff G, Rota G C. Ordinary differential equation[M]. John Wiley and Sons, Inc.,3rd edition,1978.
    [6]Bolla W F. Development of a fuel conservation program[J]. Modern Railroads,1987,42(10): 37-38.
    [7]Cameron H, Tracey H, Object-oriented multithreading using C++[M], Wiley,1997.
    [8]Cheng J, Howlett P G A note on th calculation of optimal strategies for the minimization of fuel consumption in the control of trains[J]. IEEE Transaction on Automatic Control,1993, 38(11):1730-1734.
    [9]Cheng J. Analysis of optimal driving strategies for train control problem[D]. PhD thesis, University of South Australia,1997.
    [10]Clements T, Gentil S. Reformulation of parameter identification with unknown but bounded errors[J]. Mathematics and Computers in Simulation,1988,30:257-270.
    [11]Detmold P. New concepts in the control of train movement[J]. Transp. Res. Rec,1985(1029): 43-47.
    [12]Figuera J. Automatic optimal control of trains with frequent stops[J]. Dyna(Spain),1970, 45(7):263-269.
    [13]Firpo P, Savio S. Optimized train running curve for electric energy saving in autotransformer supplied AC railway systems[C]. International Conference on Electric Railways in a United Europe,1995,405:23-27.
    [14]Gamier R. Solid state control systems-a means of optimising the electric traction vehicles[J]. Brown Boveri Review,1979,7:33-38.
    [15]Golovitcher I. Train control algorithm for energy consumption optimization[C]. Proceedings of All-Union Railway Research Institute, Vestnik VNIIZHT,1982,8:18-23.
    [16]Golovitcher I. An anaylytical method for optimum train control computation[C]. Proceedings of State Universities, Electro-mechanics,1986a,3:59-66.
    [17]Golovitcher I. Control algorithms for automatic operation of rail vehicles[J]. Journal of Russian Academy of Science,1986b,11:118-126.
    [18]Golovitcher I. Optimum control of electric locomotive with regenerative braking[C]. Proceedings of Moscow Railway Engineering Institure (Trudy MIIT),1989a,811:19-24.
    [19]Golovitcher I. An analytical method for computation of optimum train speed profile considering variable efficiency of locomotive[C]. Proceedings of State Universities, Electro-mechanics,1989b,2:72-81.
    [20]Hoang H H, Polis M P, Haurie A. Reducing energy consumption through trajectory optimization for a metro network[J]. IEEE Transaction on Automatic Control,1975, 20(5):590-595.
    [21]Howard J. Comparison between fuel efficiency of railway diesel and electric traction units[C]. Pro. Nat. Conf. Elec. Energy, I. E.,1979,8:33-39.
    [22]Howlett P G. An optimal strategy for the control of a train[J]. J. Austral. Math. Soc. Series B, 1990,31:454-471.
    [23]Howlett P G, Cheng J, Pudney P J. Optimal strategies for the energy-efficient train control [J]. Control Problems in Industry,1994a,3:151-178.
    [24]Howlett P G, Milroy I P, Pudney P J. Energy-efficient train control[J]. Control Engineering Practice,1994b,2(2):193-220.
    [25]Howlett P G, Pudney P J. Energy-efficient train control[M]. Advances in Industrial Control. London:Springer,1995.
    [26]Howlett P G Optimal strategies for the control of train[J]. Automatica,1996,32(4):519-532.
    [27]Howlett P G The optimal control of a train [J]. Annals of Operations research,2000,98:65-87.
    [28]Howlett P G, Leizarowitz A. Optimal strategies for vehicle control problems with finite control sets. Dynamic of Continuous [J], Discrete and Impulsive Systems B, Application and Algorithms,2001,8:41-69.
    [29]Ichikawa K, Tamura K. Technology reports of the automatic control laboratory [R]. Technical Report, Nagoya University,1968a.
    [30]Ichikawa K. Application of optimation theory for the boundary state variables problems to the operation of train[J]. Bull. Japan Soc. Math. And Eng.,1968b,11(47):857-865.
    [31]IE A. Energy statistics and balances [M]. International Energy Agency,2004.
    [32]Jan A, Serial port complete[M], Lakeview Research,2007.
    [33]Jim B, Robert W, Multithreading applications in Win32:The complete guide to threads[M], Addison-Wesley Professional,1996.
    [34]Joseph J, La Viola J. A comparison of unscented and extended kalman filtering for estimating quaternion motion[C]. Proceedings of the 2003 American Control Conference,2003,6: 2435-2440.
    [35]Julier S, Uhlmann J, Durant W. Navigation and parameter estimations of high speed road vehicles[C]. Robotics and Automation Conference,1995a,1:101-105.
    [36]Julier S J, Uhlmann J K, Durrant H F. A new approach for filtering nonlinear systems[A]. Proceedings of the American Control Conference[C].1995b,1628-1632.
    [37]Julier S J, Uhlmann J K. Unscented filtering and nonlinear estimation[J]. Proceedings of the IEEE,2004,92(3):401-422.
    [38]Kalman R E. A New Approach to Linear Filtering and Rrediction Problems[J]. Transaction of the ASME-Journal of Basic Engineering,1960(3):35-45.
    [39]Kalman R E, Bucy R S. New results in linear filtering and prediction theory[J]. Journal of Basic Engineering,1961,3:95-107.
    [40]Khmelnitsky E. On an optimal control problem of train operation[J]. IEEE Transaction on Automatic Control,2000,45(7):1257-1266.
    [41]Li P, Zhang T W. Unscented kalman filter for visual curve tracking[C]. Proceedings of Statistical Methods in Video Processing,2002,6:433-437.
    [42]Ljung L. Analysis of recursive stochastic algorithms[J]. IEEE Trans. Automatic Control,1977, 22(4):551-575.
    [43]Milroy I P. Aspects of automatic train control[D]. PhD thesis, Loughborough University,1980.
    [44]Moiseyev A. Optimal control of discrete-controlled objects[J]. Jounal of Russian Academy of Science,1991,9:123-134.
    [45]Phaneuf R J. Approximate nonlinear estimation[D]. Ph.D thesis, MIT:1968.
    [46]Pontryagin L S, Boltyanskii V G, Gamkrelidze R V, et al. The mathematical theory of optimal processes[M]. John Wiley&Sons, New York,1962.
    [47]Prime HA, Sujitjorn S, Goodman C J, et al. Energy reduction by dynamic train control[C]. IFAC Proceedings Series,1987:173-177.
    [48]Pudney P J. Optimal energy management for solar-powered cars [D]. PhD thesis, University of South Australia,1980.
    [49]Pudney P J, Howlett P G. Optimal driving strategies for a train journey with speed limits [J]. Journal of Australian Mathematical Society Series B,1994,36:38-49.
    [50]Shinobu Y, Shinichiro F, Takehisa H, et al. Development of an on-board energy-saving train operation system for Shinkansen electric railcars[R]. Quarterly Report of Rail Technical Research Institute,1987,28(2-4):54-62.
    [51]Simon D, Horn P. Energy optimum on board microcomputer control of train operation[J]. Bridge between Control and Science and Technology,1985,16(3):219-230.
    [52]Sorenson H W, Stubberud A R. Nonlinear filtering by approximation of the aposteriori density[J]. Journal of Control,1968,18:33-51.
    [53]Strobel H, Horn P. On energy-optimum control of train movement with phase constraints [J]. Electric, Informatics and Energy Technique Journal,1973,6:304-308.
    [54]Strobel H, Horn P. Energy optimum on board microcomputer control of train operation[J]. Bridge between Control and Science and Technology,1985,16(3):219-230.
    [55]Van Donger LAM, Schuit J H. Energy-efficient driving patterns in electric railway traction[J]. Elektrische Bahnen,1988,86(2):69-72.
    [56]Vu X. Analysis of necessary conditions for the optimal control of a train[D]. PhD thesis. University of South Australia,2006.
    [57]Xu X, Antsaklis P J. Optimal control of switched systems:New results and open problems[J]. IEEE Transactions on Automatic Control,2004(4):2683-2687.
    [58]柏赞.内燃牵引货物列车节能操纵模型与实时优化算法[D].北京交通大学博士学位论文,2010.
    [59]陈万里.基于模拟退火算法(SAA)的求解列车控制问题[J].安徽大学学报:自然科学版,2000,24(3):46-49.
    [60]陈万里.列车节能控制问题的参数调整与数值计算研究[D].安徽大学硕士学位论文,2002.
    [61]陈晓东,史小平,马广富,等.线性系统参数估计的最大误差最小方法[J].哈尔滨工业大学学报,1998,30(3):42-44.
    [62]程家兴.评列车控制问题中优化运行方案[J].安徽大学学报,1998,22(1):69-75.
    [63]程家兴.长途列车节能操纵的建模[J].系统仿真学报,1999a,11(4):286-288.
    [64]程家兴.火车控制问题的最优运行方案的推广[J].安徽大学学报,1999b,23(1):1-8.
    [65]程家兴.列车节能操纵中最优方案的算法[J].微机发展,1999c,9(2):1-4.
    [66]程家兴,陈万里.列车控制问题的计算分析及自适应算法[J].安徽大学学报:自然科学版,2002,26(2):1-8.
    [67]丁超,森和俊.铁道机车车辆[J].铁道机车车辆,2009,29(3):48-50.
    [68]丁勇,毛保华,刘海东,等.定时约束条件下列车节能操纵的仿真算法研究[J].系统仿真学报,2004a,16(10):2241-2244.
    [69]丁勇,毛保华,刘海东,等.列车节能运行模拟系统的研究[J].北方交通大学学报,2004b,28(2):76-81.
    [70]丁勇.列车运行计算与操纵优化模拟系统的研究[D].北京:北京交通大学博士学位论文,2005.
    [71]丁勇,周方明,柏赞,等.自动闭塞区段追踪列车节能操纵仿真算法研究[J].系统仿真学报,2009,21(15):593-597.
    [72]段晨宁.地铁列车节能技术的应用[M].铁道通信信号,2003,39(8):38-39.
    [73]冯晓云,何鸿云,朱金陵.列车优化操纵原则及其优化操纵策略的数学描述[J].机车电传动,2001a,4:13-16.
    [74]冯晓云.模糊预测控制及其在列车自动驾驶中的应用研究[D].西南交通大学博士学位论文,2001b.
    [75]冯晓云,桂勋,朱金陵.机车司机操纵评价系统软件的开发[J].机车电传动,2002,3:51-55.
    [76]付印平,高自友,李克平.路网中的列车节能操纵优化方法研究[J].交通运输系统工程与信息,2009a,9(4):90-96.
    [77]付印平.列车追踪运行与节能优化建模及模拟研究[D].北京:北京交通大学博十学位论文,2009b.
    [78]国家发展和改革委员会交通运输司.国家《中长期铁路网规划》内容简介[J].交通运输系统工程与信息,2005,5(4):1-5.
    [79]韩长虎.内燃机车两种宏观经济操纵方法的构思[J].内燃机车,1992,(7):17-20.
    [80]韩长虎.无线列调与内燃机车安全(经济)操纵[J].内燃机车,1993a,(6):6-8.
    [81]韩长虎.应用开放式和保守式操纵方法的探讨[J].内燃机车,1993b,(10):5-9.
    [82]韩长虎,傅文森,王志刚.列车跟踪运行操纵理性探讨[J].内燃机车,1995,(11):24-28.
    [83]韩长虎,靳承林,董学良.内燃机车牵引运行优化操纵第一论断[J].内燃机车,2000(8):20-23.
    [84]韩长虎,梁少敏,王秀华.列车节能运行两个论断之探讨[J].内燃机车,2002(4):20-23.
    [85]何鸿云,朱金陵.列车牵引计算及操纵示意图计算机软件的开发[J].西南交通大学学报,2000,35(5):513-516.
    [86]贺允东.牵引动力改革是铁路节能降耗的主要途径[J].铁道学报,1996,18(1):21-28.
    [87]侯忠生,韩志刚.改进的非线性系统最小二乘算法[J].控制理论与应用,1994,11(3):271-276.
    [88]侯忠生,于百胜,黄文虎.非线性系统参数估计的投影算法[J].哈尔滨工业大学学报,2000,32(2):25-28.
    [89]贾利民,张建华,张锡第,等.高速铁路运行控制的现状与展望[J].中国铁道科学,1996,17(4):95-100.
    [90]贾利民.列车运行过程的智能控制[J].中国铁道科学,1992,(1):65-78.
    [91]蒋兆远.列车优化操纵指导装置(上)[J].内燃机车,1995a,4:1-11.
    [92]蒋兆远.列车优化操纵指导装置(下)[J].内燃机车,1995b,5:1-4,27.
    [93]金炜东,王自力,李崇维,等.列车节能操纵优化方法研究[J].铁道学报,1997,19(6):58-62.
    [94]金炜东,靳蕃,李崇维,等.列车优化操纵速度模式曲线生成的智能计算研究[J].铁道学报,1998a,20(5):47-52.
    [95]金炜东.满意优化问题与列车操纵优化方法研究[D].西南交通大学博士学位论文,1998b.
    [96]李波,王自力.基于实数遗传算法的列车优化操纵曲线研究[J].铁道机车车辆,2007,27(增1):97-101.
    [97]李波,王自力.遗传算法在列车优化操纵曲线方面的应用[J].内燃机车,2008,3:5-10.
    [98]李庆扬,王能超,易大义.数值分析[M].北京:清华大学出版社,2008.
    [99]李现勇.Visual C++串口通信技术与工程实践[M].北京:人民邮电出版社,2002.
    [100]列尔涅尔.控制论基础[M].北京:科学出版社,1980.
    [101]刘海东,袁振洲.移动自动闭塞仿真系统列车追踪过程的探讨[J].交通与计算机,1999,17(1):46-48.
    [102]刘海东,陈绍宽,褚琴,等.具有固定运行时分的列车运行控制系统研究[J].北方交通大学学报,2002,26(5):24-27.
    [103]刘海东,毛保华,丁勇,等.列车自动驾驶仿真系统算法及其实施研究[J].系统仿真学报,2005a,17(3):577-580.
    [104]刘海东,毛保华,何天健,等.不同闭塞方式下城轨列车追踪运行过程及其仿真研究[J].铁道学报,2005b,27(2):120-125.
    [105]刘海东,毛保华,丁勇等.城市轨道交通列车节能问题及方案研究[M].交通运输系统工:程与信息,2007,7(5):68-73.
    [106]刘锡田.列车经济操纵方案的研究[D].北方交通大学硕士学位论文,1987.
    [107]刘云.列车运行仿真系统的建模与实现[J].铁道学报,1995,17(专辑):20-26.
    [108]毛保华.铁路列车运行模拟与评价系统[R].北京:北方交通大学,1999.
    [109]毛保华,何天键,袁振洲,等.通用列车运行模拟软件系统研究[J].铁道学报,2000,22(1):1-6.
    [110]毛节铭,王海鹰.列车优化操纵计算机辅助系统[M].西南交通大学学报,1995,30(3):317-322.
    [111]饶忠,谢让皋,戴明森等.列车牵引计算[M].北京:中国铁道出版社,1995.
    [112]石红国,彭其渊,郭寒英.城市轨道交通牵引计算算法[J].交通运输工程学报,2004,4(3):30-33.
    [113]石红国,彭其渊,郭寒英.城市轨道交通牵引计算模型[J].交通运输工程学报,2005,5(4):20-26.
    [114]石红国.列车运行过程仿真及优化研究[D].成都:西南交通大学博士学位论文,2006.
    [115]宋瑞.智能铁路系统行车制理论及通过能力的研究[D].成都:西南交通大学博士学位论文,1997.
    [116]铁道部.列车牵引计算规程[M].北京:中国铁道出版社,1998.
    [117]铁道部科技司.减轻重载列车与线路相互作用及操纵优化[R].中国铁路,1997,6:41-42.
    [118]王峰,刘海东,丁勇,等.列车节能运行的算法及实施技术研究[J].北方交通大学学报,2002,26(5):13-18.
    [119]王峰.列车节能运行分析与优化研究[D].北方交通大学硕士学位论文,2003.
    [120]王康宁.最优控制的数学理论[M].北京:国防工业出版社,1995.
    [121]王凌,李令莱,郑大钟.非线性系统参数估计的一类有效搜索策略[J].自动化学报,2003,29(6):953-958.
    [122]王齐荣,马炜,邓域才.列车运行数字仿真及其在数字标准化建模中的应用[J].西南交通大学学报,1996,31(1):75-80
    [123]王文正,欧文,韩崇昭.线性系统参数估计的改进凸多面锥法[J].西安交通大学学报,1998,32(10):5-8.
    [124]王自力.列车节能运行优化操纵的研究[J].西南交通大学学报,1994,29(3):275-280.
    [125]吴洋,罗霞.中国铁道科学[J].中国铁道科学,2005,26(6):113-118.
    [126]徐强,孙永胜,韩长虎.列车节能运行第三论断[J].内燃机车,2008,4:34-37.
    [127]薛艳冰,马大炜.列车牵引能耗计算方法[J].中国铁道科学,2007,5:84-87.
    [128]杨志刚.LKJ2000型列车运行监控记录装置[M].北京:中国铁道出版社,2003.
    [129]赵爱菊.机车优化操纵的微机指导系统[J].铁道学报,1990,12(1):1-9.
    [130]赵中旺.列车节能运行的计算机模拟[J].石家庄铁道学院学报,1992,(3):1-5.
    [131]郑南宁,贾新春,袁泽剑.控制科学与技术的发展及其思考[J].自动化学报,2002,28(1):7-17.
    [132]朱金陵,李会超,王青元,等.列车节能控制的优化分析[J].中国铁道科学,2008,29(2):104-108.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700