非自治的非线性Schr(?)dinger方程Dirichlet边值问题
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要利用Hamiltonian系统中经典的KAM理论,对非自治的非线性Schr(?)dinger方程的Dirichlet边值问题进行了较为深入的研究.文中通过适当的变换u=εv(0<ε<<1),有效地处理了方程中出现的小除数问题,建立了非自治的非线性Schr(?)dinger方程的Hamiltonian函数,给出了该方程的Birkhoff标准形式及相应的Cantor流形定理,较好的解决了非自治的非线性Schr(?)dinger方程的狄氏边值问题.
Schrodinger Equtions is a classics of partial differential equations.We achieve many scientific result for study of its quantity theoty.But when we looking for the quasi-periodic solutions of d-dimension partial differential equation(d> 2),we have to meet a small divison problems. The Hamiltonian systems and KAM theory is a very powerful tool to deal with the problems. The classical KAM theory is concerned with the existence of invariant tori (thus quasi-periodic solutions) for nearly integrable Hamiltonian systems. In order to obtain the quasi-periodic solutions of a partial differential equation, one may show the existence of the lower(finite) dimensional invariant tori for the infinite dimensional Hamiltonian systems defined by the partial differential equation.
     The paper research the Dirichlet boundary value problem for nonlinear schrodinger equtions of nonautonomous the followingwhere nonlinear function f is required to be real analytic and nondegenerate in some neighbourhood of the origin in C.
     Thus equation (1) is expressed the following form
     We use the transformation u =εv(0 <ε<< 1) and desert the higher order term of v,the equation (2) is expressed the following form
     After that, To research the dirichlet boundary value problem for (1) change to looking for the quasi-periodic solution of problem (4).
     The frist, the equation (3) is replaced by the equation (5)
     Step 2, We gived the Hamiltonian function (6) of the equation (5) where A
     Step 3, We obtain the Birkhoff normal form for the Hamiltonian function (6) is expressed the following3.4.
     Lemma 3.4 For the Hamiltonian H =εG with nonlinearity ,there exists a real analytic symplectic change of coordinates F in a neighbourhood of the origin in l~(a,p) that for all real values of m takes it into its Birkhoff normal form up to order four. That iswhere m determinid coefficients
     Step 4, We established the Cantor manifold theorem .
     For the existence ofεthe following assumptions are made.
     (1) Nondegeneracy.The normal form A + Q' is nondegeneracy in the sense thatwhere
     (2) Spectral Asymptotics.There exist d≥1,δ< d - 1,such thatwhere the dots stand for terms of order less than d in j.
     (3) Regularity.where A(l~(a,p), l~(a,p)) denotes the class of all maps from some neighbourhood of the origin in l~(a,p) into l~(a,p). which are real analytic in the real and imaginary parts of the complex coordinate q.
     Theorem3.2(Cantor manifold theorem) Suppose the HamiltonianH = A + Q' + R satisfies assumptions(1)-(3), andwith g > ,Δ= min(p - p, 1). Then there exist a Cantor manifoldεof real analytic,elliptic diophantine n-tori given by a Lipschitz continuous embedding ,where C has full density at the origin,and (?) is close to the inclusion map (?)_0
     Consequently,εis tangent to E at the origin .
     Finally,We obtain the important conclusion of the paper by using the Lemma 3.4 and Cantor manifold theorem
     Theorem3.1 Suppose the nonlinearity f is real analytic and nonde-gence,Then for all m∈M, n∈N, and all J = {j_1 <…< j_n} (?) N, there exist a Cantor manifoldε_J of real analytic,linearly stable, diophantine-n tori for the equation (1) given by a Lipschitz continuous embedding .which is a higher order perturbation of the inclusion map restricted to T_J[C].The Cantor set C has full density at the origin, whenceε_J has a tangent space at the origin equal to E_J. Moreover,ε_J is contained in the space of analytic functions on [0,π].
引文
[1] R.F.Bikbaev and A.R.Its,Algebor-geometric solutions of a boundary value problem for the nonlinear Schrodinger equation,Mat.Zametki 45 (1989),373-381.
    [2] X.Yuan, Quasi-periodic solutions of nonlinear Schrodinger equations of higher dimensions,J.Differ.Eqs. 195(2003),230-242.
    [3] R.F.Bikbaev and S.V.Kuksin A periodic boundary value problem for the sine-Gordon equation,small Hamiltonian perturbations of it,and KAM-deformations of finite gantori,Algebra and Analysis 4(1992) ;English transl.in St.Petersburg Math.J.4(1993),439-468.
    [4] H.Federer,Geometric measure theory,grundlehren 153,Springer,Heidelberg, 1969.
    [5] Z.Liang,J.You,Quasiperiodic solutions for 1D Schrodinger equation with higher order nonlinearity,in press,SIAM,J.Math.Anal.(2005).
    [6] A.I.Bobenko and S.B.Kuksin,The nonlinear Klein-Gordon equation on an interval as a perturbed sine-Gordon equation,Comm.Math.Helv.70(1995), 63-112.
    [7] V.I.Arnold,Proof of a theorem by A.N.Kolmogorov on the invariance of quasiperiodic motions under small perturbition of the Hamilto-nian,Russ.Math.Surveys 18(1963),9-36.
    [8]W.Craig and C.E.Wayne,Newton's method and periodic solutions of nonlinear wave equations,Commun.Pure Appl.Math.46 (1993), 1409-1498.
    [9]A,N,Kolmogorov,On the conservation of conditionally periodic motions for a small change in Hamilton's function, Dokl.Akad. Nauk SSSR 98(1954),527-530[Rnssian].English translation in Lecture Notes in Physics 93, Springer, 1979.
    [10]S.B.Kuksin,Hamiltonian perturbations of infinite-dimensional linear systems with an imaginary spectrum, Funts.Anal.Prilozh.21(1987),22-37;English transl.in Funct.Anal.Appl.21(1987),192-205.
    [11]C.E.Wayne,Periodic and quasi-periodic solutions for nonlinear wave equations via KAM theory, Comm.Math.Phys.,127(1990),479-528.
    [12]T.Nishida.A note on a theorem of Nirenberg,J.Diff.Geom.12(1977),629-633.
    [13]S.B.Kuksin,Nearly integrable infinite dimensional Hamiltonian systems,Lecture Notes in Math.1556,Berlin:Springer,1993.
    [14]H.Ito,Convergence of Birkhoff normal forms for integrable systems,Comm.Math.Helvetici 64(1989),412-461.
    [15]J.Poschel,On elliptic lower-dimensional tori in Hamiltonian systems, Math.Z.202(1989),559-608.
    [16]S.B.Kuksin and J.Poschel,Invariant Cantor manifolds of quasiperiodic oscillations for a nonlinear Schrodinger equation, Ann.of Math.142(1995),149-179.
    [17]S.B.Kuksin,A KAM-theorem for equations of the Korteweg-de Veries type,Rev.Math.Phys. 10(1998),1-64.
    [18]M.Herman, Sur les courbes invariants par les diffeomorphisms de I'anneau,Asterisque 103(1983),1-221.
    [19]T.Kappeler, J. Poschel, Kdv and KAM, Springer, to appear,2003.
    [20]G.L.Siegel and J.K.Moser,Lectures an celestial mechanics,Grundlehren 187,Springer,Berlin, 1971.
    [21]I.M.Sigal,Nonlinear wave and Schrodinger equations I.Instability of periodic and quasiperiodic solutions.Comm.Math.Phys.153(1993),297-320.
    [22]J.Poschel,Quasi-periodic solutions for nonlinear wave equations,Comm. Math.Helv.71 (1996),269-296.
    [23]J.Xu,J.You,Q.Qiu,A KAM theorem of degenerate infinite dimensional Hamiltonian systems(Ⅰ)(Ⅱ),Science in China(Series A)Vol.39 No.4(1996),372-394.
    [24]C.E.Wayne,Periodic and quasi-periodicsolutions of nonlinear wave equations via KAM theory, Comm.Math.Phys. 127(1990),479-528.
    [25]J.Moser,On inveriant curves of area preserving mappings of an annulus, Nachr.Akad.Wiss.Gott.,Math.Phys.Kl. (1962), 1-20.
    [26] J.Bourgain Construction of quasi-periodic solutions for Hamiltonian perturbations of linear equation and applications to nonlinear PDE;Inter.Math.Res. Not.11(1994),475-497.
    
    [27] D.Bernstein,A.Katok,Birkhoff periodic orbits for samll perturbations of completely integrable Hamiltonian systems with conver Hamiltonian, Invent.Math.88(1987),225-241.
    
    [28] D.Bambusi,On Lyapunov center theorem for some nonlinear PDEs:Asimple proof,Ann.Sc.Norm.Sup.Pisa CL.Sci.29(2000),823-837.
    
    [29] D.Bambusi,S.Paleari,Families of periodic solutions of resonant PDEs, J. Nonlinear Sci.,11(2001),69-87.
    
    [30] J.You,Perturbations of lower dimensional tori for Hamiltonian systems, J.Diff.Eq.152(1999),1-29.
    
    [31] J.Geng,J.You,KAM tori of Hamiltonian perturbations of 1D linear beam equations,J.Math.Anal.Appl.277(2003),104-121.
    
    [32] M.B.Sevryuk,The classical KAM theory at the dawn of the twenty-first century,Moscow Math.J,2003.
    
    [33] H.Riissmann,Invariant tori in non-gegenerate nearly integrable Hamiltonian systems,Reg.Chaot.Dynamics 6(2001),119-204.
    [34] F. H.Clarke,Periodic Solutions to Hamiltonian Inclusions, J. Diff. Equa., 40(1981),1-6.
    [35] J.Xu,J.You,Q.Qiu,Invariant tori for nearly integrable Hamiltonian systems with degeneracy,Math.Z.,226(1997),375-387.
    [36] M.Berti,P.Bolle,Multiplicity of periodic solutions of nonlinear wave equa-tions,Nonlinear Analysis 57/7(2004),1011-1046.
    [37] J.Bourgain, On Melnikov's persistncy problem,Math.Res.Lett.4(1997),445-458.
    [38] A.I.Bobenko and S.B.Kuksin,The nonlinear Klein-Gordon equation on an interval as a perturbed sine-Gordon equation,Comm.Math.Helv.70 (1995),63-112.
    
    [39] M.Berti,P.Bolle,Cantor families of periodic solutions for completely resonant nonlinear wave equations,preprint,2004.
    [40] J.Bourgain,Quasi-periodic solutions of Hamiltonian perturbations of 2D linear Schrodinger equations,Annals of Math.l48(1998),363-439.
    [41] J.Bourgain,Green's function estimates for lattice Schrodinger operators and applications,Annals of Math.Studies 158,Princeton Universi ty Press,Princeton,NJ,2005.
    [42] J.Bourgain,Nonlinear Schrodinger equations,Park city series 5,American Math.Soc.(Providence,Rhode Island 1999).
    [43] J.Mawhin, Periodic Solutions of Nonlinear Functional Differential Equations, J. Diff.Equa., 10(1971),240-261.
    [44] J.Bourgain,Construction of quasi-periodic solutions for Hamiltonian perturbations of linear equations and application to nonlinear PDE,International Math.Res.Notices N11(1994),473-497.
    [45] J.Bourgain,Construction of periodic solutions of nonlinear wave equations in higher dimensions,Geom.Funct.Anal.5(1995),629-639.
    [46] Jean Bricmont,Antti Kupiainen,Alain Schenkel,Renormalization Group and the Melnikov Problem for PDE's,Comm.Math.Phys.,221(2001), 101-140.
    [47] H.W.Broer,G.B.Huitema and M.B.Sevyuk,Families of quasi-periodic motions in dynamical systems depending on parameters,In:Non-linear Dynamical Systems and Chaos,eds.H.W.Broer,S.A.van Gils,I.Hovei-jn, F.Takens,Progress Nonlinear Differ.Equa.their Appl.,vol.19, Birkhau-ser,Basel,1996, 171-211.
    [48] J.Poschel Lecture on the classical KAM theorem, School on dynamical systems,May 25-June 5,1992.
    [49] S.B.Kuksin,An infinitesimal Liouville-Arnold theorem as a criterion of re-ducibility for variational Hamiltonian equations,Chaos,Solitons and Fractals 2(1992),259-269.
    [50] H.W.Broer,G.B.Huitema and M.B.Sevyuk, Quasi-periodic motions in families of dynamical systems:Order amidst chaos,Lect.Notes Math.,vol.16 45,Springer -Verlag,Berlin,1996.
    [51] A.D.Bruno,On nondegeneracy conditions in Kolmogorov s theorem,Sov. Math.Dokl.45(1992),221-225.
    [52] J.Vey,Sur certains systemes dynamiques separables,Amer. J.Math. 100(19 78),591-614.
    [53] Juan J. Nieto, Generalized quasilinearization method for a second order ordinary diffenential equation with dirichlet boundary conditions, Proceedings The American Math, Soc, 125(9)(1997), 2599-2604.
    [54] C.Q.Cheng,Birkhoff-Kolmogorov-Arnolf-Moser tori in conver Hamiltonian systems,Comm.Math.Phys.l77(1996),529-559.
    [55] C.Q.Cheng,Lower dimensional invariant tori in the regions of instability for nearly integrable Hamiltonian systems,Comm.Math.Phys.203(1999),385-419.
    [56] J.Colliander,M.Keel,G.Staffilani,H.Takaoka and T.Tao,Global wellposed-ness for Schrodinger equations with derivative,SIAM,J. Math.Anal,33(2 001),649-669.
    [57] J.Colliander,M.Keel,G.Staffilani,H.Takaoka and T.Tao,A refined global well-posedness result for Schrodinger equations with derivative, SIAM,J. Math. Anal.,34(2002),64-86.
    [58] C.Q.Cheng and Y.S.Sun,Existence of KAM tori in degenerate Hamiltonian systems,J.Differ.Equations, 114(1994),288-335.
    [59] C.Q.Cheng and S.L.Wang,The surviving of lower dimensional tori from a resonant torus of Hamiltonian systems,J.Differ.Equations, 155(1999),311-326.
    
    [60] L.Chierchia and J.You,KAM tori for 1D nonlinear wave equations with periodic boundary conditions,Comm.Math.Phys.,211(2000),498-525.
    
    [61] F.Cong,T.Kupper,Y.Li and J.G.You,KAM-type theorem on resonant surfaces for nearly integrable Hamiltonian systems,J.Nonlinear Sci.10(2000), 49-68.
    [62] W.Craig,C.E.Wayne,Periodic solutions of nonlinear Schrodinger equations and the Nash-Moser method,Hamiltonian Mechanics,103-122,NATO Adv.Sci.inst.ser.B.Phys.,331(1994),plenum,NY.
    [63] L.H.Eliasson,Perturbations of stable invariant tori for Hamiltonian systems,Arm.Sc.Norm.Sup.Pisa.,15(1988),115-147.
    [64] J.Geng,J.You,A KAM theorem for one dimensional Schrodinger equation with periodic boundary conditions,J.Diff.Eqs.,209(2005),1-56.
    [65] H.Russmann,Uber das Verhalten Analytischer Hamiltonscher Differen-tialgleichungen in Nahe Gleichgewichtslosung,Math.Ann.154(1964),285-300.
    [66] J.Geng,J.You,A KAM tori of Hamiltonian perturbations of 1D linear beam equations,J.Math.Anal.Appl.277(2003),104-121.
    [67] H.Hofer,E.Zehnder,Symplectic invariant and Hamiltonian dynamics,Birk-hauser, Basel,1994.
    [68] O.Arino,T.A.Burton and J.Hadock,Periodic solutions of functional differential equations.Proc.Roy Soc. Edinburgh,101(1985),253-271.
    [69] Y.Li,Q.D.Zhou and X.R.Lu,Periodic solutions for functional differential inclusions with infinite delay, Science in China,37(1994),1289-1301.
    [70] A.N.Kolmogorov,On the conservation of conditionally periodic motions for a small change in Hamiltonian's function,Dokl Akad.Nauk SSSR 98 (1954),527-530[Russian].English translation in Lecture Notes in Phys.93,Springer,1979.
    [71] Salamon D,Zehnder E.,KAM theory in configuration space, Comment. Math. Helv. 64(1989),39-85.
    [72] S.B.Kuksin Analysis of Hamiltonian PDEs,Oxford University Press,Ox-ford,2000.
    [73] J.Moser,Convergent series expansions for quasi-periodic motions,Math. Ann.l69(1967),136-176.
    [74] J.W.Heidel, A Second-order Nonlinear Boundary Value Problem, J.Math. Anal.Appl.,48(1974),493-503.
    [75] J.You,A KAM theorem for hyperbolic-type degenerate lower dimensional tori in Hamiltonian systems,Comm.Math.Phys.l92(1998),145-168.
    [76] F.Merle,On uniqueness and continuation properties after blow-up time of self similer solutions of nonlinear Schrodinger equation with critical exponent and critical mass,Comm.Pure and Appl.Math.45(1992),203-254.
    [77] M.B.Sevryuk,Invariant tori of Hamiltonian systems nondegenerate in the sense of Russmann,Dokl.Math.53(1996),69-72.
    [78] X. Yuan,Quasi-periodic solutions of completely resonant nonlinear wave equations, Preprint, 2004.
    [79] J.Geng,J.You,A KAM tori for higher dimensional nonlinear beam equations,preprint , 2004.
    [80] J. L.Massera, The Existence of Periodic Solutions of Systems of Differential Equations, Duke Math.J., 1950,17,457-475.
    [81] Y.Katznelson,D.Ornstein,A new method for twist theorem,J.Analy.Math. 60(1993),157-208.
    [82] J.Denzler,Nonpersistence of breather families of the perturbed sine-Gordon equation,Comm.Math.Phys. 158(1993) ,397-430.
    [83] J.Bourgain,Construction of approximative and almost-periodic solutions of perturbed linear Schrodinger and wave equations, Geometric and Functional Analysis,6(1996),201-230.
    [84] D.Bambusi,Birkhoff normal form for some nonlinear PDEs,Comm.Math. Phys.234(2003),253-285.
    [85]M.B.Sevryuk,KAM-stable Hamiltonians,J.Dynam.Control Syst.,1(1995), 351-366.
    [86]M.Berti,P.Bolle,Periodic solutions of nonlinear wave equations with general nonlinearities,Comm.Math.Phys.243 (2003),315-328.
    [87]D.V.Treshchev,A mechanism for the destruction of resonant tori in Hamiltoian systems,Mat.Sb. 180,No. 10,1325-1346(1989) (Russian). [English transl: Math.USSR-Sb.68,No. 1,181-203 (1991)].
    [88]J.Xu,J.You,Persistence of lower-dimensional tori under the first Melnikov's nonresonance conditions,J.Math.Pures Appl.10(2001),1045-1067.
    [89]Z.Liang,J.You,Quasi-periodic solutions for ID nonlinear wave equation. with a general nonlinearity, submitted to J.Diff.Eq.(2004).
    [90]J.Geng,J.You,A KAM theorem for Hamiltonian partial differential equations in higher dimensional spaces,preprint,2005.
    [91]Z.Liang,J.Geng,Quasi-periodic solutions for 1D resonant beam equations, submitted to Nonlinear Analysis,TMA,(2004).
    [92]J.Poschel,A KAM-theorem for some nonlinear partial differential equations, Ann. Sc. Norm. Sup. Pisa, CI. Sci., 23 (1996), 119-148.
    [93]X.Yuan,A KAM theorem with applications to partial differential equations of higher dimension,Preprint,2006.
    [94]L.H.Eliasson and S.B.Kuksin,KAM for the non-linear Schrodinger equation,Preprint,April 1,2006,

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700