NOD2信号通路在失血性休克/复苏后急性肺损伤中作用机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     失血性休克是临床上常见的急重症,复苏后常发生全身炎症反应综合征,甚至发展为多器官功能衰竭,其中急性肺损伤(acute lung injury, ALI)是最常见的复苏后并发症,是患者死亡的主要原因之一。
     对失血性休克/复苏(hemorrhagic shock/resuscitation, HS/R)后ALI的机制研究,目前公认的是“二次打击”学说,该学说把HS/R视为一种全身性缺血再灌注损伤,为第一次打击,使机体的免疫系统敏感性增强,当遇到第“二次打击”时,如轻微的细菌感染或炎性刺激,也可能导致机体爆发严重的全身炎症反应,甚至发展为多器官功能障碍。因为肺是一个开放器官,极易受到细菌或病原体的侵袭,在“二次打击”中往往成为最易受损伤的器官,所以ALI是HS/R后最常见的并发症。因此探索HS/R后ALI的发生机制,对防治ALI,降低HS/R患者的病死率具有重要意义。
     目前的研究集中在中性粒细胞与肺泡巨噬细胞之间,肺泡巨噬细胞与肺血管内皮细胞之间的相互作用,以及受体分子的相互作用,如TLR4和TLR2的相互作用。这些细胞或受体分子的相互作用,都是促进肺炎症反应的单向调控作用。有没有一种机制是可以具有促进炎症或抑制炎症的双向调控作用?又是什么分子信号通路介导这种双向调控作用?
     肺泡巨噬细胞(alveolar macrophages, AM)在介导肺炎症反应和ALI中具有重要作用,细胞表面的模式识别受体分子(Pattern recognition receptor molecules,PRRs),可以感受来自病原体的病原相关分子模式(pathogen associated molecularpatterns, PAMPs)以及由受损或死亡细胞释放的损伤相关分子模式(damageassociated molecular patterns, DAMPs)的刺激,启动感染性和非感染性炎症反应过程。前期研究发现HS/R后,高迁移率族蛋白1(HMGB1)释放增加,通过作用于AM的TLR4可以上调TLR2的表达,在HS/R诱导ALI发病机制中起到重要的作用。
     NOD2为一类存在于细胞内的PRR分子,只在巨噬细胞、树突状细胞和上皮细胞表达,其特异性配体为MDP,MDP是一种细菌细胞壁成分,为革兰氏阴性菌和革兰氏阳性菌都表达的细菌成分,因此NOD2识别细菌谱很广,NOD2与NF-κB炎症信号通路联系密切,介导炎症反应。有研究发现NOD2与自噬的关系非常密切,NOD2缺陷的树突状细胞不能合成自噬,并且细胞对细菌的易感性增强。NOD2与炎症、自噬和细胞凋亡等关系密切,而自噬和细胞凋亡对炎症反应的调控作用,目前尚无统一的定论,因此研究NOD2信号通路在HS/R后ALI中的调控作用,可能为该研究领域提供新的发现,为临床上有效干预HS/R后ALI提供理论依据和线索。
     第一部分失血性休克/复苏对肺泡巨噬细胞NOD2表达的影响
     目的:研究HS/R对AM的NOD2表达的影响及其机制。
     方法:体内实验:使用野生型(WT)和TLR4-/-小鼠建立HS/R模型,分别在复苏后2小时和4小时,收集和分离AM,用Western Blot的方法检测AM的NOD2蛋白表达;WT小鼠用抗HMGB1中和抗体预处理后,再进行HS/R,检测AM的NOD2表达;使用WT和NOD2-/-小鼠建立HS/R模型,检测AM的NOD1表达。体外实验:分离WT小鼠AM,体外培养,用HMGB1刺激,检测AM的NOD2表达。
     结果: HS/R处理后4小时,WT小鼠AM的NOD2表达明显增高,而TLR4-/-小鼠的NOD2表达无变化;提前给予HMGB1中和抗体预处理的小鼠HS/R处理后,AM的NOD2表达上调受到抑制; HS/R处理不能上调WT和NOD2-/-小鼠AM的NOD1的表达;HMGB1体外刺激WT小鼠AM,可诱导NOD2表达,呈时间和剂量依赖性。
     结论: HS/R通过HMGB1-TLR4信号通路特异性上调AM的NOD2表达。
     第二部分NOD2对“二次打击”后早期炎症反应的影响
     目的:研究NOD2对“二次打击”后AM早期炎症介质如MIF、MIP2、TNF-α表达的影响,以及NOD2信号通路对“二次打击”后小鼠肺泡灌洗液中IL-1β含量的影响。研究NOD2对AM的IL-1β成熟和释放的作用机制。
     方法:体内实验:使用WT和NOD2-/-小鼠建立HS/R+MDP的“二次打击”模型,部分小鼠在“二次打击”处理前,注射抗HMGB1中和抗体,“二次打击”处理后6小时,收集和分离AM,用Western Blot方法检测AM的MIP2、MIF和TNF-α的表达;使用WT、TLR4-/-、NOD2-/-、NF-κB-/-小鼠建立HS/R+MDP的“二次打击”模型,处理6小时后进行肺泡灌洗,用EILSA方法检测小鼠肺泡灌洗液中IL-1β的含量。体外实验:分离WT小鼠AM,在体外用HMGB1和MDP刺激6小时,用Western Blot方法检测AM的caspase-1和Pro-IL-1β表达。
     结果:“二次打击”处理后,小鼠AM的MIP2、MIF和TNF-α这些早期炎症介质表达上调, NOD2-/-和抗HMGB1中和抗体可以降低这些炎症介质的表达;“二次打击”处理后,WT小鼠肺泡灌洗液中IL-1β的含量显著升高,而TLR4-/-、NOD2-/-、NF-κB-/-小鼠肺泡灌洗液中IL-1β的含量无明显增加;HMGB1+MDP体外刺激AM,使AM的caspase-1活化的剪切体P10蛋白和成熟的IL-1β蛋白表达量上调。
     结论:HS/R上调AM的NOD2表达,使AM对MDP的反应性增强,“二次打击”处理后,小鼠AM的MIP2、MIF和TNF-α等早期炎症介质表达上调,可进一步活化巨噬细胞和诱导中性粒细胞聚集。“二次打击”处理后,小鼠肺泡中IL-1β的含量明显上升,TLR4、NOD2、NF-κB分子参与IL-1β成熟和释放,并且AM中NOD2分子介导对caspase-1活化,启动IL-1β成熟和释放。
     第三部分NOD2在“二次打击”中对肺泡巨噬细胞自噬体形成的影响
     目的:研究NOD2对“二次打击”后小鼠AM自噬体形成的影响,以及HMGB1+MDP联合刺激对小鼠AM自噬体形成的影响。
     方法:体内/体外实验:使用WT小鼠建立HS/R模型,处理后4小时,分离AM,体外培养,用MDP刺激,分别在不同时间点收集细胞,用免疫荧光和Western Blot方法检测AM的LC3蛋白表达。体内实验:用WT和NOD2-/-小鼠“二次打击”处理后8小时,收集和分离AM,用免疫荧光和Western Blot方法检测AM的LC3蛋白表达,部分小鼠在“二次打击”处理前,3-MA预先给药2小时。体外实验:分离WT和NOD2-/-小鼠AM,在体外用HMGB1和MDP刺激8小时,收集细胞,用免疫荧光和Western Blot方法检测AM的LC3表达,部分组别处理前,用3-MA预处理2小时。
     结果:体内/体外实验结果显示HS/R处理后的小鼠AM,对MDP敏感性增强,上调AM中LC3荧光颗粒的形成和LC3-II蛋白的表达。体内实验结果显示,HS/R+MDP“二次打击”可上调小鼠AM自噬体的形成,而该作用可被3-MA阻断,NOD2-/-小鼠对“二次打击”的作用无反应。体外实验结果显示HMGB1+MDP刺激可以诱导AM自噬体形成,NOD2分子的缺失和3-MA可阻断自噬形成。
     结论:NOD2在“二次打击”中,上调AM自噬体形成,并且自噬体出现较晚,在刺激8小时开始出现,3-MA可以阻断“二次打击”对自噬的诱导作用,NOD2-/-小鼠对“二次打击”诱导自噬体形成无反应,证明NOD2是介导细胞自噬体重要分子。
     第四部分NOD2-自噬对“二次打击”后急性肺损伤的影响
     目的:研究NOD2-自噬对“二次打击”后小鼠的生存率和肺损伤的影响,以及AM在“二次打击”后急性肺损伤中的作用。
     方法:使用WT和NOD2-/-小鼠分别建立HS/R、“二次打击”、3-MA+“二次打击”模型,观察处理后36小时小鼠的生存状况,计算生存率;建立WT和NOD2-/-小鼠HS/R、“二次打击”、3-MA+“二次打击”模型,分别在处理后8小时和24小时,取小鼠肺组织做病理切片染色,观察肺组织损伤情况;建立WT和NOD2-/-小鼠HS/R、“二次打击”、3-MA+“二次打击”模型,分别在处理后8小时和24小时,取小鼠肺组织,用ELISA的方法检测小鼠肺组织MPO的表达水平;建立WT和NOD2-/-小鼠HS/R、“二次打击”、3-MA+“二次打击”模型,分别在处理后8小时和24小时,收集肺泡灌洗液,用ELISA方法检测肺泡灌洗液中IL-6和IL-12炎症因子的表达;建立WT和NOD2-/-小鼠HS/R、“二次打击”、3-MA+“二次打击”模型,分别在处理后8小时和24小时,收集和分离AM,用Real-TimePCR的方法,检测AM中TNF-α、IL-6和IL-12mRNA的表达。
     结果: WT小鼠HS/R组36小时生存率100%,“二次打击”组生存率为75%,3-MA+“二次打击”组生存率为12.5%,而NOD2-/-小鼠三组的生存率均为100%;肺组织病理切片染色结果显示,在8小时处理组中,WT小鼠“二次打击”组肺损伤明显严重于HS/R组,与3-MA+“二次打击”组肺损伤程度相似,但在24小时处理组,“二次打击”组肺损伤明显减轻,而3-MA+“二次打击”组肺损伤却加重,NOD2-/-小鼠两组中肺组织均未见明显肺损伤表现;在8小时处理组中,WT小鼠“二次打击”组的肺泡灌洗液中IL-6和IL-12与HS/R组相比,明显上升,与与3-MA+“二次打击”组差异性较小,在24小时处理组,“二次打击”组IL-6和IL-12显著降低,而3-MA+“二次打击”组却继续升高,NOD2-/-小鼠两组中肺泡灌洗液中IL-6和IL-12均未见明显升高;检测小鼠AM中TNF-α、IL-6和IL-12mRNA的表达结果显示,在8小时组中,WT小鼠“二次打击”组的AM中TNF-α、IL-6和IL-12mRNA表达明显上调,但24小时处理组,“二次打击”组的AM中TNF-α、IL-6和IL-12mRNA表达没有进一步上调,而3-MA+“二次打击”组AM的TNF-α、IL-6和IL-12mRNA表达显著升高,NOD2-/-小鼠两组中AM的TNF-α、IL-6和IL-12mRNA表达水平均未见明显改变。
     结论:NOD2在“二次打击”后早期时相,促进肺炎症反应,在“二次打击”后晚期时相诱导自噬形成,抑制肺炎症反应,如果阻断自噬可加重肺损伤,降低小鼠的生存率,NOD2-/-可明显降低“二次打击”带来的肺损伤,因此NOD2信号通路是介导“二次打击”后ALI的重要调控机制。
     第五部分NOD2-自噬调控“二次打击”后急性肺损伤的机制
     目的:研究NOD2-自噬调控“二次打击”后小鼠AM凋亡的影响,探讨NOD2-自噬诱导AM凋亡对“二次打击”后ALI的影响。
     方法:体外实验:分离WT和NOD2-/-小鼠AM,体外培养,用MDP刺激,分别在不同时间点收集细胞,用TUNNEL免疫荧光法检测AM凋亡表达,部分细胞用3-MA预处理2小时。体内实验:用WT和NOD2-/-小鼠“二次打击”处理后24小时,收集和分离AM,用流式细胞术法检测AM的Annexin V和7-AAD染色,分析凋亡细胞的比例,部分组别小鼠“二次打击”前注射3-MA。
     结果:体外实验:结果显示MDP处理24小时后WT小鼠AM出现凋亡,呈时间依赖性;HMGB1+MDP刺激AM24小时,出现大量细胞凋亡,而3-MA预处理组,细胞凋亡反而减少,NOD2-/-小鼠AM在各组中未见明显凋亡。体内实验:检测“二次打击”后24小时小鼠体内AM的凋亡情况,流式细胞学结果显示,WT小鼠“二次打击”处理24小时后,AM有较高比例死亡,达18.8±1.1%,而3-MA+“二次打击”组中的AM凋亡比例显著降低,只有3.3±0.4%,而NOD2-/-小鼠两组AM均无明显细胞凋亡出现,分别为2.0±0.1%和0.5±0.2%。结论:NOD2在“二次打击”晚期时相,促进肺泡巨噬细胞自噬形成,诱导细胞凋亡,3-MA阻断自噬减少细胞凋亡或坏死细胞的清除,使炎症反应放大,加重肺损伤程度。
     总结:
     综上所述,本研究证实在HS/R+MDP“二次打击”过程中,NOD2信号通路在早期时相,促进炎症细胞活化、炎症因子的合成与分泌,从而促进炎症反应;在晚期时相通过促进自噬和诱导细胞凋亡抑制炎症反应。因此,本课题揭示了“二次打击”过程中NOD2介导的重要始动和调控机制,并可以作为防治失血性休克/复苏后急性肺损伤的重要靶点,具有很高的科学意义和临床价值。
‘Second hit’ is used to describe the phenomenon that body reaction to infections isenhanced after hemorrhagic shock/resuscitation (HS/R), with slight infection beingable to cause systemic inflammation and multiple organ dysfunctions. As an openorgan, lung is susceptible to acute lung injury (ALI) during this HS/R process. Ourpreliminary data show that high-mobility group box1(HMGB1) increases theexpression of TLR2in alveolar macrophages (AM) by binding to TLR4after HS/R,and thereafter plays an important role in mediating ALI. Based on these findings andthe knowledge that NOD2, an intracellular pattern recognition receptor, is closelyassociated with inflammation, autophagy and apoptosis, we come up with ourhypothesis: HS/R may activate NOD2and MDP-NOD2signal, a ‘second hit’, mayaffect ALI after HS/R.
     Part1. The effect of HS/R on NOD2expression in AM
     To study the effect of HS/R on NOD2expression in AM, we employed an HS/Rmodel in mice. We found that NOD2expression increased significantly in WT, but notTLR4-/-, mice, indicating that HS/R activates NOD2secondarily by binding to TLR4.Administration of neutralizing anti-HMGB1prior to HS/R prevented the upregulationof NOD2. These data demonstrated HS/R upregulates NOD2expression throughHMGB1-TLR4signaling pathway in AM. In the in vitro experiment, cultured WTAM were stimulated with HMGB1. We found that NOD2expression upregulationwas induced by HMGB1stimulation.
     Part2. The effect of NOD2on inflammatory response early after the‘second hit’
     To determine the effect of NOD2on lung inflammation after HS/R, we usedHS/R+MDP injection, a ‘second hit’ model mimicking clinical situations. Datashowed that the expression of MIP2, MIF and TNF-α was significantly increased,indicating that the upregulation of NOD2expression in AM after ‘second hit’mediated ALI. In addition, after performing the ‘second hit’ model in WT, TLR4-/-,NOD2-/-and NF-κB-/-mice, we examined the content of IL-1β in bronchoalveolarlavage (BAL) fluid. We found that TLR4, NOD2and NF-κB mediated the release ofIL-1β and also mediated lung inflammation both directly and indirectly. We alsostimulate AM sequentially with HMGB1and MDP, mimicking in vivo ‘second hit’model, to measure the activation of caspase-1and maturation of IL-1β. We foundthat HS/R mediated NOD2upregulation and thus increase the sensitivity of NOD2toMDP through HMGB1-TLR4signaling pathway. NOD2was also shown tomodulate IL-1β maturation and release and thus promote the release ofproinflammatory factors by regulating the activity of caspase-1.
     Part3. The role of NOD2in autophagosome formation during the‘second hit’
     To demonstrate whether MDP induces autophagy in macrophages, WT and NOD2-/-mice were treated with HS/R operation, then harvest the AM and stimulate them withMDP. T he cells were examined with immunofluorescence and Westren Blot for LC3protein. We found that HS/R could promote autophagy, which was caused by MDPadministration and could be blocked by3-MA. We also found that upregulation ofNOD2by HS/R promoted autophagy in AM in a HS/R+MDP ‘second hit’ model withWT and NOD2-/-mice. To examine the effect of HMGB1and MDP on autophagy inAM, we cultured mouse AM and stimulate them with HMGB1and MDP. LC3inAM was measured. We found that HMGB1upregulated NOD2expression in AMand then induced autophagy together with MDP.
     Part4. The role of NOD2-autophagy in ALI after the ‘second hit’
     We looked into the overall effect of NOD2-autophagy on animal survival after ‘secondhit’ with MDP. All HS/R WT mice survived for36h.75%or12.5%WT micesurvived when treated with an ‘second hit’ or3-MA+‘second hit’, respectively.However, all NOD2-/-mice survived regardless of MDP or3-MA administration. Toinvestigate the effect of NOD2-autophagy signaling pathway in ALI after the ‘secondhit’, we examined the lung tissue histologically. Histological examinations showedremarkable lung injuries in the tissues harvested8h after MDP injection, while theinjuries stayed similar at24h. In contrast, when mice were pretreated with3-MA toblock autophagy, WT lung injuries aggravated with time during24h after the ‘secondhit’ while the NOD2-/-lung injuries stayed similar. These data indicated that NOD2played a key role in mediating lung injury and autophagy possessed ananti-inflammatory function. To study the effect of NOD2-autophagy signalingpathway on the myeloperoxidas (MPO) level in lung tissue from mice undergoing‘second hit’, we used the HS/R+MDP model and examined the activity of MPO in thelung tissue. The results showed that lung injury caused by neutrophils wasexacerbated when autophagy was blocked. Defect in NOD2expression could blockthe downstream inflammatory signals and thus relieve the lung inflammation causedby ‘second hit’. To investigate how the NOD2-autophaty signaling pathwaymodulates the inflammatory cytokines in lungs from ‘second hit’ model, we measuredIL-6and IL-12in the BAL fluid. Results showed that lung inflammation aggravatedwhen autophagy was blocked. To confirm effect of NOD2-autophagy of AM on theexpression and release of inflammatory cytokines, we performed the ‘second hit’model and measured the mRNA level of TNF-α, IL-6and IL-12in AM.
     Part5. Mechanisms of NOD2-autophagy modulation of ALI after‘second hit’
     To study NOD2-autophagy modulation on AM apoptosis after ‘second hit’ with MDPand its role in ALI after ‘second hit’, we cultured WT and NOD2-/-AM and treatedwith HMGB1and MDP with/without3-MA. We found with TUNNEL staining that 24h after treatment, WT cells underwent apoptosis when treated with MDP alone orHMGB1+MDP, with HMGB1+MDP resulting in profound apoptosis. When treatedwith3-MA, apoptosis decreased significantly. NOD2-/-AM showed little signs ofapoptosis. To test these findings in vivo, we used HS/R+MDP ‘second hit’ modelwith/without3-MA administration, in WT or NOD2-/-mice. We found24h after‘second hit’ WT AM underwent a significantly high level of apoptosis (18.8±1.1%)comparing with cells from mice treated with3-MA (3.3±0.4%). AM from NOD2-/-mice underwent relatively low levels of apoptosis,2.0±0.1%or0.5±0.2%when3-MA was injected or not, respectively.
     Summary
     Based on the findings above, we conclude:1, HS/R upregulate NOD2expression inAM through HMGB1-TLR4signaling pathway;2, HS/R upregulated NOD2expression in AM and thus promote its sensitivity to MDP and therefore aggravate thelung inflammation and lung injury in the HS/R+MDP ‘second hit’ model;3, HS/Rinduces lung inflammation and lung injury in an IL-1β dependent manner, which ismodulated by NOD2;4, HS/R-mediated NOD2upregulation induces autophagy inlung inflammation and lung injury;5, NOD2-autophagy signaling pathway mediateslung inflammation and lung injury in the HS/R+MDP ‘second hit’ model;6,NOD2-autophagy signaling pathway plays Janus role in the HS/R+MDP ‘second hit’model, being both proinflammatory and anti-inflammatory;7, NOD2-autophagy maysuppress ‘second hit’-induced lung inflammation by promoting AM apoptosis.In brief, this study provides a novel mechanism by which ‘second hit’ induces ALI:NOD2-autophagy signaling pathway initiates and modulates ‘second hit’-induced ALI,which may provide a novel target for clinical intervention.
引文
1. Anne Morrison C, Moran A, Patel S, Vidaurre Mdel P, Carrick MM, Tweardy DJ. Increased apoptosis of peripheral blood neutrophils isassociated with reduced incidence of infection in trauma patients with hemorrhagic shock. The Journal of infection.2013.66(1):87-94.
    2. Lustenberger T, Turina M, Seifert B, Mica L, Keel M. The、Severity of Injury and the Extent of Hemorrhagic Shock Predictthe Incidence of Infectious Complications in Trauma Patients. European Journal of Trauma and Emergency Surgery.2009.35(6):538-46.
    3. El--Menyar A, Al Thani H, El Rasheid Zakaria AZ, Tuma M, AbdulRahman H, Parchani A, Peralta R, Latifi R. Multiple Organ Dysfunction Syndrome (MODS): Is It Preventable or Inevitable? International Journal of Clinical Medicine.2012.3(7A):722-30
    4. Minei JP, Cuschieri J, Sperry J, Moore EE, West MA, Harbrecht BG,O'Keefe GE, Cohen MJ, Moldawer LL, Tompkins RG, Maier RV.The changing pattern and implications of multiple organ failure after blunt injury with hemorrhagic shock. Critical care medicine.2012.40(4):1129-35.
    5. Tschoeke SK, Hellmuth M, Hostmann A, Ertel W, OberholzerA. The early second hit in trauma management augments the proinflammatory immune response to multiple injuries. The Journal of Trauma and Acute Care Surgery.2007.62(6):1396-404.
    6. Kimura F, Shimizu H, Yoshidome H, Ohtsuka M, Miyazaki M. Immunosuppression following surgical and traumatic injury. Surgery today.2010.40(9):793-808.
    7. Brochner AC, Toft P. Pathophysiology of the systemic inflammatory response after major accidental trauma. Scandinavian journal of trauma, resuscitation and emergency medicine.2009.17:43.
    8. Ware, L.B. and M.A. Matthay, The acute respiratory distress syndrome. N Engl J Med,2000.342(18): p.1334-49.
    9. Matthay, M.A., et al., Future research directions in acute lung injury: summary of aNational Heart, Lung, and Blood Institute working group. Am J Respir Crit CareMed,2003.167(7): p.1027-35.
    10. Matthay, M.A. and G.A. Zimmerman, Acute lung injury and the acute respiratorydistress syndrome: four decades of inquiry into pathogenesis and rationalmanagement. Am J Respir Cell Mol Biol,2005.33(4): p.319-27.
    11. Spragg, R.G., et al., Beyond mortality: future clinical research in acute lung injury.Am J Respir Crit Care Med,2010.181(10): p.1121-7.
    12. Ranieri, V.M., et al., Acute respiratory distress syndrome: the Berlin Definition.JAMA,2012.307(23): p.2526-33.
    13. Ashbaugh, D.G., et al., Acute respiratory distress in adults. Lancet,1967.2(7511):p.319-23.
    14. Bernard, G.R., et al., The American-European Consensus Conference on ARDS.Definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am JRespir Crit Care Med,1994.149(3Pt1): p.818-24.
    15. Levitt, J.E., et al., Identification of early acute lung injury at initial evaluation in anacute care setting prior to the onset of respiratory failure. Chest,2009.135(4): p.936-43.
    16. Gajic, O., et al., Early identification of patients at risk of acute lung injury:evaluation of lung injury prediction score in a multicenter cohort study. Am JRespir Crit Care Med,2011.183(4): p.462-70.
    17.Moore, FA and Moore, EE.1995. Evolving concepts in the pathogenesis of postinjurymultiple organ failure. Surg Clin North Am75:257-277.
    18. Rubenfeld, G.D., et al., Incidence and outcomes of acute lung injury. N Engl J Med,2005.353(16): p.1685-93.
    19. Li, G., et al., Eight-year trend of acute respiratory distress syndrome: apopulation-based study in Olmsted County, Minnesota. Am J Respir Crit Care Med,2011.183(1): p.59-66.
    20. Phua, J., et al., Has mortality from acute respiratory distress syndrome decreasedover time?: A systematic review. Am J Respir Crit Care Med,2009.179(3): p.220-7.
    21. Arroliga, A.C., et al., Incidence of ARDS in an adult population of northeast Ohio.Chest,2002.121(6): p.1972-6.
    22. Bersten, A.D., et al., Incidence and mortality of acute lung injury and the acuterespiratory distress syndrome in three Australian States. Am J Respir Crit CareMed,2002.165(4): p.443-8.
    23. Matthay, M.A., L.B. Ware, and G.A. Zimmerman, The acute respiratory distresssyndrome. J Clin Invest,2012.122(8): p.2731-40.
    24. Garber, B.G., et al., Adult respiratory distress syndrome: a systemic overview ofincidence and risk factors. Crit Care Med,1996.24(4): p.687-95.
    25. Shorr, A.F., K.C. Abbott, and L.Y. Agadoa, Acute respiratory distress syndromeafter kidney transplantation: epidemiology, risk factors, and outcomes. Crit CareMed,2003.31(5): p.1325-30.
    26. Moss, M., et al., The role of chronic alcohol abuse in the development of acuterespiratory distress syndrome in adults. JAMA,1996.275(1): p.50-4.
    27. Calfee, C.S., et al., Active and passive cigarette smoking and acute lung injury aftersevere blunt trauma. Am J Respir Crit Care Med,2011.183(12): p.1660-5.
    28. Gao, L. and K.C. Barnes, Recent advances in genetic predisposition to clinicalacute lung injury. Am J Physiol Lung Cell Mol Physiol,2009.296(5): p. L713-25.
    29. Christie, J.D., et al., Genome wide association identifies PPFIA1as a candidategene for acute lung injury risk following major trauma. PLoS One,2012.7(1): p.e28268.
    30. Meyer, N.J., et al., ANGPT2genetic variant is associated with trauma-associatedacute lung injury and altered plasma angiopoietin-2isoform ratio. Am J Respir CritCare Med,2011.183(10): p.1344-53.
    31. Glavan, B.J., et al., Genetic variation in the FAS gene and associations with acutelung injury. Am J Respir Crit Care Med,2011.183(3): p.356-63.
    32. Gong, M.N., Gene association studies in acute lung injury: replication and futuredirection. Am J Physiol Lung Cell Mol Physiol,2009.296(5): p. L711-2.
    33. Kangelaris, K.N., et al., The association between a Darc gene polymorphism andclinical outcomes in African American patients with acute lung injury. Chest,2012.141(5): p.1160-9.
    34. Herrero, R., et al., The biological activity of FasL in human and mouse lungs isdetermined by the structure of its stalk region. J Clin Invest,2011.121(3): p.1174-90.
    35. Albertine, K.H., et al., Fas and fas ligand are up-regulated in pulmonary edemafluid and lung tissue of patients with acute lung injury and the acute respiratorydistress syndrome. Am J Pathol,2002.161(5): p.1783-96.
    36. Mizgerd, J.P., Acute lower respiratory tract infection. N Engl J Med,2008.358(7):p.716-27.
    37. Darwish, I., S. Mubareka, and W.C. Liles, Immunomodulatory therapy for severeinfluenza. Expert Rev Anti Infect Ther,2011.9(7): p.807-22.
    38. Opitz, B., et al., Innate immune recognition in infectious and noninfectious diseasesof the lung. Am J Respir Crit Care Med,2010.181(12): p.1294-309.
    39. Mantovani, A., et al., Neutrophils in the activation and regulation of innate andadaptive immunity. Nat Rev Immunol,2011.11(8): p.519-31.
    40. Caudrillier, A., et al., Platelets induce neutrophil extracellular traps intransfusion-related acute lung injury. J Clin Invest,2012.122(7): p.2661-71.
    41. Looney, M.R., et al., Platelet depletion and aspirin treatment protect mice in atwo-event model of transfusion-related acute lung injury. J Clin Invest,2009.119(11): p.3450-61.
    42. Diep, B.A., et al., Polymorphonuclear leukocytes mediate Staphylococcus aureusPanton-Valentine leukocidin-induced lung inflammation and injury. Proc NatlAcad Sci U S A,2010.107(12): p.5587-92.
    43. Wiener-Kronish, J.P. and J.F. Pittet, Therapies against virulence products ofStaphylococcus aureus and Pseudomonas aeruginosa. Semin Respir Crit Care Med,2011.32(2): p.228-35.
    44. Lucas, R., et al., Agonist of growth hormone-releasing hormone reducespneumolysin-induced pulmonary permeability edema. Proc Natl Acad Sci U S A,2012.109(6): p.2084-9.
    45. Rittirsch, D., M.A. Flierl, and P.A. Ward, Harmful molecular mechanisms in sepsis.Nat Rev Immunol,2008.8(10): p.776-87.
    46. Imai, Y., et al., Identification of oxidative stress and Toll-like receptor4signalingas a key pathway of acute lung injury. Cell,2008.133(2): p.235-49.
    47. Imai, Y., et al., Angiotensin-converting enzyme2protects from severe acute lungfailure. Nature,2005.436(7047): p.112-6.
    48. Kuba, K., et al., A crucial role of angiotensin converting enzyme2(ACE2) inSARS coronavirus-induced lung injury. Nat Med,2005.11(8): p.875-9.
    49. Serhan, C.N., et al., Resolution of inflammation: state of the art, definitions andterms. FASEB J,2007.21(2): p.325-32.
    50. Bachofen, M. and E.R. Weibel, Alterations of the gas exchange apparatus in adultrespiratory insufficiency associated with septicemia. Am Rev Respir Dis,1977.116(4): p.589-615.
    51. Dolinay, T., et al., Inflammasome-regulated cytokines are critical mediators ofacute lung injury. Am J Respir Crit Care Med,2012.185(11): p.1225-34.
    52. Pittet, J.F., et al., TGF-beta is a critical mediator of acute lung injury. J Clin Invest,2001.107(12): p.1537-44.
    53. Xu, J., et al., Extracellular histones are major mediators of death in sepsis. Nat Med,2009.15(11): p.1318-21.
    54. Bhandari, V., et al., Hyperoxia causes angiopoietin2-mediated acute lung injuryand necrotic cell death. Nat Med,2006.12(11): p.1286-93.
    55. Looney, M.R., et al., Neutrophils and their Fc gamma receptors are essential in amouse model of transfusion-related acute lung injury. J Clin Invest,2006.116(6): p.1615-23.
    56. Franchi L, Warner N, Viani K, Nu ez G. Function of Nod‐like receptors in microbial recognition and host defense. Immunological reviews.2008.227(1):106-28.
    57. Girardin SE, Boneca IG, Viala J, Chamaillard M, Labigne A,Thomas G, Philpott DJ, Sansonetti PJ. Nod2is a general sensorof peptidoglycan through muramyl dipeptide (MDP) detection. Journalof biological chemistry.2003.278(11):8869-72.
    58. Zemans, R.L., S.P. Colgan, and G.P. Downey, Transepithelial migration ofneutrophils: mechanisms and implications for acute lung injury. Am J Respir CellMol Biol,2009.40(5): p.519-35.
    59. Calfee, C.S. and M.A. Matthay, Clinical immunology: Culprits with evolutionaryties. Nature,2010.464(7285): p.41-2.
    60. Park J--H, Kim Y-G, McDonald C, Kanneganti T-D, Hasegawa M, Body--Malapel M, Inohara N, Nunez G. RICK/RIP2mediates innate immune responses induced through Nod1and Nod2but not TLRs. The Journal of Immunology.2007.178(4):2380-6.
    61. Kim Y--G, Park J--H, Shaw MH, Franchi L, Inohara N, Nú ez G. The cytosolic sensors Nod1and Nod2are critical for bacterial recognition and host defense after exposure to Toll--like receptor ligands. Immunity.2008.28(2):246-57.
    62. Vestweber, D., et al., Cell adhesion dynamics at endothelial junctions: VE-cadherinas a major player. Trends Cell Biol,2009.19(1): p.8-15.
    63. Fan J, Li Y, Levy RM, Fan JJ, Hackam DJ, Vodovotz Y, Yang H,Tracey KJ, Billiar TR, Wilson MA. Hemorrhagic shock induces NAD(P) H oxidase activation in neutrophils: role of HMGB1--TLR4signaling. The Journal of Immunology.2007.178(10):6573-80.
    64. Xiang M, Shi X, Li Y, Xu J, Yin L, Xiao G, Scott MJ, Billiar TR,Wilson MA, Fan J. Hemorrhagic shock activation of NLRP3inflammasome in lung endothelial cells. The Journal of Immunology.2011.187(9):4809-17.
    65. Corada, M., et al., Vascular endothelial-cadherin is an important determinant ofmicrovascular integrity in vivo. Proc Natl Acad Sci U S A,1999.96(17): p.9815-20.
    66. Schulte, D., et al., Stabilizing the VE-cadherin-catenin complex blocks leukocyteextravasation and vascular permeability. EMBO J,2011.30(20): p.4157-70.
    67. Broermann, A., et al., Dissociation of VE-PTP from VE-cadherin is required forleukocyte extravasation and for VEGF-induced vascular permeability in vivo. JExp Med,2011.208(12): p.2393-401.
    68. Li, Y., M. Xiang, Y. Yuan, G. Xiao, J. Zhang, Y. Jiang, Y. Vodovotz, T. R. Billiar,M. A. Wilson, and J. Fan.2009. Hemorrhagic Shock Augments Lung EndothelialCell Activation: Role of Temporal Alterations of TLR4and TLR2. Am J PhysiolRegul Integr Comp Physiol297:R1670.
    67. Fan, J., R. S. Frey, and A. B. Malik.2003. TLR4signaling induces TLR2expression in endothelial cells via neutrophil NADPH oxidase. J Clin Invest112:1234.
    69. Fan, J., Y. Li, Y. Vodovotz, T. R. Billiar, and M. A. Wilson.2006. Hemorrhagicshock-activated neutrophils augment TLR4signaling-induced TLR2upregulationin alveolar macrophages: role in hemorrhage-primed lung inflammation. Am JPhysiol Lung Cell Mol Physiol290:L738.
    70. Girardin, S. E., P. J. Sansonetti, and D. J. Philpott.2002. Intracellular vsextracellular recognition of pathogens--common concepts in mammals and flies.Trends Microbiol10:193.
    71. Goldenberg, N.M., et al., Broken barriers: a new take on sepsis pathogenesis. SciTransl Med,2011.3(88): p.88ps25.
    72. Lee, M.J., et al., Vascular endothelial cell adherens junction assembly andmorphogenesis induced by sphingosine-1-phosphate. Cell,1999.99(3): p.301-12.
    73. Obinata, H. and T. Hla, Sphingosine1-phosphate in coagulation and inflammation.Semin Immunopathol,2012.34(1): p.73-91.
    74. Teijaro, J.R., et al., Endothelial cells are central orchestrators of cytokineamplification during influenza virus infection. Cell,2011.146(6): p.980-91.
    75. Camerer, E., et al., Sphingosine-1-phosphate in the plasma compartment regulatesbasal and inflammation-induced vascular leak in mice. J Clin Invest,2009.119(7):p.1871-9.
    76. Shea, B.S., et al., Prolonged exposure to sphingosine1-phosphate receptor-1agonists exacerbates vascular leak, fibrosis, and mortality after lung injury. Am JRespir Cell Mol Biol,2010.43(6): p.662-73.
    77. Kaneider, N.C., et al.,'Role reversal' for the receptor PAR1in sepsis-inducedvascular damage. Nat Immunol,2007.8(12): p.1303-12.
    78. Jones, C.A., et al., Slit2-Robo4signalling promotes vascular stability by blockingArf6activity. Nat Cell Biol,2009.11(11): p.1325-31.
    79. London, N.R., et al., Targeting Robo4-dependent Slit signaling to survive thecytokine storm in sepsis and influenza. Sci Transl Med,2010.2(23): p.23ra19.
    80. Okada, Y., et al., A three-kilobase fragment of the human Robo4promoter directscell type-specific expression in endothelium. Circ Res,2007.100(12): p.1712-22.
    81. Goolaerts, A., et al., PAI-1is an essential component of the pulmonary hostresponse during Pseudomonas aeruginosa pneumonia in mice. Thorax,2011.66(9):p.788-96.
    82. Wiener-Kronish, J.P., K.H. Albertine, and M.A. Matthay, Differential responses ofthe endothelial and epithelial barriers of the lung in sheep to Escherichia coliendotoxin. J Clin Invest,1991.88(3): p.864-75.
    83. Ware, L.B. and M.A. Matthay, Clinical practice. Acute pulmonary edema. N Engl JMed,2005.353(26): p.2788-96.
    84. Bastarache, J.A., et al., Procoagulant alveolar microparticles in the lungs of patientswith acute respiratory distress syndrome. Am J Physiol Lung Cell Mol Physiol,2009.297(6): p. L1035-41.
    85. Fang, X., et al., Allogeneic human mesenchymal stem cells restore epithelialprotein permeability in cultured human alveolar type II cells by secretion ofangiopoietin-1. J Biol Chem,2010.285(34): p.26211-22.
    86. Jiang, D., et al., Regulation of lung injury and repair by Toll-like receptors andhyaluronan. Nat Med,2005.11(11): p.1173-9.
    87. Folkesson, H.G. and M.A. Matthay, Alveolar epithelial ion and fluid transport:recent progress. Am J Respir Cell Mol Biol,2006.35(1): p.10-9.
    88. Johnson, M.D., et al., Functional ion channels in pulmonary alveolar type I cellssupport a role for type I cells in lung ion transport. Proc Natl Acad Sci U S A,2006.103(13): p.4964-9.
    89. Fang, X., et al., Novel role for CFTR in fluid absorption from the distal airspaces ofthe lung. J Gen Physiol,2002.119(2): p.199-207.
    90. Planes, C., et al., Hypoxia and beta2-agonists regulate cell surface expression ofthe epithelial sodium channel in native alveolar epithelial cells. J Biol Chem,2002.277(49): p.47318-24.
    91. Roux, J., et al., Interleukin-1beta decreases expression of the epithelial sodiumchannel alpha-subunit in alveolar epithelial cells via a p38MAPK-dependentsignaling pathway. J Biol Chem,2005.280(19): p.18579-89.
    92. Dada, L.A., et al., Hypoxia-induced endocytosis of Na,K-ATPase in alveolarepithelial cells is mediated by mitochondrial reactive oxygen species and PKC-zeta.J Clin Invest,2003.111(7): p.1057-64.
    93. Iles, K.E., et al., Reactive species and pulmonary edema. Expert Rev Respir Med,2009.3(5): p.487-496.
    94. Ware, L.B. and M.A. Matthay, Alveolar fluid clearance is impaired in the majorityof patients with acute lung injury and the acute respiratory distress syndrome. Am JRespir Crit Care Med,2001.163(6): p.1376-83.
    95. Adamson, I.Y. and D.H. Bowden, The type2cell as progenitor of alveolarepithelial regeneration. A cytodynamic study in mice after exposure to oxygen. LabInvest,1974.30(1): p.35-42.
    96. Kanneganti T--D, Lamkanfi M, Nú ez G. Intracellular NOD--like Receptors in Host Defense and Disease. Immunity.2007.27(4):549-59.
    97. Hedl M, Abraham C. Distinct roles for Nod2protein and autocrine interleukin--1beta in muramyl dipeptide--induced mitogen--activated protein kinase activation and cytokine secretion in human macrophages. The Journal of biological chemistry.2011.286(30):26440-9.
    98. Carneiro LA, Magalhaes JG, Tattoli I, Philpott DJ, Travassos LH. Nod--like proteins in inflammation and disease. The Journal of pathology.2008.214(2):136-48.
    99. Sutterwala FS, Ogura Y, Flavell RA. The inflammasome in pathogen recognition and inflammation. Journal of leukocyte biology.2007.82(2):259-64.
    100. Shaw MH, Kamada N, Warner N, Kim Y--G, Nu ez G. The ever--expanding function of NOD2: autophagy, viral recognition,and T cell activation. Trends in immunology.2011.32(2):73-9.
    101. Gutierrez O, Pipaon C, Inohara N, Fontalba A, Ogura Y, Prosper F,Nunez G, Fernandez--Luna JL. Induction of Nod2in myelomonocyticand intestinal epithelial cells via nuclear factor--kappa B activation. The Journal of biological chemistry.2002.277(44):41701-5.
    102. Djavaheri--Mergny M, Codogno P. Autophagy joins the game to regulate NF--κB signaling pathways. Cell research.2007.17(7):576-7.
    103. Trocoli A, Djavaheri--Mergny M. The complex interplay between autophagy and NF--κB signaling pathways in cancer cells. American journalof cancer research.2011.1(5):629.
    104. Cooney R, Baker J, Brain O, Danis B, Pichulik T, Allan P, FergusonDJ, Campbell BJ, Jewell D, Simmons A. NOD2stimulation induces autophagy in dendritic cells influencing bacterial handlingand antigen presentation. Nature medicine.2010.16(1):90-7.
    105. Homer CR, Richmond AL, Rebert NA, Achkar JP, McDonald C. ATG16L1and NOD2interact in an autophagy--dependent antibacterial pathway implicated in Crohn's disease pathogenesis. Gastroenterology.2010.139(5):1630-41.
    106. Travassos LH, Carneiro LA, Ramjeet M, Hussey S, Kim YG, Magalhaes JG, Yuan L, Soares F, Chea E, Le Bourhis L, Boneca IG, Allaoui A, Jones NL, Nunez G, Girardin SE, Philpott DJ. Nod1and Nod2direct autophagy by recruiting ATG16L1to the plasma membrane at the site of bacterial entry. Nat Immunol.2010.11(1):55-62.
    107. Virgin HW, Levine B. Autophagy genes in immunity. Nature immunology.2009.10(5):461-70.
    108. Fésüs L, Demény Má, Petrovski G. Autophagy shapes inflammation. Antioxidants&redox signaling.2011.14(11):2233-43.
    109. Saitoh T, Fujita N, Jang MH, Uematsu S, Yang B--G, Satoh T, Omori H, Noda T, Yamamoto N, Komatsu M. Loss of the autophagy protein Atg16L1enhances endotoxin--induced IL--1beta production. Nature.2008.456(7219):264-8.
    110. Tal MC, Sasai M, Lee HK, Yordy B, Shadel GS, Iwasaki A. Absence of autophagy results in reactive oxygen species--dependent amplification of RLR signaling. Proceedings of the National Academyof Sciences.2009.106(8):2770-5.
    112. Kim, C.F., et al., Identification of bronchioalveolar stem cells in normal lung andlung cancer. Cell,2005.121(6): p.823-35.
    113. Rock, J.R., et al., Basal cells as stem cells of the mouse trachea and human airwayepithelium. Proc Natl Acad Sci U S A,2009.106(31): p.12771-5.
    114. McQualter, J.L., et al., Evidence of an epithelial stem/progenitor cell hierarchy inthe adult mouse lung. Proc Natl Acad Sci U S A,2010.107(4): p.1414-9.
    115. Rawlins, E.L., et al., The role of Scgb1a1+Clara cells in the long-termmaintenance and repair of lung airway, but not alveolar, epithelium. Cell Stem Cell,2009.4(6): p.525-34.
    116. Chapman, H.A., et al., Integrin alpha6beta4identifies an adult distal lung epithelialpopulation with regenerative potential in mice. J Clin Invest,2011.121(7): p.2855-62.
    117. Kajstura, J., et al., Evidence for human lung stem cells. N Engl J Med,2011.364(19): p.1795-806.
    118. Uddin, M. and B.D. Levy, Resolvins: natural agonists for resolution of pulmonaryinflammation. Prog Lipid Res,2011.50(1): p.75-88.
    119. Janssen, W.J., et al., Fas determines differential fates of resident and recruitedmacrophages during resolution of acute lung injury. Am J Respir Crit Care Med,2011.184(5): p.547-60.
    120. Park, D., et al., Continued clearance of apoptotic cells critically depends on thephagocyte Ucp2protein. Nature,2011.477(7363): p.220-4.
    121. Bratton, D.L. and P.M. Henson, Neutrophil clearance: when the party is over,clean-up begins. Trends Immunol,2011.32(8): p.350-7.
    122. Narasaraju, T., et al., Excessive neutrophils and neutrophil extracellular trapscontribute to acute lung injury of influenza pneumonitis. Am J Pathol,2011.179(1):p.199-210.
    123. Juncadella, I.J., et al., Apoptotic cell clearance by bronchial epithelial cellscritically influences airway inflammation. Nature,2013.493(7433): p.547-51.
    124. D'Alessio, F.R., et al., CD4+CD25+Foxp3+Tregs resolve experimental lung injuryin mice and are present in humans with acute lung injury. J Clin Invest,2009.119(10): p.2898-913.
    125. Amato, M.B., et al., Effect of a protective-ventilation strategy on mortality in theacute respiratory distress syndrome. N Engl J Med,1998.338(6): p.347-54.
    126. Ventilation with lower tidal volumes as compared with traditional tidal volumes foracute lung injury and the acute respiratory distress syndrome. The AcuteRespiratory Distress Syndrome Network. N Engl J Med,2000.342(18): p.1301-8.
    127. Villar, J., et al., A high positive end-expiratory pressure, low tidal volumeventilatory strategy improves outcome in persistent acute respiratory distresssyndrome: a randomized, controlled trial. Crit Care Med,2006.34(5): p.1311-8.
    128. Webb, H.H. and D.F. Tierney, Experimental pulmonary edema due to intermittentpositive pressure ventilation with high inflation pressures. Protection by positiveend-expiratory pressure. Am Rev Respir Dis,1974.110(5): p.556-65.
    129. Dreyfuss, D., et al., High inflation pressure pulmonary edema. Respective effects ofhigh airway pressure, high tidal volume, and positive end-expiratory pressure. AmRev Respir Dis,1988.137(5): p.1159-64.
    130. Parker, J.C., et al., Increased microvascular permeability in dog lungs due to highpeak airway pressures. J Appl Physiol,1984.57(6): p.1809-16.
    131. Tremblay, L., et al., Injurious ventilatory strategies increase cytokines and c-fosm-RNA expression in an isolated rat lung model. J Clin Invest,1997.99(5): p.944-52.
    132. Frank, J.A., et al., Low tidal volume reduces epithelial and endothelial injury inacid-injured rat lungs. Am J Respir Crit Care Med,2002.165(2): p.242-9.
    133. Calfee, C.S., et al., Plasma receptor for advanced glycation end products andclinical outcomes in acute lung injury. Thorax,2008.63(12): p.1083-9.
    134. Ranieri, V.M., et al., Effect of mechanical ventilation on inflammatory mediators inpatients with acute respiratory distress syndrome: a randomized controlled trial.JAMA,1999.282(1): p.54-61.
    135. Parsons, P.E., et al., Lower tidal volume ventilation and plasma cytokine markersof inflammation in patients with acute lung injury. Crit Care Med,2005.33(1): p.1-6; discussion230-2.
    136. Imai, Y., et al., Injurious mechanical ventilation and end-organ epithelial cellapoptosis and organ dysfunction in an experimental model of acute respiratorydistress syndrome. JAMA,2003.289(16): p.2104-12.
    137. Curley, M.A., et al., Effect of prone positioning on clinical outcomes in childrenwith acute lung injury: a randomized controlled trial. JAMA,2005.294(2): p.229-37.
    138. Taccone, P., et al., Prone positioning in patients with moderate and severe acuterespiratory distress syndrome: a randomized controlled trial. JAMA,2009.302(18):p.1977-84.
    139. Guerin, C., et al., Prone Positioning in Severe Acute Respiratory DistressSyndrome. N Engl J Med,2013.
    140. Brower, R.G., et al., Higher versus lower positive end-expiratory pressures inpatients with the acute respiratory distress syndrome. N Engl J Med,2004.351(4):p.327-36.
    141. Meade, M.O., et al., Ventilation strategy using low tidal volumes, recruitmentmaneuvers, and high positive end-expiratory pressure for acute lung injury andacute respiratory distress syndrome: a randomized controlled trial. JAMA,2008.299(6): p.637-45.
    142. Mercat, A., et al., Positive end-expiratory pressure setting in adults with acute lunginjury and acute respiratory distress syndrome: a randomized controlled trial.JAMA,2008.299(6): p.646-55.
    143. Papazian, L., et al., Neuromuscular blockers in early acute respiratory distresssyndrome. N Engl J Med,2010.363(12): p.1107-16.
    144. Peek, G.J., et al., Efficacy and economic assessment of conventional ventilatorysupport versus extracorporeal membrane oxygenation for severe adult respiratoryfailure (CESAR): a multicentre randomised controlled trial. Lancet,2009.374(9698): p.1351-63.
    145. Diaz, J.V., et al., Therapeutic strategies for severe acute lung injury. Crit Care Med,2010.38(8): p.1644-50.
    146. Soo Hoo, G.W., In Prone Ventilation, One Good Turn Deserves Another. N Engl JMed,2013.
    147. Young, D., et al., High-frequency oscillation for acute respiratory distresssyndrome. N Engl J Med,2013.368(9): p.806-13.
    148. Derdak, S., et al., High-frequency oscillatory ventilation for acute respiratorydistress syndrome in adults: a randomized, controlled trial. Am J Respir Crit CareMed,2002.166(6): p.801-8.
    149. Ferguson, N.D., et al., High-frequency oscillation in early acute respiratory distresssyndrome. N Engl J Med,2013.368(9): p.795-805.
    150. Rumbak, M.J., et al., A prospective, randomized, study comparing earlypercutaneous dilational tracheotomy to prolonged translaryngeal intubation(delayed tracheotomy) in critically ill medical patients. Crit Care Med,2004.32(8):p.1689-94.
    151. Terragni, P.P., et al., Early vs late tracheotomy for prevention of pneumonia inmechanically ventilated adult ICU patients: a randomized controlled trial. JAMA,2010.303(15): p.1483-9.
    152. Young, D., et al., Effect of Early vs Late Tracheostomy Placement on Survival inPatients Receiving Mechanical Ventilation. JAMA,2013.309(20): p.2121-2129.
    153. Staub, N.C., Pulmonary edema: physiologic approaches to management. Chest,1978.74(5): p.559-64.
    154. Prewitt, R.M., J. McCarthy, and L.D. Wood, Treatment of acute low pressurepulmonary edema in dogs: relative effects of hydrostatic and oncotic pressure,nitroprusside, and positive end-expiratory pressure. J Clin Invest,1981.67(2): p.409-18.
    155. Wiedemann, H.P., et al., Comparison of two fluid-management strategies in acutelung injury. N Engl J Med,2006.354(24): p.2564-75.
    156. Wheeler, A.P., et al., Pulmonary-artery versus central venous catheter to guidetreatment of acute lung injury. N Engl J Med,2006.354(21): p.2213-24.
    157. Kuebler, W.M., et al., Pressure is proinflammatory in lung venular capillaries. JClin Invest,1999.104(4): p.495-502.
    158. Calfee, C.S., et al., Plasma angiopoietin-2in clinical acute lung injury: prognosticand pathogenetic significance. Crit Care Med,2012.40(6): p.1731-7.
    159. Gregory, T.J., et al., Surfactant chemical composition and biophysical activity inacute respiratory distress syndrome. J Clin Invest,1991.88(6): p.1976-81.
    160. Spragg, R.G., et al., Effect of recombinant surfactant protein C-based surfactant onthe acute respiratory distress syndrome. N Engl J Med,2004.351(9): p.884-92.
    161. Bernard, G.R., et al., High-dose corticosteroids in patients with the adult respiratorydistress syndrome. N Engl J Med,1987.317(25): p.1565-70.
    162. Meduri, G.U., et al., Effect of prolonged methylprednisolone therapy in unresolvingacute respiratory distress syndrome: a randomized controlled trial. JAMA,1998.280(2): p.159-65.
    163. Steinberg, K.P., et al., Efficacy and safety of corticosteroids for persistent acuterespiratory distress syndrome. N Engl J Med,2006.354(16): p.1671-84.
    164. Meduri, G.U., et al., Methylprednisolone infusion in early severe ARDS: results ofa randomized controlled trial. Chest,2007.131(4): p.954-63.
    165. Abraham, E., et al., Liposomal prostaglandin E1(TLC C-53) in acute respiratorydistress syndrome: a controlled, randomized, double-blind, multicenter clinical trial.TLC C-53ARDS Study Group. Crit Care Med,1999.27(8): p.1478-85.
    166. Paine, R.,3rd, et al., A randomized trial of recombinant humangranulocyte-macrophage colony stimulating factor for patients with acute lunginjury. Crit Care Med,2012.40(1): p.90-7.
    167. Bernard, G.R., et al., A trial of antioxidants N-acetylcysteine and procysteine inARDS. The Antioxidant in ARDS Study Group. Chest,1997.112(1): p.164-72.
    168. Ranieri, V.M., et al., Drotrecogin alfa (activated) in adults with septic shock. NEngl J Med,2012.366(22): p.2055-64.
    169. Liu, K.D., et al., Randomized clinical trial of activated protein C for the treatmentof acute lung injury. Am J Respir Crit Care Med,2008.178(6): p.618-23.
    170. Taylor, R.W., et al., Low-dose inhaled nitric oxide in patients with acute lunginjury: a randomized controlled trial. JAMA,2004.291(13): p.1603-9.
    171. Matthay, M.A., et al., Randomized, placebo-controlled clinical trial of anaerosolized beta(2)-agonist for treatment of acute lung injury. Am J Respir CritCare Med,2011.184(5): p.561-8.
    172. Gao Smith, F., et al., Effect of intravenous beta-2agonist treatment on clinicaloutcomes in acute respiratory distress syndrome (BALTI-2): a multicentre,randomised controlled trial. Lancet,2012.379(9812): p.229-35.
    173. Rice, T.W., et al., Enteral omega-3fatty acid, gamma-linolenic acid, andantioxidant supplementation in acute lung injury. JAMA,2011.306(14): p.1574-81.
    174. Gupta, N., et al., Intrapulmonary delivery of bone marrow-derived mesenchymalstem cells improves survival and attenuates endotoxin-induced acute lung injury inmice. J Immunol,2007.179(3): p.1855-63.
    175. Ortiz, L.A., et al., Interleukin1receptor antagonist mediates the antiinflammatoryand antifibrotic effect of mesenchymal stem cells during lung injury. Proc NatlAcad Sci U S A,2007.104(26): p.11002-7.
    176. Lee, J.W., et al., Allogeneic human mesenchymal stem cells for treatment of E. coliendotoxin-induced acute lung injury in the ex vivo perfused human lung. Proc NatlAcad Sci U S A,2009.106(38): p.16357-62.
    177. Nemeth, K., et al., Bone marrow stromal cells attenuate sepsis via prostaglandinE(2)-dependent reprogramming of host macrophages to increase theirinterleukin-10production. Nat Med,2009.15(1): p.42-9.
    178. Matthay, M.A., et al., Therapeutic potential of mesenchymal stem cells for severeacute lung injury. Chest,2010.138(4): p.965-72.
    179. Mei, S.H., et al., Mesenchymal stem cells reduce inflammation while enhancingbacterial clearance and improving survival in sepsis. Am J Respir Crit Care Med,2010.182(8): p.1047-57.
    180. Islam, M.N., et al., Mitochondrial transfer from bone-marrow-derived stromal cellsto pulmonary alveoli protects against acute lung injury. Nat Med,2012.18(5): p.759-65.
    181. Ott, H.C., et al., Regeneration and orthotopic transplantation of a bioartificial lung.Nat Med,2010.16(8): p.927-33.
    182. Mammoto, A., et al., Control of lung vascular permeability and endotoxin-inducedpulmonary oedema by changes in extracellular matrix mechanics. Nat Commun,2013.4: p.1759.
    183. Ware, L.B., et al., Prognostic and pathogenetic value of combining clinical andbiochemical indices in patients with acute lung injury. Chest,2010.137(2): p.288-96.
    184. Calfee, C.S., et al., Use of risk reclassification with multiple biomarkers improvesmortality prediction in acute lung injury. Crit Care Med,2011.39(4): p.711-7.
    185. Brodie, D. and M. Bacchetta, Extracorporeal membrane oxygenation for ARDS inadults. N Engl J Med,2011.365(20): p.1905-14.
    186. Herridge, M.S., et al., Functional disability5years after acute respiratory distresssyndrome. N Engl J Med,2011.364(14): p.1293-304.
    187. Yang, Z. and D.J. Klionsky, Eaten alive: a history of macroautophagy. Nat CellBiol,2010.12(9): p.814-22.
    188. Taguchi-Atarashi, N., et al., Modulation of local PtdIns3P levels by the PIphosphatase MTMR3regulates constitutive autophagy. Traffic,2010.11(4): p.468-78.
    189. Lee, H.K., et al., Autophagy-dependent viral recognition by plasmacytoid dendriticcells. Science,2007.315(5817): p.1398-401.
    190. Franchi, L., et al., The inflammasome: a caspase-1-activation platform thatregulates immune responses and disease pathogenesis. Nat Immunol,2009.10(3): p.241-7.
    191. Nakahira, K., et al., Autophagy proteins regulate innate immune responses byinhibiting the release of mitochondrial DNA mediated by the NALP3inflammasome. Nat Immunol,2011.12(3): p.222-30.
    192. Lauber, K., et al., Clearance of apoptotic cells: getting rid of the corpses. Mol Cell,2004.14(3): p.277-87.
    193. Qu, X., et al., Autophagy gene-dependent clearance of apoptotic cells duringembryonic development. Cell,2007.128(5): p.931-46.
    194. Martens, S., et al., Disruption of Toxoplasma gondii parasitophorous vacuoles bythe mouse p47-resistance GTPases. PLoS Pathog,2005.1(3): p. e24.
    195. Zhao, Z., et al., Autophagosome-independent essential function for the autophagyprotein Atg5in cellular immunity to intracellular pathogens. Cell Host Microbe,2008.4(5): p.458-69.
    196. Levine, B., N. Mizushima, and H.W. Virgin, Autophagy in immunity andinflammation. Nature,2011.469(7330): p.323-35.
    197. Mizushima, N., T. Yoshimori, and B. Levine, Methods in mammalian autophagyresearch. Cell,2010.140(3): p.313-26.
    198. Yu, L., et al., Termination of autophagy and reformation of lysosomes regulated bymTOR. Nature,2010.465(7300): p.942-6.
    199. Tooze, S.A. and T. Yoshimori, The origin of the autophagosomal membrane. NatCell Biol,2010.12(9): p.831-5.
    200. Hayashi-Nishino, M., et al., A subdomain of the endoplasmic reticulum forms acradle for autophagosome formation. Nat Cell Biol,2009.11(12): p.1433-7.
    201. Yla-Anttila, P., et al.,3D tomography reveals connections between the phagophoreand endoplasmic reticulum. Autophagy,2009.5(8): p.1180-5.
    202. Hailey, D.W., et al., Mitochondria supply membranes for autophagosomebiogenesis during starvation. Cell,2010.141(4): p.656-67.
    203. Ravikumar, B., et al., Plasma membrane contributes to the formation ofpre-autophagosomal structures. Nat Cell Biol,2010.12(8): p.747-57.
    204. English, L., et al., Autophagy enhances the presentation of endogenous viralantigens on MHC class I molecules during HSV-1infection. Nat Immunol,2009.10(5): p.480-7.
    205. Hamasaki, M., et al., Autophagosomes form at ER-mitochondria contact sites.Nature,2013.
    206. Vance, J.E., Phospholipid synthesis in a membrane fraction associated withmitochondria. J Biol Chem,1990.265(13): p.7248-56.
    207. Rizzuto, R., et al., Close contacts with the endoplasmic reticulum as determinantsof mitochondrial Ca2+responses. Science,1998.280(5370): p.1763-6.
    208. Hayashi, T., et al., MAM: more than just a housekeeper. Trends Cell Biol,2009.19(2): p.81-8.
    209. Tsukada, M. and Y. Ohsumi, Isolation and characterization of autophagy-defectivemutants of Saccharomyces cerevisiae. FEBS Lett,1993.333(1-2): p.169-74.
    210. Mercer, C.A., A. Kaliappan, and P.B. Dennis, A novel, human Atg13bindingprotein, Atg101, interacts with ULK1and is essential for macroautophagy.Autophagy,2009.5(5): p.649-62.
    211. Hara, T., et al., FIP200, a ULK-interacting protein, is required for autophagosomeformation in mammalian cells. J Cell Biol,2008.181(3): p.497-510.
    212. Jung, C.H., et al., ULK-Atg13-FIP200complexes mediate mTOR signaling to theautophagy machinery. Mol Biol Cell,2009.20(7): p.1992-2003.
    213. Kamada, Y., et al., Tor directly controls the Atg1kinase complex to regulateautophagy. Mol Cell Biol,2010.30(4): p.1049-58.
    214. Cheong, H., et al., The Atg1kinase complex is involved in the regulation of proteinrecruitment to initiate sequestering vesicle formation for nonspecific autophagy inSaccharomyces cerevisiae. Mol Biol Cell,2008.19(2): p.668-81.
    215. Chan, E.Y., et al., Kinase-inactivated ULK proteins inhibit autophagy via theirconserved C-terminal domains using an Atg13-independent mechanism. Mol CellBiol,2009.29(1): p.157-71.
    216. Weidberg, H., E. Shvets, and Z. Elazar, Biogenesis and cargo selectivity ofautophagosomes. Annu Rev Biochem,2011.80: p.125-56.
    217. Kageyama, S., et al., The LC3recruitment mechanism is separate fromAtg9L1-dependent membrane formation in the autophagic response againstSalmonella. Mol Biol Cell,2011.22(13): p.2290-300.
    218. Mari, M., et al., An Atg9-containing compartment that functions in the early stepsof autophagosome biogenesis. J Cell Biol,2010.190(6): p.1005-22.
    219. Kihara, A., et al., Two distinct Vps34phosphatidylinositol3-kinase complexesfunction in autophagy and carboxypeptidase Y sorting in Saccharomyces cerevisiae.J Cell Biol,2001.152(3): p.519-30.
    220. Itakura, E., et al., Beclin1forms two distinct phosphatidylinositol3-kinasecomplexes with mammalian Atg14and UVRAG. Mol Biol Cell,2008.19(12): p.5360-72.
    221. Matsunaga, K., et al., Two Beclin1-binding proteins, Atg14L and Rubicon,reciprocally regulate autophagy at different stages. Nat Cell Biol,2009.11(4): p.385-96.
    223. Zhong, Y., et al., Distinct regulation of autophagic activity by Atg14L and Rubiconassociated with Beclin1-phosphatidylinositol-3-kinase complex. Nat Cell Biol,2009.11(4): p.468-76.
    224. Sun, Q., et al., Identification of Barkor as a mammalian autophagy-specific factorfor Beclin1and class III phosphatidylinositol3-kinase. Proc Natl Acad Sci U S A,2008.105(49): p.19211-6.
    225. Matsunaga, K., et al., Autophagy requires endoplasmic reticulum targeting of thePI3-kinase complex via Atg14L. J Cell Biol,2010.190(4): p.511-21.
    226. Takahashi, Y., et al., Bif-1interacts with Beclin1through UVRAG and regulatesautophagy and tumorigenesis. Nat Cell Biol,2007.9(10): p.1142-51.
    227. Liang, C., et al., Autophagic and tumour suppressor activity of a novelBeclin1-binding protein UVRAG. Nat Cell Biol,2006.8(7): p.688-99.
    228. Liang, C., et al., Beclin1-binding UVRAG targets the class C Vps complex tocoordinate autophagosome maturation and endocytic trafficking. Nat Cell Biol,2008.10(7): p.776-87.
    229. Proikas-Cezanne, T., et al., WIPI-1alpha (WIPI49), a member of the novel7-bladedWIPI protein family, is aberrantly expressed in human cancer and is linked tostarvation-induced autophagy. Oncogene,2004.23(58): p.9314-25.
    230. Polson, H.E., et al., Mammalian Atg18(WIPI2) localizes to omegasome-anchoredphagophores and positively regulates LC3lipidation. Autophagy,2010.6(4): p.506-22.
    231. Obara, K., et al., The Atg18-Atg2complex is recruited to autophagic membranesvia phosphatidylinositol3-phosphate and exerts an essential function. J Biol Chem,2008.283(35): p.23972-80.
    232. Behrends, C., et al., Network organization of the human autophagy system. Nature,2010.466(7302): p.68-76.
    233. Axe, E.L., et al., Autophagosome formation from membrane compartmentsenriched in phosphatidylinositol3-phosphate and dynamically connected to theendoplasmic reticulum. J Cell Biol,2008.182(4): p.685-701.
    234. Simonsen, A., et al., Alfy, a novel FYVE-domain-containing protein associatedwith protein granules and autophagic membranes. J Cell Sci,2004.117(Pt18): p.4239-51.
    235. Clausen, T.H., et al., p62/SQSTM1and ALFY interact to facilitate the formation ofp62bodies/ALIS and their degradation by autophagy. Autophagy,2010.6(3): p.330-44.
    236. Filimonenko, M., et al., The selective macroautophagic degradation of aggregatedproteins requires the PI3P-binding protein Alfy. Mol Cell,2010.38(2): p.265-79.
    237. Mizushima, N., et al., A protein conjugation system essential for autophagy. Nature,1998.395(6700): p.395-8.
    238. Mizushima, N., et al., A new protein conjugation system in human. The counterpartof the yeast Apg12p conjugation system essential for autophagy. J Biol Chem,1998.273(51): p.33889-92.
    239. Fujita, N., et al., Differential involvement of Atg16L1in Crohn disease andcanonical autophagy: analysis of the organization of the Atg16L1complex infibroblasts. J Biol Chem,2009.284(47): p.32602-9.
    240. Mizushima, N., et al., Mouse Apg16L, a novel WD-repeat protein, targets to theautophagic isolation membrane with the Apg12-Apg5conjugate. J Cell Sci,2003.116(Pt9): p.1679-88.
    241. Zheng, H., et al., Cloning and analysis of human Apg16L. DNA Seq,2004.15(4): p.303-5.
    242. Hanada, T., et al., The Atg12-Atg5conjugate has a novel E3-like activity forprotein lipidation in autophagy. J Biol Chem,2007.282(52): p.37298-302.
    243. Radoshevich, L., et al., ATG12conjugation to ATG3regulates mitochondrialhomeostasis and cell death. Cell,2010.142(4): p.590-600.
    244. Yousefi, S., et al., Calpain-mediated cleavage of Atg5switches autophagy toapoptosis. Nat Cell Biol,2006.8(10): p.1124-32.
    245. Russo, R., et al., Calpain-mediated cleavage of Beclin-1and autophagyderegulation following retinal ischemic injury in vivo. Cell Death Dis,2011.2: p.e144.
    246. Wirawan, E., et al., Caspase-mediated cleavage of Beclin-1inactivatesBeclin-1-induced autophagy and enhances apoptosis by promoting the release ofproapoptotic factors from mitochondria. Cell Death Dis,2010.1: p. e18.
    247. Rohn, T.T., et al., Depletion of Beclin-1due to proteolytic cleavage by caspases inthe Alzheimer's disease brain. Neurobiol Dis,2011.43(1): p.68-78.
    248. Betin, V.M. and J.D. Lane, Caspase cleavage of Atg4D stimulates GABARAP-L1processing and triggers mitochondrial targeting and apoptosis. J Cell Sci,2009.122(Pt14): p.2554-66.
    249. Norman, J.M., G.M. Cohen, and E.T. Bampton, The in vitro cleavage of the hAtgproteins by cell death proteases. Autophagy,2010.6(8): p.1042-56.
    250. Kabeya, Y., et al., LC3, a mammalian homologue of yeast Apg8p, is localized inautophagosome membranes after processing. EMBO J,2000.19(21): p.5720-8.
    251. Kabeya, Y., et al., LC3, GABARAP and GATE16localize to autophagosomalmembrane depending on form-II formation. J Cell Sci,2004.117(Pt13): p.2805-12.
    252. Satoo, K., et al., The structure of Atg4B-LC3complex reveals the mechanism ofLC3processing and delipidation during autophagy. EMBO J,2009.28(9): p.1341-50.
    253. Li, M., et al., Kinetics comparisons of mammalian Atg4homologues indicateselective preferences toward diverse Atg8substrates. J Biol Chem,2011.286(9): p.7327-38.
    254. Weidberg, H., et al., LC3and GATE-16/GABARAP subfamilies are both essentialyet act differently in autophagosome biogenesis. EMBO J,2010.29(11): p.1792-802.
    255. Noda, N.N., Y. Ohsumi, and F. Inagaki, Atg8-family interacting motif crucial forselective autophagy. FEBS Lett,2010.584(7): p.1379-85.
    256. Xie, Z., U. Nair, and D.J. Klionsky, Atg8controls phagophore expansion duringautophagosome formation. Mol Biol Cell,2008.19(8): p.3290-8.
    257. Ting, J.P. and B.K. Davis, CATERPILLER: a novel gene family important inimmunity, cell death, and diseases. Annu Rev Immunol,2005.23: p.387-414.
    258. Ogura, Y., et al., Nod2, a Nod1/Apaf-1family member that is restricted tomonocytes and activates NF-kappaB. J Biol Chem,2001.276(7): p.4812-8.
    259. Kanneganti, T.D., M. Lamkanfi, and G. Nunez, Intracellular NOD-like receptors inhost defense and disease. Immunity,2007.27(4): p.549-59.
    260. Inohara, N., et al., Host recognition of bacterial muramyl dipeptide mediatedthrough NOD2. Implications for Crohn's disease. J Biol Chem,2003.278(8): p.5509-12.
    261. Fritz, J.H., et al., Innate immune recognition at the epithelial barrier drives adaptiveimmunity: APCs take the back seat. Trends Immunol,2008.29(1): p.41-9.
    262. Girardin, S.E., et al., Nod2is a general sensor of peptidoglycan through muramyldipeptide (MDP) detection. J Biol Chem,2003.278(11): p.8869-72.
    263. Ting, J.P., J.A. Duncan, and Y. Lei, How the noninflammasome NLRs function inthe innate immune system. Science,2010.327(5963): p.286-90.
    264. Grimes, C.L., et al., The innate immune protein Nod2binds directly to MDP, abacterial cell wall fragment. J Am Chem Soc,2012.134(33): p.13535-7.
    265. Park, J.H., et al., RICK/RIP2mediates innate immune responses induced throughNod1and Nod2but not TLRs. J Immunol,2007.178(4): p.2380-6.
    266. Nembrini, C., et al., The kinase activity of Rip2determines its stability andconsequently Nod1-and Nod2-mediated immune responses. J Biol Chem,2009.284(29): p.19183-8.
    267. Lecine, P., et al., The NOD2-RICK complex signals from the plasma membrane. JBiol Chem,2007.282(20): p.15197-207.
    268. Abbott, D.W., et al., The Crohn's disease protein, NOD2, requires RIP2in order toinduce ubiquitinylation of a novel site on NEMO. Curr Biol,2004.14(24): p.2217-27.
    269. Bertrand, M.J., et al., Cellular inhibitors of apoptosis cIAP1and cIAP2are requiredfor innate immunity signaling by the pattern recognition receptors NOD1andNOD2. Immunity,2009.30(6): p.789-801.
    270. Bonizzi, G. and M. Karin, The two NF-kappaB activation pathways and their rolein innate and adaptive immunity. Trends Immunol,2004.25(6): p.280-8.
    271. Lich, J.D., et al., Monarch-1suppresses non-canonical NF-kappaB activation andp52-dependent chemokine expression in monocytes. J Immunol,2007.178(3): p.1256-60.
    272. Hsu, Y.M., et al., The adaptor protein CARD9is required for innate immuneresponses to intracellular pathogens. Nat Immunol,2007.8(2): p.198-205.
    273. Han, J. and R.J. Ulevitch, Limiting inflammatory responses during activation ofinnate immunity. Nat Immunol,2005.6(12): p.1198-205.
    274. Ashwell, J.D., The many paths to p38mitogen-activated protein kinase activationin the immune system. Nat Rev Immunol,2006.6(7): p.532-40.
    275. Dong, C., R.J. Davis, and R.A. Flavell, MAP kinases in the immune response.Annu Rev Immunol,2002.20: p.55-72.
    276. Pan, Q., et al., MDP-induced interleukin-1beta processing requires Nod2andCIAS1/NALP3. J Leukoc Biol,2007.82(1): p.177-83.
    277. Kanneganti, T.D., et al., Pannexin-1-mediated recognition of bacterial moleculesactivates the cryopyrin inflammasome independent of Toll-like receptor signaling.Immunity,2007.26(4): p.433-43.
    278. Faustin, B., et al., Reconstituted NALP1inflammasome reveals two-stepmechanism of caspase-1activation. Mol Cell,2007.25(5): p.713-24.
    279. Hsu, L.C., et al., A NOD2-NALP1complex mediates caspase-1-dependentIL-1beta secretion in response to Bacillus anthracis infection and muramyldipeptide. Proc Natl Acad Sci U S A,2008.105(22): p.7803-8.
    280. Kobayashi, K.S., et al., Nod2-dependent regulation of innate and adaptiveimmunity in the intestinal tract. Science,2005.307(5710): p.731-4.
    281. Lipinski, S., et al., DUOX2-derived reactive oxygen species are effectors ofNOD2-mediated antibacterial responses. J Cell Sci,2009.122(Pt19): p.3522-30.
    282. Parant, M.A., et al., Selective modulation of lipopolysaccharide-induced death andcytokine production by various muramyl peptides. Infect Immun,1995.63(1): p.110-5.
    283. Wolfert, M.A., et al., The origin of the synergistic effect of muramyl dipeptide withendotoxin and peptidoglycan. J Biol Chem,2002.277(42): p.39179-86.
    284. Pauleau, A.L. and P.J. Murray, Role of nod2in the response of macrophages totoll-like receptor agonists. Mol Cell Biol,2003.23(21): p.7531-9.
    285. Kobayashi, K., et al., RICK/Rip2/CARDIAK mediates signalling for receptors ofthe innate and adaptive immune systems. Nature,2002.416(6877): p.194-9.
    286. Moreira, L.O., et al., Modulation of adaptive immunity by differentadjuvant-antigen combinations in mice lacking Nod2. Vaccine,2008.26(46): p.5808-13.
    287. Kim, H.J., et al., Lipoteichoic acid and muramyl dipeptide synergistically inducematuration of human dendritic cells and concurrent expression of proinflammatorycytokines. J Leukoc Biol,2007.81(4): p.983-9.
    288. Natsuka, M., et al., A polymer-type water-soluble peptidoglycan exhibited bothToll-like receptor2-and NOD2-agonistic activities, resulting in synergisticactivation of human monocytic cells. Innate Immun,2008.14(5): p.298-308.
    289. Travassos, L.H., et al., Nod1and Nod2direct autophagy by recruiting ATG16L1tothe plasma membrane at the site of bacterial entry. Nat Immunol,2010.11(1): p.55-62.
    290. Cooney, R., et al., NOD2stimulation induces autophagy in dendritic cellsinfluencing bacterial handling and antigen presentation. Nat Med,2010.16(1): p.90-7.
    291. Anand, P.K., et al., TLR2and RIP2pathways mediate autophagy of Listeriamonocytogenes via extracellular signal-regulated kinase (ERK) activation. J BiolChem,2011.286(50): p.42981-91.
    292. Homer, C.R., et al., A dual role for receptor-interacting protein kinase2(RIP2)kinase activity in nucleotide-binding oligomerization domain2(NOD2)-dependentautophagy. J Biol Chem,2012.287(30): p.25565-76.
    293. Juarez, E., et al., NOD2enhances the innate response of alveolar macrophages toMycobacterium tuberculosis in humans. Eur J Immunol,2012.42(4): p.880-9.
    294. Lapaquette, P., M.A. Bringer, and A. Darfeuille-Michaud, Defects in autophagyfavour adherent-invasive Escherichia coli persistence within macrophages leadingto increased pro-inflammatory response. Cell Microbiol,2012.14(6): p.791-807.
    295. Moscat, J. and M.T. Diaz-Meco, p62at the crossroads of autophagy, apoptosis, andcancer. Cell,2009.137(6): p.1001-4.
    296. Komatsu, M., et al., The selective autophagy substrate p62activates the stressresponsive transcription factor Nrf2through inactivation of Keap1. Nat Cell Biol,2010.12(3): p.213-23.
    297. Cadwell, K., et al., A key role for autophagy and the autophagy gene Atg16l1inmouse and human intestinal Paneth cells. Nature,2008.456(7219): p.259-63.
    298. Rathinam, V.A., S.K. Vanaja, and K.A. Fitzgerald, Regulation of inflammasomesignaling. Nature Immunology,2012.13(4): p.333-2.
    299. Saitoh, T., et al., Loss of the autophagy protein Atg16L1enhancesendotoxin-induced IL-1beta production. Nature,2008.456(7219): p.264-8.
    300. Meissner, F., K. Molawi, and A. Zychlinsky, Mutant superoxide dismutase1-induced IL-1beta accelerates ALS pathogenesis. Proc Natl Acad Sci U S A,2010.107(29): p.13046-50.
    301. Boya, P., et al., Inhibition of macroautophagy triggers apoptosis. Mol Cell Biol,2005.25(3): p.1025-40.
    302. Ravikumar, B., et al., Rapamycin pre-treatment protects against apoptosis. HumMol Genet,2006.15(7): p.1209-16.
    303. Korolchuk, V.I., et al., Autophagy inhibition compromises degradation ofubiquitin-proteasome pathway substrates. Mol Cell,2009.33(4): p.517-27.
    304. Ravikumar, B., et al., Dynein mutations impair autophagic clearance ofaggregate-prone proteins. Nat Genet,2005.37(7): p.771-6.
    305. Sarkar, S., et al., Trehalose, a novel mTOR-independent autophagy enhancer,accelerates the clearance of mutant huntingtin and alpha-synuclein. J Biol Chem,2007.282(8): p.5641-52.
    306. Ogata, M., et al., Autophagy is activated for cell survival after endoplasmicreticulum stress. Mol Cell Biol,2006.26(24): p.9220-31.
    307. Ding, W.X., et al., Differential effects of endoplasmic reticulum stress-inducedautophagy on cell survival. J Biol Chem,2007.282(7): p.4702-10.
    308. Espert, L., et al., Autophagy is involved in T cell death after binding of HIV-1envelope proteins to CXCR4. J Clin Invest,2006.116(8): p.2161-72.
    309. Kroemer, G. and B. Levine, Autophagic cell death: the story of a misnomer. NatRev Mol Cell Biol,2008.9(12): p.1004-10.
    310. Eisenberg-Lerner, A., et al., Life and death partners: apoptosis, autophagy and thecross-talk between them. Cell Death Differ,2009.16(7): p.966-75.
    311. Thorburn, A., Apoptosis and autophagy: regulatory connections between twosupposedly different processes. Apoptosis,2008.13(1): p.1-9.
    312. Kirkin, V., et al., A role for ubiquitin in selective autophagy. Mol Cell,2009.34(3):p.259-69.
    313. Mathew, R., et al., Autophagy suppresses tumorigenesis through elimination of p62.Cell,2009.137(6): p.1062-75.
    314. Jin, Z., et al., Cullin3-based polyubiquitination and p62-dependent aggregation ofcaspase-8mediate extrinsic apoptosis signaling. Cell,2009.137(4): p.721-35.
    315. Hou, W., et al., Autophagic degradation of active caspase-8: a crosstalk mechanismbetween autophagy and apoptosis. Autophagy,2010.6(7): p.891-900.
    316. Chipuk, J.E., et al., The BCL-2family reunion. Mol Cell,2010.37(3): p.299-310.
    317. Djavaheri-Mergny, M., M.C. Maiuri, and G. Kroemer, Cross talk betweenapoptosis and autophagy by caspase-mediated cleavage of Beclin1. Oncogene,2010.29(12): p.1717-9.
    318. Sinha, S. and B. Levine, The autophagy effector Beclin1: a novel BH3-onlyprotein. Oncogene,2008.27Suppl1: p. S137-48.
    319. Funderburk, S.F., Q.J. Wang, and Z. Yue, The Beclin1-VPS34complex--at thecrossroads of autophagy and beyond. Trends Cell Biol,2010.20(6): p.355-62.
    320. Erlich, S., et al., Differential interactions between Beclin1and Bcl-2familymembers. Autophagy,2007.3(6): p.561-8.
    321. Levine, B., S. Sinha, and G. Kroemer, Bcl-2family members: dual regulators ofapoptosis and autophagy. Autophagy,2008.4(5): p.600-6.
    322. Luo, S. and D.C. Rubinsztein, Apoptosis blocks Beclin1-dependentautophagosome synthesis: an effect rescued by Bcl-xL. Cell Death Differ,2010.17(2): p.268-77.
    323. Gump, J.M. and A. Thorburn, Autophagy and apoptosis: what is the connection?Trends Cell Biol,2011.21(7): p.387-92.
    324. Bell, B.D., et al., FADD and caspase-8control the outcome of autophagic signalingin proliferating T cells. Proc Natl Acad Sci U S A,2008.105(43): p.16677-82.
    325. Shimizu, S., et al., Role of Bcl-2family proteins in a non-apoptotic programmedcell death dependent on autophagy genes. Nat Cell Biol,2004.6(12): p.1221-8.
    326. Yu, L., et al., Regulation of an ATG7-beclin1program of autophagic cell death bycaspase-8. Science,2004.304(5676): p.1500-2.
    327. Lee, J.S., et al., FLIP-mediated autophagy regulation in cell death control. Nat CellBiol,2009.11(11): p.1355-62.
    328. Pyo, J.O., et al., Essential roles of Atg5and FADD in autophagic cell death:dissection of autophagic cell death into vacuole formation and cell death. J BiolChem,2005.280(21): p.20722-9.
    329. Schwarten, M., et al., Nix directly binds to GABARAP: a possible crosstalkbetween apoptosis and autophagy. Autophagy,2009.5(5): p.690-8.
    330. Hitomi, J., et al., Identification of a molecular signaling network that regulates acellular necrotic cell death pathway. Cell,2008.135(7): p.1311-23.
    331. Pattingre, S., et al., Bcl-2antiapoptotic proteins inhibit Beclin1-dependentautophagy. Cell,2005.122(6): p.927-39.
    332. Leverrier, S., G.S. Salvesen, and C.M. Walsh, Enzymatically active single chaincaspase-8maintains T-cell survival during clonal expansion. Cell Death Differ,2011.18(1): p.90-8.
    333. Osborn, S.L., et al., Fas-associated death domain (FADD) is a negative regulator ofT-cell receptor-mediated necroptosis. Proc Natl Acad Sci U S A,2010.107(29): p.13034-9.
    334. Zhang, N. and Y.W. He, An essential role for c-FLIP in the efficient developmentof mature T lymphocytes. J Exp Med,2005.202(3): p.395-404.
    335. Ch'en, I.L., et al., Antigen-mediated T cell expansion regulated by parallelpathways of death. Proc Natl Acad Sci U S A,2008.105(45): p.17463-8.
    336. Degterev, A., et al., Identification of RIP1kinase as a specific cellular target ofnecrostatins. Nat Chem Biol,2008.4(5): p.313-21.
    337. Lin, Y., et al., Cleavage of the death domain kinase RIP by caspase-8promptsTNF-induced apoptosis. Genes Dev,1999.13(19): p.2514-26.
    338. Ch'en, I.L., et al., Mechanisms of necroptosis in T cells. J Exp Med,2011.208(4):p.633-41.
    339. Yoshikawa, Y., et al., Listeria monocytogenes ActA-mediated escape fromautophagic recognition. Nat Cell Biol,2009.11(10): p.1233-40.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700