孤子方程族的可积耦合系统和分数阶Hamiltonian结构
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究的主要内容包括:运用李代数,首先给出一些方程族的可积耦合系统的构造模式,并且给出了非等谱情形的离散可积耦合系统。进而讨论了连续和离散方程族的零曲率表示的李代数结构。另外,还介绍了孤子族的生成及Hamiltonian结构,Liouville可积性。最后利用分数阶微积分给出了孤子方程的分数阶Hamiltonian结构。其具体内容为:
     第一章介绍了孤立子理论,可积系统,非线性发展方程精确求解,分数阶微积分的历史发展及研究现状,同时介绍了国内外学者在这方面取得的成果。
     第二章简要的介绍了Kac-Moody代数,Hamiltonian函数的概念及相关的性质。详细的阐述和介绍了AC=BD理论中的一些相关的定理和性质及其在这个框架下的一些重要应用。
     第三章首先从新的谱问题出发导出一族矩阵Lax可积方程族,并获得它的Hamiltonian结构。另外从Lax对出发,采用提出的谱扩张方法得到了许多新的可积耦合方程族,在此基础上,把这种方法推广到高维空间,并获得了一系列的多分量可积耦合方程族。但是利用这种方法不能得到可积耦合方程族的Hamiltonian结构(尤其是多分量可积耦合方程族的Hamiltonian结构),针对此问题,文中给出广义的killing内积,并且运用广义的二次迹恒等式获得了多分量耦合系统的Hamiltonian结构。其中给出了多分量Jaulent-Miodek方程族,多分量2+1维GJ方程族和耦合Dirac方程族的Hamiltonian结构。另外利用一个广义的矩阵谱问题,得到了耦合方程族的R-矩阵。其中以AKNS族为例,得到了耦合AKNS方程族的R-矩阵。
     第四章从loop代数(?)_1的一个子代数出发,利用屠格式求出了一类离散情形Lax可积耦合的系统,并且得到非等谱的离散可积方程族和耦合系统,另外我们还提出了2+1维非等谱离散可积耦合形式,利用谱参数λ满足的非等谱条件,得到了Blaszak-Marciniak晶格方程的耦合系统。国际著名杂志《Physics Letters A》的编委A.R.Bishop对此种方法给出了很好的评价“The method gives two kinds of classification to a soliton equation,itis an interesting and important work”。另外,进一步考虑了离散系统Darboux变换。最后讨论了离散可积方程与连续可积方程的联系,通常人们采用的是对势函数作变换,而文中采用对算子作变换,利用计算机软件通过比较算子的系数,得到了很好的结果,并且把一个新的离散方程转化成AKNS方程。这样做不仅可以建立离散与连续方程之间的关系,更重要的是可以通过连续型方程的精确解(解析解)获得相应的离散方程的数值解,这样就可以得到更多,更好的数值解。
     第五章在整数情形可积系统的基础上,进一步考虑分数形的Hamiltonian结构,文中运用了外微分与分数阶微积分结合,给出了分数空间和分数形式的Hamiltonian形式。在这里主要考虑要把整数情形的结论发展到分数情形,建立一套分数阶Hamiltonian结构和可积系统。我们已经完成了分数阶零曲率方程的构造,得到了分数阶情形的AKNS方程和C-KdV方程,并且给出了它们简单形式的Hamiltonian函数。另外利用Riemann-Liouville分数阶算子和分数形式的Possion括号,把Hamiltonian结构的辛形式推广到分数阶情形。
The major contents in this dissertation include: the generation of soliton hierarchies ofequation and the structure equations of Lie algebra, Hamiltonian structures, Liouville integra-bility and integrable coupling system, some isospectral and nonisospectral siliton equations arestudied in 2+1 dimensions. Finally, the fractional Hamiltonian structures of soliton equationare worked out by using of the nonlinear fractional differential operators.
     Chapter 1 is devoted to reviewing the history and development of the soliton theory, inte-grable system, solving nonlinear evolution equations and fractional calculous, with an emphasison some achievements on the subjects involved in this dissertation are presented at home andabroad.
     Chapter 2 introduces Kac-Moody algebra, some basic notations and properties on Hamil-tonian function, basic theories on AC=BD as well as the construction of exact solutions ofnonlinear evolution equation(s) under the instruction of this theory.
     Chapter 3 first presents a matrix Lax integrable equation hierarchy by using of new matrixspectral problem, then obtains its Hamiltonian structure. According to the Lax pair, somenew integrable coupling equation hierarchies are worked out by using of the enlarged spectralproblem. This way is used to high dimensions space and obtain a few of multi-componentintegrable coupling equation hierarchies. The generalized killing inner product is presented,the Hamiltonian structure of multi-component integrable coupling system is solved by using ofgeneralized quadratic-form identity. The Hamiltonian structures of multi-component Jaulent-Miodeck equation hierarchy, multi-component 2+1 dimensional GJ equation hierarchy and thecoupling Dirac equation hierarchy are considered. The R-matrix of coupling equation hierarchy isobtained through a generalized matrix spectral problem. For example, the R-matrix of couplingAKNS equation hierarchy is given.
     Chapter 4 investigates the discrete nonisospectral problem. First, basing on loop algebraA1, a new sub-algebra is presented. The isospectral and nonisospectral Lax integrable couplingequation hierarchies are worked out. Second, the 2+1-dimension nonisospectral integrable cou-pling model is presented, the nonisospectral integrable coupling system of Blaszak-Marciniaklattice hierarchy is obtained under the nonisospectral condition of spectral parameterλ. TheA.R. Bishop Editor-in-Chief of《Physics Letters A》appraised that " The method gives twokinds of classification to a soliton equation, it is an interesting and important work ". Darbouxtransformation is considered. Last, the relation between the discrete soliton equation and the AKNS soliton equation hierarchy is given through the transform of potential functions.
     Chapter 5, the fractional Hamiltonian structure of soliton equation is considered. Thefractional zero curvature equation is constructed by using of fractional differential formula, andobtain the fractional AKNS and fractional C-KdV equation by making use of the fractional zerocurvature equation, then their Hamiltonian structures are worked out. The fractional Poissonbracket is defined, a Hamiltonian system of fractional form is presented.
引文
[1] Russell J S. Report on waves, Fourteen meeting of the British association for the advancement of science, John Murray, London, 1844, 311-390.
    [2] Boussinesq J. Theorie des ondes et de remous qui se propagent. J. Math. Pure Appl. 1972, 17: 55-108.
    [3] Korteweg D J, deVries G. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. Phil. Mag. 1895; 39: 422-433.
    [4] Fermi A, Pasta J, Ulam. I. Studies of Nonlinear Problems. Los Alamos Rep. LA, 1940, 1955.
    [5] Perring J K, Skyrme T H R. A model unified field equation. Nucl. Phys. 1962, 31: 550-555.
    [6] Zabusky N J, Krnskal M D. Interaction of solitons in a collisionless plasma and the recurrence of initial states. Phys. Rev. Lett. 1965, 15: 240-243.
    [7] Ablowitz M J, Segur H. Solitons and the inverse scattering transformation. Philadelphia: SIAM, 1981.
    [8] Ablowitz M J, Clarkson P A. Solitons, nonlinear evolution equations and inverse scattering. Cambridge: Cambridge University Press, 1991.
    [9] Newell A C. Soliton in mathematics and physics. Philadelphia: SIAM, 1985.
    [10] Faddeev L D, Takhtajan L A. Hamiltonian method in the theory of solitons. Berlin: Springer-Verlag, 1987.
    [11] Matveev V B, Salle M A. Darboux transformation and Solitons. Berlin: Springer, 1991.
    [12] 郭柏灵,庞小峰.孤立子.北京:科学出版社,1987.
    [13] 谷超豪等.孤立子理论与应用.杭州:浙江科技出版社,1990.
    [14] 谷超豪等.孤立子理论中的Darboux变换及其几何应用.上海:上海科技出版社,1999.
    [15] 李翊神.孤子与可积系统.上海:上海科技出版社,1999.
    [16] Hirota R. The direct method in soliton theory. New York: Cambridge University Press, 2004.
    [17] Jacobi C. Vorlesumgem uber Dynamik, Gesammelte, Werke, Supphementbasand. Berlin, 1884.
    [18] Neumann C. De Problemate quodam mechanico, quod and primam integralium ultraellipticorum classem rcvocatur. J.Reine Angew. Math. 1859, 56: 46-63.
    [19] Kovalcvski S. Sur le Probleme de la rotation dun corps solide autour dun point fixe. Acta. Math. 1889, 12: 177-232.
    [20] Kovalevski S. Sur une porprietedu systeme dequations differentielles qui defunit la rotation dun corps solide autor dun point fixe. Acta. Math. 1889, 14:81-93.
    [21] Brun E H. Acta. Math. 1887, 11:25.
    [22] Arnold V I, Novikov S P. Dynamical System Ⅳ. Berlin: Springer, 1990.
    [23] Arnold V I. Mathematical methods of classical mechanics. Berlin: Springer, 1978.
    [24] Magri F. A simple model of the integrable Hamiltonian equation. J.Math.Phys., 1978, 19(5):1156-1162.
    [25] Vinogradov A M. Hamilton structures in the field theory. Soy. Math. Dokl., 1978, 19:790-794.
    [26] Olver P J. Application of Lie Groups to Differential Equation. New York: Spring, 1993.
    [27] Arnold V I. Encyclopaedia of Mathematical Sciences, Dynamical Systems Ⅲ. Heidelberg: Springer-Verlag,1988.
    [28] Sattinger D H, Weaver O L. Lie Groups and Algebras with Applications to Physics, Geometry and Mechanics. New York:Springer-Verlag, 1986.
    [29] Babelin O, Cartier P, Kosmann S Y. Lectures on Intcgrable System. Singapore: World Scientific, 1994.
    [30] 曹策问.保谱发展方程的换位表示.中国科学,1989,32:701-709.
    [31] 屠规彰.一族新的可积系及其Hamilton结构.中国科学,1988,12:1243-1252.
    [32] Tu G Z. The trace identity, a powerful tool for constructing the Hamiltonian structure of integrable systems. J. Math. Phys. 1989, 30: 330-338.
    [33] TU G Z. A trace identity and its applications to the theory of discrete integrable systems. J. Phys. A. 1990, 23: 3903-3922.
    [34] Ma W X. Enlarging spectral problems to construct integrable couplings of soliton equations. Phys. Lett. A. 2003, 316: 72-76.
    [35] Ma W X. Integrable couplings of vector AKNS soliton equations. J. Math. Phys. 2005, 46: 033507.
    [36] Hu X B. A powerful approach to generate new integrable systems. J. Phys. A. 1994, 27: 2497-2514.
    [37] 范恩贵.可积系统与计算机代数.科学出版社,2004.
    [38] Santini P M, Fokas A S. Recursion Operators and Bi-Hamiltonian Structures in Multidimcnsions. I. Commun. Math. Phys. 1988, 115: 375-419.
    [39] Fokas A S, Santini P M. Recnrsion Operators and Bi-Hamiltonian Structures in Multidimensions. Ⅱ. Commun. Math. Phys. 1988, 116:449-474.
    [40] 张大军.离散孤子方程的Hamilton结构,守恒律及mKdV-sineGordon方程的孤子解:(博士学位论文).上海:上海大学,2002.
    [41] Wadati M K, Sanuki H and Konno K. Relationships among inverse method, Backlund transformation and an infinite number of conservation laws. Progr. Theoret. Phys. 1975, 53: 419-436.
    [42] Konno K, Wadati M K. Simple derivation of Backlund transformation from Riccati form of inverse method. Progr. Theoret. Phys. 1975, 53:1652-1656.
    [43] Zhang D J, Chen D Y. Hamiltonian structure of discrete soliton systems. J. Phys. A. 2002, 35(33): 7225-7241.
    [44] Zhn Z N, Wu X N and Xue W M. Infinitely many conservation laws for the Blaszak-Marciniak four-field integrable lattice hierarchy. Phys. Lett. A. 2002, 296(6): 280-288.
    [45] 曹策问.AKNS族的Lax组的非线性化.中国科学,1989,7:691-698.
    [46] Cao C W, Geng X G. Neumann and Bargmann systems associated with the coupled KdV soliton hierarchy. J. Phys. A. 1990, 23(18): 4117-4125.
    [47] 曹策问,耿献国.Bargmann系统与HD耦合方程解的对合表示.数学学报,1992,35:314-322.
    [48] Zhu Z N, Xue W M, Wu X N. Infinitely many conservation laws and integrablc discretizations for some lattice soliton equations. J. Phys. A. 2002, 35(24): 5079-5091.
    [49] Zeng Y B, Li Y S. New symplectic maps: integrability and Lax representation. A Chinese summary appears. Chinese Ann. Math. Ser. B. 1997, 18(4): 457-466.
    [50] Li Y S, Ma W X. Binary nonlinearization of AKNS spectral problem under higher-order symmetry constraints. Chaos Solitons Fractals. 2000, 11(5): 697-710.
    [51] Li Y S, Zhu G C. New set of symmetries of the integrable equations, Lie algebra and nonisospectral evolution equations. Ⅱ. AKNS system. J. Phys. A. 1986, 19(18): 3713-3725.
    [52] Zeng Y B, Ma W X. Families of quasi-bi-Hamiltonian systems and separability. J. Math. Phys. 1999, 40(9): 4452-4473.
    [53] Ma W X, Strampp W. An explicit symmetry constraint for the Lax pairs and the adjoint Lax pairs of AKNS systems. Phys. Lett. A. 1994, 185: 277-286.
    [54] Ma W X, Zhou R G. Adjoint symmetry constraints of multicomponent AKNS equations. Chinese Ann. Math. Ser. B. 2002, 23: 373-384.
    [55] Ma W X, Zhou R G. Adjoint symmetry constraints leading to binary nonlinearization. Recent advances in integrable systems. J. Nonlinear Math. Phys. 2002, 9(suppl): 106-126.
    [56] Ma W X, Zhou Z X. Binary symmetry constraints of N-wave interaction equations in 1+1 and 2+1 dimensions. J. Math. Phys. 2001, 42: 4345-4382.
    [57] Li Y S, Ma W X. A nonconfocal involutive system and constrained flows associated with the MKdV equation. J. Math. Phys. 2002, 43(10): 4950-4962.
    [58] Cheng Y. Constraints of the Kadomtsev-Petviashvili hierarchy. J. Math. Phys. 1992, 33(11): 3774-3782.
    [59] Cheng Y, Zhang Y J. Bilinear equations for the constrained KP hierarchy. Inverse Problems. 1994, 10(2) L11-L17.
    [60] Chcng Y, Li Y S. Constraints of the (2+1)-dimensional integrable soliton systems. J. Phys. A. 1992, 25(2): 419-431.
    [61] 陈登远,朱宁生,朱敏.KP系统的对称约束.数学物理学报,1996,16:48-52.
    [62] Chcn D Y, Zeng Y B. The transformation operator of nonlinear evolution equations. Chinese Ann. Math. Ser. B 1985, 6(1) 129-130.
    [63] 陈登远,曾云波.非线性发展方程的转换算子.数学学报,1985,28:161-173.
    [64] 陈登远,李翊神,曾云波.Backlund变换递推算子之间的转换算子.中国科学,1985,28:907-922.
    [65] Backlund A V. Lund Universitets Arsskrift 1885, 10.
    [66] Darboux G. Compts Rendus Hebdomadaircs des Seances de l'Academie des Sciences. Pairs, 1882, 94: 1456-1459.
    [67] Lie S. Uber die integration durch bestimmte integrale von einer klasse linear partieller differential-gleichung. Arch for Math. 1881, 6: 328-368; Gesamm elts Abhandlungcn, Vol. Ⅲ, Tcubner B. G., Leipzig, 1922, 492-523.
    [68] Lie S. Classification and Integration on gewohnlichen Differentialgleichungen zwischenxy, die eine Gruppe yon Transformationen gestatten: Die nachstchende Arbcit crschien zum ersten Male im Fruhling 1883 im norwegischen Archiv. Math. Ann. 1908, 32: 213-281.
    [69] Bluman G W, Cole J D. The general similarity solution of the heat equation. J. Math. Mech. 1969, 18: 1025-1042.
    [70] Bluman G W, Cole J D. Similarity method for differential equation. Appl. Math. Sci. No.13, New York: Springcr-Berlag, 1974.
    [71] Olvcr P J. Evolution equations possessing infinitely many symmetries. J. Math. Phys. 1977, 18: 1212-1215.
    [72] Olver P J. On the Hamiltonian structure of evolution equations. Math. Proc. Camb. Phill Soc. 1980, 88: 71-88.
    [73] Bluman G W, Cole J D. The general similarity solution of the heat equation. J.Math.Mech. 1969,18: 1025-1042.
    [74] Gardner C S et al. Method for solving the Korteweg-deVries equation. Phys. Rev. Lett. 1967, 19: 1095-1097.
    [75] Lax P D. Integrals of nonlinear equations of evolution and solitary waves. Commun. Pure Appl. Math. 1968, 21: 467-490.
    [76] Hu X B. Rational solutions of integrable equations via nonlinear superposition formulae. J. Phys. A: Math. Gen. 1997, 30: 8225-8240.
    [77] Hu X B, Zhu Z N. Some new results on the Blaszak Marciniak lattice: Backlund transformation and nonlinear supcrposition formula. J. Math. Phys. 1998, 39: 4766-4772.
    [78] Boiti M et al. On the spectral transform of a Kortewcg-de Vries equation in two spatial dimensions. Inv. Probl. 1986, 2: 271-280.
    [79] Roscnau P, Hyman M. Compactons: Solitons with finite wavelength. Phys. Rev. Lett. 1993, 70: 564-567.
    [80] 张鸿庆.弹性力学方程组一般解的统一理论.大连理工大学学报,1978,18:23-47.
    [81] 张鸿庆,王震宇.胡海昌解的完备性和逼近性.科学通报,1986,30:342-344.
    [82] 张鸿庆,吴方向.一类偏微分方程组的一般解及其在壳体理论中的应用.力学学报,1992,24:700-707.
    [83] 张鸿庆,冯红.构造弹性力学位移函数的机械化算法.应用数学和力学,1995,16:315-322.
    [84] 张鸿庆.偏微分方程组的一般解与完备性.现代数学与力学.1991,Ⅳ.
    [85] Zhang H Q, Chen Y F. Proceeding of the 3rd ACM, Lanzhou University Press, 1998, 147.
    [86] Zhang H Q. C-D integrable system and computer aided solver for differential equations. Proceeding of the 5rd ACM, World Scientific Press, 2001, 221-226.
    [87] Ross B. The Fractional Calculus and Its Application. Lecture Notes in Mathematics(457). Berlin: Springcr-Verlag, 1975.
    [88] Spanier J, Oldham K B. The Fractional Calculus: Integrations and Differentiations of Arbitrary Order. New York: Academic Press, 1974.
    [89] 叶其孝等译.索伯列夫空间.北京:人民教育出版社,1981
    [90] Lions J L, Magencs E. Non-Homogeneous Boundary Value Problems and Applicatious. New York: Springer-verlag, 1970.
    [91] Ricwe F. Nonconservative Lagraugian and Hamiltonian mechanics. Phys. Rev. E, 1996, 53: 1890- 1899.
    [92] Goldstein H. Classical Mechanics. Addison-Wesley, Reading, MA, 1950.
    [93] Vujanovic B D, Jones S E. Variational Methods in Nonconservative Phenomena. San Diego: Academic, 1989.
    
    [94] Morse P M, Feshbach H. Methods of Theoretical Physics. New York: McGraw-Hill, 1953.
    [95] Ford G W, Lewis J T, O'Connell R F. Quantum Langevin equation. Phys. Rev. A, 1988, 37: 4419-4428.
    
    [96] Riewe F. Mechanics with Fractional derivatives. Phys. Rev. E, 1997, 55: 3581-3592.
    [97] Agrawal O P, Gregory J, PericakSpector K. A Bliss-type multiplier rule for constrained variational problems with time delay. J. Math. Ann. Appl. 1997, 210: 702-711.
    
    [98] Laskin N. Fractional quantum mechanics and Levy path integrals. Phys. Lett. A 2000, 268: 298-305.
    [99] Agrawal O P. Formulation of Euler-Lagrange equations for fractional variational problems. J. Math. Anal. Appl. 2002, 272: 368-379.
    [100] Eqab M R, Tarbeq S A. Potential of arbitrary forces with fractional derivatives. International Journal of Modern Physics A, 2004, 19: 3083-3092.
    [101] Muslih S I, Baleanu D. Formulation of Hamiltonian equations for fractional variational problems. Czech. J. Phys. 2005, 55: 633-642.
    [102] Muslih S I, Baleanu D, Rabei E. Hamiltonian formulation of classical fields within Riemann- Liouville fractional derivatives. Phys. Scr. 2006, 73: 436-438.
    [103] Carpinteri A, Mainardi F. Fractals and Fractional Calculus in Continuum Mechanics. New York: Springer-Verlag, 1997.
    [104] Nigmatullin R R. The realization of the generalized transfer equation in a medium with fractal geometry. Phys. Slat. Sol. (B), 1986, 133: 425-430.
    [105] Rocco A, West B J. Fractional calculus and the evolution of fractal phenomena. Phys. A, 1999, 265(3): 535-546.
    
    [106] Ren F Y, Liang J R. Wang X T. The determination of the diffusion kernel on fractals and fractional diffusion equation for transport phenomena in random media. Phys. Lett. A, 1999, 252(3): 141-150.
    
    [107] Kolwankar K M. Fractas and differential equations of fractional order. J. Indian Inst. Sci., 1998, 78(4): 275-291.
    [108] Nonnenmacher T F, Metzler R. On the Riemann-Liouville fractional calculus and some recent applications. Fractals, 1995, 3(3): 557-566.
    
    [109] Friendvich C. Relaxation function of rheological constitutive equations with fractional derivatives: Thermodynamical constraints. In: Rheological Modelling: Thermodynamic and Statistical Approaches. Casas-vasque J and Jou D, Berlin: Springer, 1991, 320-330.
    [110] Schiessel H, Blumen A. Hierarchical analogues to fractional relaxation equations. J. Phys. A: Math. Gen. 1993, 26: 5057-5069.
    
    [111] Ovidiu V M et al. Universality classes for asymptotic behavior of relaxation processes in systems with dynamical disorder: Dynamical generalizations of stretched exponential. J. Math. Phys. 1996, 37(5): 2279-2306.
    [112] Mainardi F. Fractional relaxation-oscillation and fractional diffusion-wave phenomena. Chaos, Solitons & Fractals, 1996, 7: 1461-1477.
    [113] Schneider W R, Wyss W. Fractional diffusion and wave equations. J. Math. Phys. 1989, 30: 134-144.
    [114] Wyss W. Fractional diffusion equation. J. Math. Phys. 1986, 27(11): 2782-2785.
    [115] Hiller R. Fractional diffusion based on Riemann-Liouville fractional derivatives. J. Phys. Chem. B, 2000. 104: 3914-3917.
    [116] Matzler R, Barkai E, Klafter J. Anomalous diffusion and relaxation close to thermal equilibrium: A fractional Fokker-Planck equatin approach. Phys. Rev. Lett. 1999, 82(18): 3563-3567.
    [117] Glocke W G, Nonenmacher T F. A fractional calculus approach to self-similar protein dynamics. Biophysical Journal, 1995, 68: 46-53.
    [118] 徐明瑜,谭文长.半规管内流体动力学问题.中国科学(A辑),2000,30(3):272-280.
    [119] Kopf Met al. Anomalous diffusion behavior of water in biological tissues. Biophysical Journal, 1996, 70(6): 2950-2958.
    [120] Srinivas G, Yethiraj A, Bagchi B. Nonexponentiality of time dependent survivial probability and the fractional viscosity dependence of the rate in diffusion controlled reactions in a polymer chain. J. Chem. Phys. 2001, 114(20): 9170-9179.
    [121] 徐明瑜,谭文长.广义二阶流体分数阶反常扩散速度场、应力场及涡旋层的理论分析.中国科学(A辑),2001,31(7):626-638.
    [122] Fannjiang A, Komorowski T. Fractional Brownian motions and enhanced diffusion in a unidirectional wave-like turbulence. J. Stat. Phys. 2000, 100(5): 1071-1095.
    [123] Barkai E, Silbey R J. Fractional Kramers equation. J. Phys. Chem. B, 2000, 104: 3866-3874.
    [124] Nonenmacher T F. Fractioanl integral and differential for a class of Leuy-type probalility densities. J. Phys. A: Math. Gen. 1990, 23: 697-699.
    [125] Metzler R, Klaffer J. The random walk's guide to anomalous difusion: a fractional dynamics approach. Phys. Rep. 2000, 339(1): 1-52.
    [126] Uchaikin V V. Montroll-Wciss problem, fractional equations and stable distributions. I. J. Theor. Phys. 2000, 39(8): 2087-2105.
    [127] Shlesingcr M F. Williams-Watts dielectric relaxation: A fractal time stochastic process. J. Star. Phys. 1984, 36(5): 639-648.
    [128] Glocklc W G, Nonnenmacher T F. Fractional integral operators and Fox functions in the theory of viscoelasticity. Macromolecules, 1991, 24(24): 6426-6434.
    [129] West B J, Bolognab M, Grigolini P. Physics of Fractal Operators. Ncw York: Springer, 2003.
    [130] Miller K S, Ross B. An Introduction to the Fractional Calculus and Fractional Differential Equations. New York: Wiley, 1993.
    [131] Samko S G, Kilbas A A, Marichev O [. Fractional Integrals and Derivatives: Theory and Applications. Yverdon: Gordon and Breach, 1993.
    [132] Podlubny I. Fractional Differential Equations. San Diego: Academic Press, 1999.
    [133] Zaslavsky G M. Chaos, fractional kinetics, and anomalous transport. Phys. Rep. 2002, 371: 461- 580.
    [134] Caputo M. Linear model of dissipation whose Q is almost frequency independent-Ⅱ, Geophys. J. Roy. Astr. Soc. 1967, 13: 529-539.
    [135] Caputo M. Elasticitae Dissipazione. Bologna: Zanichelli, 1969.
    [136] Ochmann M, Makarov S. Representation of the absorption of nonlinear waves by fractional derivatives. J. Amer. Acoust. Soc. 1993, 94: 3392-3399.
    [137] Zeng Y B, Lin R L and Cao X. The relation between the Toda hierarchy and the KdV hierarchy. Phys. Lett. A. 1999, 251(3): 177-183.
    [138] Pickering A. A new truncation in Painleve analysis. J. Phys. A: Math. Gen. 1993, 26: 4395-4405.
    [139] Zhang J F. Multiple soliton solutions of the dispersive long-wave equations. Chinese Phys. Lett. 1999, 16(1): 4-5.
    [140] Fan E G, Zhang H Q. New exact solutions to a solutions to a system of coupled KdV equations. Phys. Lett. A. 1998, 245 (5): 389-392.
    [141] Lou S Y. Obtaining higher-dimensional integrable models by means of Miura type noninvertible transformations. (Chinese) Acta Phys. Sinica. 2000, 49(9): 1657-1662.
    [142] Ma W X, Fuchssteiner B. Integrable theory of the perturbation equations. Chaos Solitons Fractals. 1996, 7(8): 1227-1250.
    [143] 郭福奎,张玉峰.AKNS方程族的一类扩展可积模型.物理学报.2002,51(5):951-954.
    [144] Tsuchida T, Wadati M K. New integrable systems of derivative nonlinear Schrodinger equations with multiple components. Phys. Lett. A. 1999, 257 (1-2): 53-64.
    [145] Tsuchida T, Wadati M K. Multi-field intcgrable systems related to WKI-type eigcnvaluc problems. J. Phys. Soc. Japan. 1999, 68(7): 2241-2245.
    [146] Ma W X, Zhou R G. Adjoint symmetry constraints of multicomponent AKNS equations. Chinese Ann. Math. Ser. B. 2002, 23(3): 373-384.
    [147] Guo F K, Zhang Y F. A new loop algebra and a corresponding integrable hierarchy, as well as its intcgrable coupling. J. Math. Phys. 2003, 44(12): 5793-5803.
    [148] Zhang Y F. A generalized multi-component Glachette-Johnson (GJ) hierarchy and its integrable coupling system. Chaos Solitons Fractals. 2004, 21(2): 305-310.
    [149] Xia T C, Yu F J and Chen D Y. Multi-component C-KdV hierarchy of soliton equations and its multi-component integrable coupling system. Commun. Theor. Phys. (Beijing) 2004, 42(4): 494-496.
    [150] Tu G Z, Meng D Z. The trace identity, a powerful tool for constructing the Hamiltonian structure of intcgrablc systems. Ⅱ. Acta Math. Appl. Sinica (English Ser.) 1989, 5(1): 89-96.
    [151] Yu F J, Xia T C and Zhang H Q. The multi-component TD hierarchy and its multi-component intcgrable coupling system with five arbitrary functions. Chaos Solitons Fractals. 2006, 27(4): 1036-1041.
    [152] Guo F K, Zhang Y F. The quadratic-form identity for constructing the Hamiltonian structure of integrable systems. J. Phys. A. 2005, 38(40): 8537-8548.
    [153] Zhang Y F. A generalized Boite-Pempinelli-Tu (BPT) hierarchy and its bi-Hamiltonian structure Physics Letters A. 2003, 317(3-4): 280-286.
    [154] Zhang Y F, Zhang H Q. Integrable couplings of Botie-Pempinelli-Tu (BPT) hierarchy. Physics Letters A. 2002, 299(5-6): 543-548.
    [155] Ma W X, Fuchssteiner B. Algebraic structure of discrete zero curvature equations and master symmetries of discrete evolution equations. J. Mathematical Phys. 1999, 40: 2400-2418.
    [156] Tu G Z. A trace identity and its applications to the theory of discrete integrable systems. J. Phys. A. 1990, 23(17): 3903-3922.
    [157] Zhu Z N, Xue W. Two new integrable lattice hierarchies associated with a discrete Schroinger nonisospectral problem and their infinitely many conservation laws. Physics Letters A. 2004, 320(5- 6): 396-407.
    [158] Wadati M K. Wave propagation in nonlinear lattice. I, II. J. Phys. Soc. Japan. 1975, 38: 673-680; 1975, 38: 681-686.
    [159] Case K M. The discrete inverse scattering problem in one dimension. J. Mathematical Phys. 1974, 15: 143-146.
    [160] Kupershmidt B A. Discrete Lax equations and differentialdifference calculus, Asterisque 123.Sot. Math. de France, Paris, 1985.
    [161] Zeng Y B, Rauch-Wojciechowski S. Continuous limits for the Kac-van Moerbeke hierarchy and for their restricted flows. J. Phys. A. 1995, 28(13) 3825-3840.
    
    [162] Gieseker D. The Toda hierarchy and the KdV hierarchy. Comm. Math. Phys. 1996,181(3): 587-603.
    [163] Morosi C, Pizzocchero L. On the continuous limit of integrable lattices. I. The Kac-Moerbeke system and KdV theory. Comm. Math. Phys. 1996, 180(2): 505-528.
    [164] Zeng Y B. Restricted flows of a hierarchy of integrable discrete systems. Acta Math. Appl. Sinica (English Ser.) 1998, 14(2): 176-184.
    [165] Morosi C, Pizzocchero L. On the continuous limit of integrable lattices. III. Kupershmidt systems and sl(N + 1) KdV theories. J. Phys. A. 1998, 31(11): 2727-2746.
    [166] Morosi C, Pizzocchero L. On the continuous limit of integrable lattices. II. Volterra systems and sp(N) theories. Rev. Math. Phys. 1998, 10(2): 235-270.
    [167] Blaszak M and Marciniak K. R-matrix approach to lattice integrable systems. J.Math.Phys. 1994, 35: 4661-4682.
    
    [168] Leibniz G W. Mathematicsche Schiften. Hildesheim: Georg 01ms Verlagsbuchhandlung, 1962.
    [169] Samko S G, Kilbas A A and Marichev O I. Fractional Integrals and Derivatives Theory and Applications, New York: Gordon and Breach, 1993.
    
    [170] Oldham K B and Spanier J. The Fractional Calculus, New York: Academic Press, 1974.
    [171] Zaslavsky G M. Chaos, fractional kinetics, and anomalous transport. Phys. Rep. 2002, 371(6): 461-580.
    [172] Zaslavsky G M. Hamiltonian Chaos and Fractional Dynamics, Oxford: Oxford University Press, 2005.
    [173] Tarasov V E. Fractional systems and fractional Bogoliubov hierarchy equations, Phys. Rev. E. 2005, 71: 011102.
    [174] Tarasov V E. Fractional generalization of gradient systems. Lett. Math. Phys. 2005,73(1): 49-58.
    [175] Nigmatullin RR. A fractional integral and its physical interpretation. (Russian) Teoret. Mat. Fiz. 1992, 90(3): 354-368.
    
    [176] Cottrill S K and Naber M. Fractional differential forms. J. Math. Phys. 2001,42:2203-2215.
    [181] Tarasov V E. Fractional generalization of gradient and Hamiltonian systems, J. Phys. A. 2005, 38(26): 5929-5943.
    [178] Kaup D J and Newell A C. An exact solution for a derivative nonlinear Schrodinger equation.J. Math. Phys. 1978, 19(4): 798-801.
    
    [179] Davis H D. The theory of linear operators, Principia Press. Bloomington, Indiana, 1936.
    [180] Flanders H. Differential Forms woth Applications to Physical Sciences, Dover,New York, 1989.
    [181] Tarasov E. Fractional generalization of gradient and Hamiltonian systems, J. Phys. A. 2005, 38(26): 5929-5943.
    
    [182] Zhu Z N. Comment on: " A 2 + 1 non-isospectral discrete integrable system and its discrete integrable coupling system " [Phys. Lett. A 353 (2006) 326], Phys. Lett. A. 2007, 367: 501-506.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700