H.264/AVC视频编码码率控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着信息社会的发展,人们对视频信息的需求不断增长,相应的视频产品快速进入到办公、娱乐和安全等众多领域当中。在此推动下,数字视频编码、处理和传输技术取得了长足的发展。作为新一代的视频压缩编码标准,H.264在压缩效率、质量和网络适应性等方面均取得了显著的提高。目前H.264正逐渐取代原有视频压缩标准在各应用领域占据主导地位。
     视频标准的应用和推广也离不开相应码率控制方案的支持。由于带宽和存储资源相对有限,码率控制对于视频编码器输出码流与信道速率的匹配,以及在码率受限的条件下重建视频质量的优化都具有十分重要的意义。然而,H.264视频编码器自身具有的高度复杂性使得其码率控制相对以往的视频标准更具挑战性。本文面向实时视频应用,通过对H.264码率控制技术的研究和优化,力求提高重建视频的主观质量。
     本文首先简要介绍了H.264采用的若干先进编码技术,特别是与码率控制紧密联系的帧内/帧间预测技术和结合整数DCT变换的量化策略。接着对率失真理论在视频编码优化以及码率控制中的应用进行了分析,并总结出码率控制方案中常用的几个率失真模型。随后重点阐述了码率控制的几个关键问题,在对JVT推荐的系列H.264码率控制参考算法进行回顾的基础上,分析了现有H.264码率控制技术的缺陷以及对此进行优化的可能性。
     然后,针对现有H.264帧级比特分配方案在视频序列包含快速运动内容或者场景切换时可能导致PSNR剧降的问题,提出了一种改进的基于预编码的H.264帧级比特分配方案。算法首先对帧内所有宏块进行16×16模式的预编码,并据此计算出“码率-失真之比”以度量当前帧的编码复杂度。目标帧比特数最终由帧编码复杂度、帧间PSNR波动程度以及缓冲区状况共同决定。实验结果表明该方案能够有效地抑制由于快速运动或者场景切换而导致的PSNR剧降,并取得一定的PSNR增益。此外,由于预编码不依赖于后续编码帧,且导致的额外计算复杂度也在一个可接受的范围内,这为算法的实时应用提供了可能。
     为了实现质量恒定的实时视频编码,改善重建视频图像的观看效果,本文将ρ域率失真模型与二步编码框架相结合,提出了一种面向实时应用的视频质量平滑的H.264码率控制算法。算法第一步对当前帧的所有宏块进行编码,根据编码结果建立当前帧的ρ域率失真模型。同时采用一个低通滤波器估算当前帧的目标失真度,并结合GOP剩余编码比特和缓冲区状态得到当前帧的目标比特数。如果第一步得到的编码失真或者编码比特超过相应的阈值,则进行第二步编码。第二步采用ρ域码率控制算法得到帧内所有宏块的最终量化参数,并对第一个编码阶段的残差信号进行再编码。该算法在准确控制码率的同时,实现了相对平滑的视频质量输出。
     最后,本文分析了从客观到主观的视频质量评价标准发展过程,指出根据HVS特性进行视频编码器优化的必要性。在此基础上,重点探讨了模式选择与帧内比特分配之间的关系,以及基于视觉感知的H.264模式选择优化的意义和可行性。为了进一步提高重建视频的主观质量,本文从视频编码的角度出发,提出了一个基于视觉重要性的视频图像分析模型。根据这个模型,提出了一种基于视觉感知的H.264自适应模式选择算法。算法按照每个宏块的视觉重要性等级,自适应地调整率失真优化模式选择过程中的拉格朗日算子,使得视觉重要性等级高的宏块采用失真较小的编码模式,视觉重要性等级低的宏块采用码率较低的编码模式,从而实现了基于视觉感知的编码性能优化。针对码率受限的应用环境,本文在自适应模式选择算法的基础上进一步提出了一种宏块级的码率控制策略,有效提高了重建视频的主观质量。
In recent years, with the development of information society,the demands for multimedia increase largely. Corresponding digital video products are popular in broad application areas such as business, amusement and surveillance, etc. This drives the digital video techniques of encoding, processing and transmission to advance rapidly. Being the newest international video coding standard, H.264/AVC achieves great improvements in coding efficiency, quality and network adaptability. As a result, H.264 gradually becomes dominant in video applications.
     Meanwhile, rate control plays an important role in the application of video coding standards. For a video encoder, rate control is employed to maximize the coding quality at certain channel bandwidth and buffer constraints. However, the interdependence of rate control and RDO in H.264 makes it more difficult to implement than that in prior standards. In this thesis, we focus on improving the perceptual quality of real time video applications by optimization of H.264 rate control scheme.
     Firstly, the advanced coding features of H.264 are introduced, especially for the Intra/Inter prediction methods and novel quantization scheme combined with interger DCT-like transform, which are closely related with rate control. Then we give an analysis of rate distortion theory in video encoder and rate control optimization. The classical rate distortion models for rate control are reviewed. Subsequently, we sum up some key issues in rate control. Based on the JVT adopted rate control schemes, we give a discussion on the shortage of existing H.264 rate control algorithms and the probabilities of improvements.
     To relieve the video quality degradation caused by high motions and scene changes, an improved frame-layer bit allocation scheme based on pre-encoding is proposed. First, the frame is pre-encoded in 16×16 modes with a fixed quantization parameter (QP). The coding complexity of current frame is then measured by rate-distortion ratio according to the coding results of pre-encoding stage. The frame bit budget is finally decided by the frame coding complexity and inter-frame PSNR fluctuation, combined with the buffer status. Simulation results show that, in comparison with the H.264 adopted rate control scheme, our method is more efficient to suppress the sharp PSNR drops due to high motions and scene changes. The pre-encoding stage introduces no more than 30% extra computational complexities and need no any following frame, which makes it applicable to real time video coding.
     To futher improve the visual quality of real time video applications by means of smoothing the frame quality fluctuations, we develop a two-stage rate control scheme. It integrates theρ-domain R-D model into a two-stage H.264 coding framework. In the first stage, a coarse QP is used for motion estimation and RDO. Based on the coding results of this stage, the relatedρ-domain R-D model is constructed. Then a low-pass filter is used to estimate the target frame distortion. The frame bit allocation is determined by target distortion, remaining coding bits and buffer status. If the bit rate or distortion of the first stage exceeds related thresholds, the second coding stage is performed, which adopts theρ-domain rate control scheme to get the refined QP of each MB for residual signal recoding. Experimental results show the proposed scheme can efficiently smooth out the vidual quality fluctuation between successive frames, on the basis of meeting bit rate constraints accurately.
     Finally, the development of video quality measurement is reviewed, based on which we give a discussion on the necessities of video encoder optimization in terms of HVS characteristics. And the relationship between mode decision and bit allocation within a frame is analyzed. Then we focus on the benefits and feasibilities of perceptual optimization for H.264 mode decision. According to above analysis, a perceptual importance analysis model is developed for video segmentation from the view of video encoding. Base on this model, we propose a perceptual mode decision scheme for H.264, which adaptively adjusts the Lagrangian multiplier in RDO process in terms of the perceptual importance of each MB. Therefore, in a frame, more bits can be allocated to the regions with high perceptual importance for visual quality improvement and few bits to the regions with low perceptual importance for bit rate saving. To meet bit rate constraints, we proposed a MB-layer rate control algorithm on the basis of adaptive mode decision scheme. The simulation results show the efficiency of the proposed scheme.
引文
[1] ISO/IEC JTC1/SC29/WG11, MPEG ISO CD 11172-1991 Coding of Moving Pictures and Associated Audio of Digital Storage at up about 1.5Mbit/s, Nov. 1991.
    [2] ISO/IEC -DIS 13818-2, Information Tech. - Generic Coding of Moving Pictures and Associated Audio Infomation - part 2: Video Rep., 1994.
    [3] ISO/IEC JTC1/SC29/WG11, 14496-2: Information Technology - Generic Coding of Audio-Visual Objects - Part 2: Visual., MPEG99/N2688. Seoul, March 1999.
    [4] ISO/IEC JTC/SC29/WG11. MPEG-4 Video Verification Model Version 10.0, MPEG98/N1992. San Jose, Feb. 1998.
    [5] ITU-T, Video codec for audiovisual services at 64kbits, International Telecommunication Union. Geneva, Switzerland, ITU-T Recommendation H.261, 1993.
    [6] ITU-T, Video coding for low bitrate communication, International Telecommunications Union. Geneva, Switzerland, ITU-T Recommendation H.263, 1998.
    [7] ITU-T VCEG-P07, Draft ITU-T recommendation H.264 (a.k.a "H.26L"), VCEG(SG16/Q6), 16th Meeting: Fairfax. Virginia, USA, May 2002.
    [8] T. Wiegand, G.J. Sullivan, and G.B. jntegaard. "Overview of the H.264/AVC video coding standard," IEEE Trans. Circuits Syst. Video Technol., vol. 13, no. 7, pp. 560-576, 2003.
    [9]余松煜,周源华,吴时光,数字图像处理,电子工业出版社, 1987.11.
    [10] D.A. Huffman, "A method of the construction of minimum-redundancy codes," Proc. of the Inst. Radio Engineers, vol. 40, pp. 1098-1101, 1952.
    [11] P.G. Howard and J.S. Vitter, "Arithmetic coding for data compression," Proc. IEEE, vol. 82, no. 6, pp. 857-865, June 1994.
    [12] H. Meyr, H. Rosdolsky, and T. Huang, "Optimum run length codes," IEEE Trans. Communications, vol. 22, no. 6, pp. 826-835, June 1974.
    [13]刘毓敏,数字视音频技术与应用,电子工业出版社, 2003.1.
    [14] D.J. Connor, R.F.W. Pease, and W.G. Scholes. "Television coding using two-dimensional spatial prediction," Bell Syst. Tech. J, vol. 50, no. 3, pp. 1049-1061, 1971.
    [15] R.J. Clarke, Transform coding of images, London and Orlando, FL, Academic Press, 1985.
    [16] G. Cote, "H.263+: Video coding at low bit rates," IEEE Trans. Circuits Syst. Video Technol., vol. 8, no. 7, pp. 849-866, 1998.
    [17] ITU-T Recommendation H.263, Draft Text of Recommendation H.263 Version 2 ("H.263+") for Decision, Sept. 1997.
    [18] ITU-T Rec. H.263++, video coding for low bit-rate communication, Aug. 1999.
    [19] T. Wiegand, H. Schwarz, A. Joch, F. Kossentini, and G.J. Sullivan, "Rate-constrained coder control and comparison of video coding standards," IEEE Trans. Circuits Syst. Video Technol., vol. 13, no. 7, pp. 688-703, 2003.
    [20] T. Sikora, "Trends and perspectives in image and video coding," Proceedings of the IEEE, vol. 93, no. 1, pp. 6-17, January, 2005.
    [21] P. Salmbier, L. Torres, F. Meyer, and C. Gu, "Region-based video coding using mathematical morphology," Proc. of IEEE, vol. 83, no. 6, pp. 843-857, June 1995.
    [22] L. Torres and M. Kunt, The second Generation Approch, NJ: Kluwer, Englewood Cliffs, 1996.
    [23] M. Karczewicz, J. Niewglowski, and P. Haavisto, "Video coding using motion compensation with polynomial motion vector fields," Signal Processing: Image Commun., vol. 10, no. 1-3, pp. 63-91, 1997.
    [24] P. Kauff, B. Makai, S. Rauthenberg, U. Golz, J.L.P. DeLamillieure, and T. Sikora, "Functional coding of video using a shape-adaptive DCT algorithm and object-based motion prediction toolbox," IEEE Trans. Circuits Syst. Video Technol., vol. 7, no. 1, pp. 181-196, Feb. 1997.
    [25] M.-C. Lee, W. Chen, C.B. Lin, C. Gu, T. Markoc, S.I. Zabinsky, and R. Szeliski, "A Layered Video Object Coding System Using Sprite and Affine Motion Model," IEEE Trans. Circuits Syst. Video Technol., vol. 7, no. 1, pp. 130-145, Feb. 1997.
    [26] P. Eisert, T. Wiegand, and B. Girod, "Model-aided coding: A new approach to incorporate facial animation into motion-compensated video coding " IEEE Trans. Circuits Syst. Video Technol., vol. 10, no. 3, pp. 344-358, Apr. 2000.
    [27] ISO/IEC JTC/SC29/WG11, MPEG test model 5, April 1993.
    [28] ITU-T/SG15, Video Coder Test Model, TMN8, June 1997.
    [29] ISO/IEC JTC1/SC29/WG11, MPEG-4 video verification model v18.0, January 2001.
    [30] S.W. Ma, W. Gao, Y. Lu, and H.Q. Lu, "Proposed draft description of rate control," JVT-F086, 6th Meeting, Awaji, Japan, December 2002.
    [31] Z.G. Li, F. Pan, K.P. Lim, G.N. Feng, X. Lin, and S. Rahardaj, "Adaptive basic unit layer rate control for JVT," JVT-G012, 7th meeting, Pattaya, Thailand, March 2003.
    [32] H.-M. Hang and J.-J. Chen, "Source model for transform video coder and its application-Part I: Fundamental theory," IEEE Trans. Circuits Syst. Video Technol., vol. 7, pp. 287-298, April 1997.
    [33] T. Chiang and Y.-Q. Zhang, "A new rate control scheme using quadratic rate distortion model," IEEE Trans. Circuits Syst. Video Technol., vol. 7, no. 1, pp. 246-250, February 1997.
    [34] W. Ding and B. Liu, "Rate control of MPEG video coding and recording by rate-quantization modeling," IEEE Trans. Circuits Syst. Video Technol., vol. 6, no. 1, pp. 12-20, 1997.
    [35] J. Ribas-Corbera and D.L. Neuhoff, "Optimizing block size in motion-compensated video coding," Journal of Electronic Imaging, vol. 7, pp. 155-165, January 1998.
    [36] M. Jiang, X. Yi, and N. Ling, "Improved frame-layer rate control for H.264 using MAD ratio," Proc. IEEE Int. Symp. Circuits Syst., vol. 3, pp. 813-816, Vancouver, BC, Canada, May 2004.
    [37] S. Wan, Y.L. Chang, and F.Z. Yang, "Frame-layer rate control for JVT video coding using improved quadratic rate distortion model," VCIP, 2005.
    [38] D.-K. Kwon, M.-Y. Shen, and C.-C. Jay Kuo, "Rate control for H.264 video with enhanced rate and distortion models," IEEE Trans. Circuits Syst. Video Technol., vol. 17, no. 5, pp. 517-529, May 2007.
    [39] Z. Chen and K.N. Ngan, "Towards R-D tradeoff in real-time color video coding," IEEE International Symposium on Circuit and System, Koc, Greece, 2006.
    [40] H.L. Wang and S. Kwong, "Rate-distortion optimization of rate control for H.264 with adaptive initial quantization parameter determination," IEEE Trans. Circuits Syst. Video Technol., vol. 18, no. 1, pp. 140-144, January 2008.
    [41] Z.H. He and S.K. Mitra, "Optimum bit allcoatiion and accurate rate control for video coding viaρ-domain source modeling," IEEE Trans. Circuits Syst. Video Technol., vol. 12, no. 10, pp. 840-849, October 2002.
    [42] N. Kamaci, Y. Altunbasak, and R.M. Mersereau, "Frame bit allocation for the H.264/AVC video coder via cauchy-density-based rate and distortion models," IEEE Trans. Circuits Syst. Video Technol., vol. 15, no. 8, pp. 994-1006, 2005.
    [43] Z.Z. Chen and K.N. Ngan, "Distortion variation minimization in real-time video coding," Signal Processing: Image Commun., vol. 21, no. 4, pp. 273-279, April 2006.
    [44] G.M. Schuster, G. Melnikov, and A.K. Katsaggelos, "A review of the minimum maximum criterion for optimal bit allocation among dependent quantizers," IEEE Trans. Multimedia, vol. 1, no. 1, pp. 3-7, March 1999.
    [45] N. Cherniavsky, G. Shavit, M.F. Ringenburg, R.E. Ladner, and E.A. Riskin, "MultiStage: A MINMAX bit allocation algorithm for video coders," IEEE Trans. Circuits Syst. Video Technol., vol. 17, no. 1, pp. 59-67, 2007.
    [46] Z.H. He, W. Zeng, and C.W. Chen, "Low-pass filtering of rate-distortion functions for quality smoothing in real-time video communication," IEEE Trans. Circuits Syst. Video Technol., vol. 15, no. 8, 2005.
    [47] B. Xie and W. Zeng, "A sequence-based rate control framework for consistent quality real-tIme video," IEEE Trans. Circuits Syst. Video Technol., vol. 16, no. 1, pp. 56-71, January 2006.
    [48] C.W. Wong, O.C. Au, B. Meng, and H.K. Lam, "Perceptual rate control for low-delay video communications," IEEE Int. Conf. on Multimedia and Expo., vol. 3, pp. 361-364, 2003.
    [49] A.A. Webster, C.T. Jones, M.H. Pinson, S.D. Voran, and S. Wolf, "An objective video quality assessment system based on human perception," SPIE Human Vision, Visual Processing, and Digital DIsplay IV, 1993.
    [50] Z. Wang, L. Lu, and A.C. Bovik, "Video Quality Assessment Based On Structural Distortion Measurement," Signal Processing: Image Commun., vol. 19, no. 2, pp. 121-132, 2003.
    [51] S. Kim and M. Park. "Extracting moving / static objects of interest in video," Lecture Notes in Computer Science vol. 4261, pp. 722-729, 2006.
    [52] Y. Sun, I. Ahmad, D.D. Li, and Y.-Q. Zhang, "Region-based rate control and bit allocation for wireless video transmission," IEEE Trans. Multimedia, vol. 8, no. 1, pp. 1-10, February 2006.
    [53] Y. Jia, W. Lin, and A.A. Kassim, "Estimating just-noticeable distortion for video," IEEE Trans. Circuits Syst. Video Technol., vol. 16, no. 7, pp. 820- 829, 2006.
    [54] Overview of H.264, H.264/MPEG-4 Part 10 White Paper, www. vcdex. com. 2002.
    [55]宋磊, H.264视频编码算法在Ti DM642平台上的实现和优化:[学位论文],保存地点:上海交通大学图像通信与信息处理研究所, 2007.
    [56] I.E.G. Richardson, H.264 and MPEG-4 Video Compression, John Wiley & Sons, Ltd., Jan 2004.
    [57] J. Ostermann, J. Bormans, and P. List, "Video coding with H.264/AVC: tools, performance, and complexity," Circuits and Systems Magazine, vol. 4, no. 1, pp. 7-28, 2004.
    [58] T. Wiegand, G.J. Sullivan, and G. Biontegaard, "Overview of H.264/AVC video coding standard," IEEE Trans. Circuits Syst. Video Technol., vol. 13, no. 7, pp. 560-576, July 2003.
    [59]毕厚杰,新一代视频压缩编码标准—H.264/AVC,人民邮电出版社, 2005.
    [60] T. Bergger, Rate Distortion Theory, NJ: Prentice Hall, Englewood Cliffs, 1971.
    [61] O.A. Zuniga, R.M. Haralick, and R.L. Klein, "Rate-distortion methods for image and video compression," IEEE Transactions on signal processing, pp. 23-50, Nov. 1998.
    [62] G. Sullivan and T. Wiegand, "Rate-distortion optimization for video compression," IEEE Transaction on signal processing, pp. 74-90, Nov. 1998.
    [63] H. Everett, "Generalized Lagrange multiplier method for solving problems of optimum allocation of resources," Operations Res., vol. 11, pp. 399-417, 1963.
    [64] Y. Shoham and A. Gersho, "Efficient bit allocation for an arbitrary set of quantizers," IEEE Trans. Acoust., Speech, Signal Processing, vol. 36, no. 9, pp. 1445-1453, 1988.
    [65] A. Ortega, K. Ramchandran, and M. Vetterli, "Optimal trellis-based buffered compression and fast approximation," IEEE Trans. on Image Proc., vol. 3, no. 1, pp. 24-40, Jan. 1994.
    [66] R. Bellman, Dynamic Programming, www.sciencemag.org, July 1966.
    [67] D.P. Bertsekas, Dynamic programming and optimal control, Athena Scientific, 2001.
    [68] E.Y. Lam and J.W. Goodman, "A mathematical analysis of the DCT coefficient distribution for images," IEEE Transaction on Image Processing, vol. 9, no. 10, pp. 1661-1666, Oct. 2000.
    [69] L.-J. Lin and A. Ortega, "Bit-rate control using piecewise approximated rate-distortion characteristics," IEEE Trans. Circuits Syst. Video Technol., vol. 8, no. 4, pp. 446-459, Aug. 1998.
    [70] T. Chiang and Y.-Q. Zhang, "A new rate control scheme using quadratic rate-distortion modeling," IEEE Trans. Circuits Syst. Video Technol., vol. 7, no. 1, pp. 246-250, Feb. 1997.
    [71] B. Tao, B.W. Dickinson, and H.A. Peterson, "Adaptive model-driven bit allocation for MPEG video coding," IEEE Trans. Circuits Syst. Video Technol., vol. 10, no. 1, pp. 147-157, 2000.
    [72] J. Ribas-Corbera and D. Neuhoff, "On the optimal motion vector accuracy for block-based motion-compensated video coders," Proc. IS&T/SPIE Dig. Video Compression, San Jose, CA, Jan. 1996.
    [73] J. Ribas-Corbera and S. Lei, "Rate control in DCT video coding for low delay video communication," IEEE Trans. Circuits Syst. Video Technol., vol. 9, pp. 172-185, Feb. 1999.
    [74] F. Pan, Z.G. Li, K.P. Lim, and G.N. Feng, "Reducing frame skipping in MPEG-4 rate control scheme," IEEE Trans. Acoust., Speech, Signal Processing, vol. 4, no. 5, pp. 3409-3412, 2002.
    [75] H.J. Lee, T. Chiang, and Y.-Q. Zhang, "Scalable Rate Control for MPEG-4 Video," IEEE Trans. Circuits Syst. Video Technol., vol. 10, no. 6, pp. 878-894, Feb. 2000.
    [76] N. Ozbek and A.M. Tekalp, "Content-aware bit allocation in scalable multi-view video coding," Lecture Notes in Computer Science, vol. 4105/2006, pp. 691-698, Sept. 2006.
    [77] J.G. Puttenstein, I. Heynderickx, and G. de Haan, "Objective evaluation of noise reduction performance in TV-systems," 2002 International Conference on Image Processing, vol. 3, pp. 69-72, 2002.
    [78] S.H. Bae, T.N. Pappas, and B.-H. Juang, "Spatial resolution and quantization noise tradeoffs for scalable image compression," Proc. IEEE Int. Conf. Acoustics, Speech, and Signal Processing, vol. 1, May 2006.
    [79] A.Tamtaoui and P. Poda, "On the enhancement of unequal error protection performances in images transmission over time-varying channels," International Journal of Computer Science and Network Security, vol. 6, pp. 168-174, Spet. 2006.
    [80] Y. Yu, J. Zhou, and C.W. Chen, "A novel two-pass VBR coding algorithm for fixed-size storage application," IEEE Trans. Circuits Syst. Video Technol., vol. 11, pp. 345-356, Mar. 2001.
    [81] P.H. Westerink, R. Rajagopalan, and C.A. Gonzales, "Two-pass MPEG-2 variable-bit-rate encoding," IBM Jounal of Research and Development, vol. 2, no. 4, pp. 361-372, 1999.
    [82] G. Sullivan, T. Wiegand, and K.P. Lim, "Joint model reference encoding methods and decoding concealment methods," JVT-I049, San Diego, Sept. 2003.
    [83] M. Jiang and N. Ling, "On enhancing H.264/AVC video rate control by PSNR-based frame complexity estimation," IEEE Trans. Consumer Electron., vol. 51, no. 1, pp. 281-286, 2005.
    [84] S.W. Ma, W. Gao, and F. Wu, "Rate control for JVT video coding scheme with HRD considerations," IEEE ICIP2003, vol. 3, pp. 793-796, Sept. 2003.
    [85] Z.G. Li, F. Pan, K.P. Lim, G.N. Feng, X. Lin, S. Rahardja, and D.J. Wu, "Adaptive frame layer rate control for H.264," ICME2003, vol. 1, pp. 6-9, 2003.
    [86] Z.Z. Chen and K.N. Ngan, "Towards rate-Distortion tradeoff in real-time color video coding," IEEE Trans. Circuits Syst. Video Technol., vol. 17, no. 2, pp. 158-167, Feb. 2007.
    [87] X. Jing, L.P. Chau, and W.-C Siu, "Frame complexity-based rate-quantization model for H.264/AVC intraframe rate control," IEEE Signal Processing Letters, vol. 15, pp. 373-376, 2008.
    [88] C.C. Wang, T.F. Yeh, and C.W. Yu, "An improved rate control for video communication of H. 264 standard," Image and Signal Processing, 2008, vol. 1, pp. 436-440, May 2008.
    [89] D.D. Zhang and Z.Z. Chen, "Constant distortion rate control for H.264/AVC high definition videos with scene change," ISCAS 2008, pp. 3498-3501, Seattle, WA, May 2008.
    [90] M. Jiang and N. Ling, "Low-delay rate control for real-time H.264/AVC video coding," IEEE Trans. Multimedia, vol. 8, no. 3, pp. 467-477, June 2006.
    [91] H.T. Yu, F. Pan, and Z.P. Lin, "A new bit estimation scheme for H.264 rate control," Proceedings of 2004 IEEE International Symposium on Consumer Electronics, pp. 396-399, Reading, UK, Sept. 2004.
    [92] W. Lie, C. Chen, and T. Lin, "Two-pass Rate-Distortion optimized rate control technique for H.264/AVC video," Proc. SPIE 2005, vol. 2, pp. 1061-1070, July 2005.
    [93] S.W. Ma, W. Gao, and Y. Lu, "Rate-Distortion analysis for H.264/AVC video coding and its application to rate control," IEEE Trans. Circuits Syst. Video Technol., vol. 15, no. 12, pp. 1533-1544, 2005.
    [94] H.J. Song and C.C. Kuo, "Rate control for low-bit-rate video via variable-encoding frame rates," IEEE Trans. Circuits Syst. Video Technol., vol. 11, no. 4, pp. 512-521, 2001.
    [95] JM11.0, http://iphome.hhi.de/suehring/tml/download/.
    [96] M. Jiang, X. Yi, and N. Ling, "Frame layer bit allocation scheme for constant quality video," ICME'04, vol. 2, pp. 1055-1058, Taipei, 2004.
    [97] A. Marsumura, S. Natio, R. Kwarda, and A. Koike, "Effective rate control method for minimizing temporal fluctuations in picture quality applicable for MPEG-4 AVC/H.264 encoding," ICIP'05, vol. 1, pp. 69-72, Sept. 2005.
    [98] L. Ping, X.K. Yang, and W.S. Lin, "Buffer-constrained R-D Model-Based Rate Control for H.264/AVC," IEEE Int. conf. Acoustics, Speech, and Signal Processing, vol. 2, pp. 321-324, March 2005.
    [99] S.-C. Lim, H.-R. Na, and Y.-L. Lee, "Rate control based on linear regression for H.264/MPEG-4 AVC," Signal Processing: Image Commun., vol. 22, no. 1, pp. 39-58, Jan. 2007.
    [100] Z.H. He and S.K. Mitra, "A Linear Source Model and a Unified Rate Control Algorithm for DCTVideo Coding," IEEE Trans. Circuits Syst. Video Technol., vol. 11, no. 6, pp. 970-981, 2002.
    [101] X.Q. Yi and N. Ling, "Improved H. 264 rate control by enhanced MAD-based frame complexity prediction," Journal of Visual Communication and Image Representation, vol. 17, no. 2, pp. 407-424, April 2006.
    [102] J.F. Xu and Y. He, "A novel rate control for H.264," ISCAS2004, vol. 3, pp. 23-26, 2004.
    [103] M.M. Ghandi and M. Ghanbari, "A Lagrangian optimized rate control algorithm for the H.264/AVC encoder," ICIP2004, vol. 1, pp. 123-126, Oct. 2004.
    [104] D.K. Kwon, M.Y. Shen, and C.C. Jay Kuo, "An operational rate control scheme for H.264 with two-stage encoding," Proc. of SPIE, vol. 5909, San Diego, CA, USA, Aug. 2005.
    [105] H.T. Yu and Z.P. Lin, "An improved rate control algorithm for H.264," Proc. of IEEE Int. Symposium on Consumer Electronics, pp. 396-399, Reading, UK, Sept. 2004.
    [106] Z.Z. Chen and K.N. Ngan, "Recent advances in rate control for video coding," Signal Processing: Image Commun., vol. 22, no. 1, pp. 19-38, Jan. 2007.
    [107] H. Gish and J.N. Pierce, "Asymptotically efficient quantizing," IEEE. Trans. Inf. Theory, vol. IT-14, no. 5, pp. 676-683, Sept. 1968.
    [108] T. Berger, Rate Distortion Theory, Englewood Cliffs, NJ: Prentice Hall 1984.
    [109] Z.H. He and S.K. Mitra, "A unified rate-distortion analysis framework for transform coding," IEEE Trans. Circuits Syst. Video Technol., vol. 11, no. 12, pp. 1221-1236, Dec. 2001.
    [110] Y.K. Kim, Z.H. He, and S.K. Mitra, "A linear source model and a unified rate control algorithm for H.263/MPEG-2/MPEG-4," IEEE Int. Conf. Acoustics, Speech and Signal Processing, vol. 3, pp. 1777-1780, May 2001.
    [111] Z.H. He and T. Chen, "Linear rate control for JVT video coding," Proc. of ITRE03, Aug. 2003.
    [112] Il-H. Shin, Y.-L. Leeb, and H.W. Park, "Rate control using linear rate-ρmodel for H.264," Signal Processing: Image Commun., vol. 19, pp. 341-352, 2004.
    [113] Y.T. Dong, X.Z. Fang, and J. Yang, "Frame-layerρ-domain R-D optimization in H.264," IEICE info.&sys. letter, 2007.
    [114] D.-K. Kwon, M.-Y. Shen, and C.-C. Jay Kuo, "Rate control for H.264 Video With Enhanced Rate and Distortion Models," IEEE Trans. Circuits Syst. Video Technol., vol. 17, no. 5, pp. 517-529, May 2007.
    [115] Z.G. Xie and J. Liu, "Efficient rate control for H.264 using RD-cost," ICME2007, pp. 412-415, Beijing, July 2007.
    [116] JM 12.3, http://iphome.hhi.de/suehring/tml/download/
    [117]徐平,朱善安, "基于ρ域源模型的H.264宏块行层码率控制算法,"中国图象图形学报, vol. 11, no. 12, pp. 1806-1812, 2006.
    [118] G.R. Cole, C.F. Stromeyer, and R.E. Kronauer, "Visual interactions with luminance and chromatic stimuli," Optical Society of America, Journal, vol. 7, no. 1, pp. 128-140, 1990.
    [119] M.A. Losada and K.T. Mullen, "The spatial tuning of chromatic mechanisms identified by simultaneous masking," Visual Research, vol. 34, no. 3, pp. 331-341, 1994.
    [120] Z. Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli, "Image quality assessment: from error visibility to structural similarity," IEEE Trans. on Image Proc., vol. 13, no. 4, pp. 600-612, 2004.
    [121] A.M. van Dijk and J.B. Martens, "Subjective quality assessment of compressed images," Signal Processing, vol. 58, no. 3, pp. 235-252, May 1997.
    [122] A.M. Eskicioglu and P.S. Fisher, "Image quality measures and their performance," IEEE Trans. Communications, vol. 43, no. 12, pp. 2959-2965, Dec. 1995.
    [123] J.O. Limb, "Picture coding: a review," Proc. IEEE, vol. 68, no. 3, pp. 366-406, March 1980.
    [124] VQEG, Final report from the video quality experts group on the validation of objective models of video quality assessment, 2000.
    [125] D.H. Kelly, "Motion and VisionⅡ, Stabilized spatio-temporal threshold surface," Journal of the Optical Society of America, vol. 69, no. 10, pp. 1340-1349, Oct. 1979.
    [126] D.H. Kelly, "Spatiotemporal variation of chromatic and achromatic contrast thresholds," Journal of the Optical Society of America, vol. 73, no. 6, pp. 742-750, June 1983.
    [127] J. Yang, "Spatiotemporal separability in contrast sensitivity," Visual Research, vol. 34, no. 34, pp. 2569-2576, 1994.
    [128] J.G. Robson, "Spatial and temporal contrast sensitivity functions of the visual system," Journal of the Optical Society of America, vol. 56, no. 8, pp. 1141-1142, 1996.
    [129] C.J. Van Den B. Lambrecht, Perceptual models and architectures for video coding applications, Ph.D. dissertation, Swiss Federal Institute of Technology, 1996.
    [130] S. Winkler, "Issues in vision modeling for perceptual video quality assessment," Signal Processing, vol. 78, no. 2, pp. 231-252, Oct. 1999.
    [131] H.R. Wu and K.R. Rao, Digital video image quality and perceptual coding, CRC Press, New York, 2006.
    [132] C.J. Van Den B. Lambrecht, and O. Verscheure, "Perceptual quality measure using a spatio-temporal model of the human visual system," Proceedings of the SPIE, vol. 2668, pp. 450-461, Jan. 1996.
    [133] M.J. Nadenau, S. Winkler, D. Alleysson, and M. Kunt, "Human vision models for perceptually optimized image processing-a review," Proceedings of the IEEE, 2000.
    [134] A.J. Ahumada, B.L. Beard, and R. Eriksson, "Spatio-temporal discrimination model predicts temporal masking function," Proceedings of the SPIE, vol. 3299, pp. 120-127, Feb. 1998.
    [135] J. Senders, "Distribution of attention in static and dynamic scenes," Proceedings of the SPIE, vol. 3016, pp. 186-194, Feb. 1997.
    [136] X. Marichal, T. Delmot, V. De Vleeschouwer, and B. Macq, "Automatic detection of interest areas of an image or of a sequence of images," Proc. of ICIP1996, vol. 3, pp. 371-374, Lausanne, Switzerland, Sept. 1996.
    [137] E. Kowler, The role of visual and cognitive processes in the control of eye movement, Amsterdam: Elsevier, 1990.
    [138] B. Girod, "Eye movements and coding of video sequences " Proc. of Visual Communications and image processing, SPIE, vol. 1001, pp. 398-405, Cambridge, MA, USA, Nov. 1998.
    [139] M. Jiang and N. Ling, "On Lagrange multiplier and quantizer adjustment for H.264 frame-layer video rate control," IEEE Trans. Circuits Syst. Video Technol., vol. 16, no. 5, pp. 663-669, May 2006.
    [140] J. Zhang, X. Yi, N. Ling, and W. Shang, "Context Adaptive Lagrange Multiplier (CALM) of Motion Estimation in JM - Improvement," JVT-T046, Klagenfurt, 2006.
    [141] C.J. Tsai, C.W. Tang, C.H. Chen, and Y.H. Yu, "Adaptive rate-distortion optimization using perceptual hints," IEEE Int. Conf. on Multimedia and Expo., vol. 1, pp. 667-670, Taipei, June2004.
    [142] H.T. Yu, F. Pan, Z.P. Lin, and Y. Sun, "A perceptual bit allocation scheme for H.264," IEEE Int. Conf. on Multimedia and Expo., pp. 4-7, Amsterdam, July 2005.
    [143] JM12.2, http://iphome.hhi.de/suehring/tml/download/
    [144] L. Itti, C. Koch, and E. Niebur, "A model of saliency-based visual attention for rapid scene analysis," IEEE TRans. Pattern Analysis and Machine Intelligence, vol. 20, no. 11, pp. 1254-1259, 1998.
    [145] Z. Wang, H.R. Sheikh, and A.C. Bovik, The handbook of video databases: design and applications, CRC Press, 2003.
    [146] P. Orbanz and J.M. Buhmann, "Nonparametric bayesian image segmentation," International Journal of Computer Vision, vol. 77, no. 1, pp. 25-45, May 2008.
    [147] Y.J. Zhang, "A survey on evaluation methods for image segmentation," Pattern Recongnition, vol. 29, no. 8, pp. 1335-1346, Aug. 1996.
    [148] H. Zhang, J.E. Fritts, and S.A. Goldman, "Image segmentation evaluation: a survey of unsupervised methods," Computer Vision and Image Understanding, vol. 110, no. 2, pp. 260-280, Aug. 2008.
    [149] Y.F. Ma and H.J. Zhang, "Contrast-based image attention analysis by using fuzzy growing," Proc. of ACM Int. Conf. on Multimedia, pp. 374-381, Berkeley, CA, USA, 2003.
    [150] U. Rajashekar, L.K. Cormack, and A.C. Bovik, "Image features that draw fixations," Proc. of ICIP, vol. 3, pp. 13-16, Sept. 2003.
    [151] C.W. Tang, "Spatiotemporal visual considerations for video coding," IEEE Trans. Multimedia, vol. 9, no. 2, pp. 313-316, 2007.
    [152] J. Kittler, "On the accuracy of the Sobel edge detector," Image and Vision Computing, vol. 1, no. 1, pp. 37-42, 1983.
    [153] ITU-R, Methodology for the subjective assessment of the quality of television pictures, ITU-R Recommendation BT.500-10. 2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700