静电纺丝技术制备无机纳米电缆与光催化性质的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着环境污染的加重,环境保护引起了人们越来越多的关注。半导体光催化降解有机污染物是一项节能、清洁,具有广阔应用前景的新兴技术。由于单组分的半导体对太阳光的吸收效率低,光催化活性不高,所以有关半导体光催化剂的改性研究成为人们研究的热点之一。
     本论文中采用同轴静电纺丝技术制备出了SnO_2@TiO_2同轴纳米电缆,SnO_2@ZnO同轴纳米电缆;采用静电纺丝技术制备了SnO_2/TiO_2复合纳米纤维,SnO_2/ZnO复合纳米纤维,SnO_2/ZnO复合纳米带;采用TG-DTA,FTIR,XRD,FESEM,TEM,EDS等分析测试手段对样品进行系统地表征。结果表明:纳米电缆的直径为100nm-300nm;纳米纤维直径为100-300nm;纳米带的宽度为2-6μm,厚度为240-600nm。
     以甲基橙、罗丹明B和感光废液为降解目标产物,研究了SnO_2@TiO_2和SnO_2@ZnO同轴纳米电缆、SnO_2/TiO_2和SnO_2/ZnO复合纳米纤维和SnO_2/ZnO复合纳米带的光催化活性。并重点探讨了同轴纳米电缆光催化过程中影响光催化效果的因素。结果表明,催化剂的浓度和焙烧温度对光催化性能有一定影响。通过对样品的UV-VIS分析表明,五种光催化剂对不同降解物均表现出一定的光催化活性。
Environmental protection has attracted more and more attention from the people with the increase of enviromental pollution. Semicoductor photocatalytic degration of organic pollutants is a new technology with energy-saving, pollution-free and wide application prospects. Single-component semiconductor possesses poor photocatalytic activity owing to its low efficienty for absorbing sunlight. Therefore, the modification of semiconduct photocatalyst has become one of the popular reseach subjects.
     In the dissertation, SnO_2@TiO_2 coaxial nanocables and SnO_2@ZnO coaxial nanocables were fabricated via coaxial electrospinnning. SnO_2/TiO_2 composite nanofibers SnO_2/ZnO composite nanofibers and SnO_2/ZnO composite nanobelts were fabricated via electrospinnning. The samples were systematically characterized by SEM, TEM, FTIR, XRD, TGA-DTA. The results show that the diameter of the prepared coaxial nanocables ranged from 100nm to 300nm, the diameter of the prepared composite nanofibers ranged from 100 nm to 300nm, the width of the prepared composite nanobelts ranged from 2μm to 6um. the thickness of the prepared composite nanobelts ranged from 240 nm to 600nm.
     The photocatalytic activities of prepared SnO_2@TiO_2 coaxial nanocables, SnO_2@ZnO coaxial nanocables, SnO_2/ZnOcomposite nanofibers, SnO_2/TiO_2 composite nanofibers, and SnO_2/ZnO composite nanobelts were studied by taking methyl orange, rhodamine B. photographic waste liquid as degradation agents, respectively. The factors of affecting to activity were systematicaly invesitigated by using the coaxial nanocables as photocatalysts. The results showed that concentration of the catalyst, calcination temperature had some influences on photocatalytic properties. By the analysis of ultraviolet and visible spectra (UV-VIS) of the samples, it was found that all the five kinds of photocatalysts exhibited certain photocatalytic activities for the different degradation agents.
引文
[1]HiroshiY.Electrochemical aspects of light-induced heterogeneous reactions on semiconductors[J].Journal Critical Reviews in Solid State and Materials Sciences.1993.18:69-111
    [2]于新意.张高科.周文君.光催化技术在废水处理中的应用[J].辽宁化工.2007.36(2):103-106
    [3]闫俊萍.张中太.唐子龙.罗绍华.半导体基纳米复合材料光催化研究进展[J].无机材料学报.2003.18(5):980-989
    [4]Chen Shifu.Zhao Wei.Liu Wei.Zhang Sujuan.Preparation.characterization and activity evaluation of p-n junction photocatalyst p-ZnO/n-TiO_2[J].Applied Surface Science.2008.255:2478-2484
    [5]Chen Shifu.Chen Lei.Gao Shen.Cao Gengyu.The preparation of coupled SnO_2/TiO_2 photocatalyst by ball milling[J].Materials Chemistry and Physics.2006.98:116-120
    [6]李莉.马禹.曹艳珍.张文治.郭伊荇.纳米复合光催化剂TiO_2-ZrO_2的制备,表征及其光催化活性[J].化学通报2009.6:529-533
    [7]Zhaoyang Liu.Darren Delai Sun.Peng Guo.and James O.Leckie.An Efficient Bicomponent TiO_2/SnO_2 Nanofiber Photocatalyst Fabricated by Electrospinning with a Side-by-Side Dual Spinneret Method[J].NANO LETTERS.2007.7(4):1081-1085
    [8]SATOT.SATOK,FUJISHIROY.et al.Photocatalytic properties of layered hydrous titanium oxide/CdS-ZnS nanocomposites incorporating CdS-ZnS into the interlayer[J].J Chem Tech Biotechnol.1996.67:339-344
    [9]颜秀茹.李小红.霍明亮.郭伟巍.巩永进.纳米SnO_2@TiO_2制备及其光催化性能[J].物理化学报.2007.17(1):23-28
    [10]张福安.核壳型纳米复合半导体的制备及其形貌控制研究.浙江大学材料与化工学院硕士论文.杭州.2006
    [11]FUKAHORI S.ICHIURAH.KITAOKAT.et al.Cap.turing of bisphenol A photodecomposition intermediates by composite TiO_2-zeolite sheets[J].Appl Catal B:Environ.2003.46:453-462
    [12]肖义.党利琴.安丽珍,白士英.雷志斌.中孔石墨碳负载TiO_2复合材料光催化降解罗丹明B和苯酚[J].催化学报.2008.29(1):31-36
    [13]王丽燕.王红霞.王爱杰.刘敏.磁性SiO_2载体的表面改性与纳米TiO_2光催化剂的固载[J].催化学报.2009.30(9):939-944
    [14]KHASELEVO.TURNER J A.Increasing eficiency in photoelectrochemical hydrogen production[J].Science.1998.280:425-427
    [15]万李.冯嘉猷.CdS/TiO_2复合半导体薄膜的制备及其光催化性能[J].环境科学研究.2009.22(1):95-98
    [16]张文艺.陈慧娣.董清玉.韩晓晶.SiO_2/TiO_2复合膜光催化降解胶片废水的研究[J].中国给水排水.2009.25(15):79-85
    [17]YASUMORI A.SHINODA H.KAMESHIMA Y.et al.Photocatalytic and photoelectrochemical properties of TiO_2-based-multiple layer thin film prepared by sol-gel and reactive-sputtering methods[J].J Mater Chem.2001.11:1253-1257
    [18]Demir MM.Yilgor.Yilgor E.Erman B.Electrospinning of polyurethane fibers[J].Polymer.2002.43(11):3303-3309
    [19]Gibson PW.Schreuder-Gibson HL.Rivin D.Electrospun Fiber Mats:Transport Properties[J].AIChE J.1999,45:190-195
    [20]Buchko CJ,Chen LC.Shen Y.Martin DC.Processing and microstructural characterization of porous biocompatible protein polymer thin films[J].Polymer.1999.40:7397-7407
    [21]Kenawy E-R.Bowlin GL.Mansfield K.Layman J,Simpson DG.Sanders EH.et al.Release of tetracycline hydrochloride from electrospun poly(ethylene-co-vinylacetate),poly(lactic acid),and a blend[J].J.Controlled.Release 2002,81:57-64.
    [22]Mirmohseni A,Oladegaragoze A.Anti-corrosive properties of polyaniline coating on iron[J].Synth Met.2000.114(2):105-108
    [23]Gibson P.Schreuder-Gibson H.Rivin D.Molecular modeling of carbon aerogels[J].Colloids Surf A Phys-Chem Eng Asp 2001,187:469-473
    [24]McCannJT.Li D,Xia.YN.Electrospinning of nanofibers with core-sheath,hollow,or porous structures[J].Journal of Materials Chemistry.2005.15(7):735-738
    [25]Sun ZC.Zussman E.Yarin AL.Wendorff JH.GreinerA.Compound Core-Shell Polymer Nanofibers by Co-Electrospinning[J].Advanced Materials.2003.15(22):1929-1932
    [26]Yu JH.Fridrikh SV.Rutledge GC.Production of Submicrometer Diameter Fibers by Two-Fluid Electrospinning [J].Advanced Materials.2004.16(17):1562-1566
    [27]Zhang YZ.Huang ZM.Xu XJ.Lim CT,Ramakrishna S.Preparation of Core Shell Structured PCL-r-Gelatin Bi-Component Nanofibers by Coaxial Electrospinning[J].Chemistry of Materials.2004.16(18):3406-3409
    [28]Xiao-Jian Han.Zheng-Ming Huang,Chuang-Long He,Ling Liu,Coaxial Electrospinning of PC(Shell)/PU(Core)Composite Nanofibers for Textile Application[J].POLYMER.COMPOSITES.2006.27:381-387
    [29]By Zaicheng Sun.Eyal Zussman.Alexander L.Yarin.Compound Core-Shell Polymer Nanofibers by Co-Electrospinning[J].Adv.Mater.2003,22(17):1929-1932
    [30]Alexander V.Bazilevsky.Alexander L.Yarin,and Constantine M,Megaridis.Co-electrospinning of Core-Shell Fibers Using a Single-Nozzle Technique[J].Langmuir.2007.23(5):2311-2314
    [31]Jian-Feng Zhang.Dong-Zhi Yang.Fei Xu.Zi-Ping Zhang.Rui-Xue Yin.and Jun Nie.Electrospun Core-Shell Structure Nanofibers from Homogeneous Solution of Poly(ethylene oxide)/Chitosan[J].Macromolecules.2009,42:5278-5284
    [32]Tao Song.Yanzhong Zhang.Tiejun Zhou.et al.Encapsulation of self-assembled FePt magnetic nanoparticles in PCL nanofibers by coaxial electrospinning[J].Chemical Physics Letters.2005.415:317-322
    [33]Zaicheng Sun.Eyal Zussman.Alexander L.et al.Compound Core-Shell Polymer Nanofibers by Co-Electrospinning [J].Adv.Mater,2003.15(22):1929-1932
    [34]Zhenyu Li.Huimin Huang.Ce Wang.Electrostatic Forces Induce Poly(vinyl aicohol)-Protected Copper Nanoparticles to Form Copper/Poly(vinyl alcohol) Nanocables via Electrospinning[J].Macromol.Rapid Commun.2006,27:152-155
    [35]Sungyeon Kim.Min-Chang Jeong,Byeong-Yun Oh.Woong Lee.Jae-Min Myoung.Fabrication of Zn/ZnO nanocables through thermal oxidation of Zn nanowires grown by RF magnetron sputtering[J].Journal of Crystal Growth.2006.290:485-489
    [36]Guangcheng Xi.Meng Zhang,Dekun Ma.Yongchun Zhu.Houbo Zhang.Yitai Qian.Controlled synthesis of carbon nanocables and branched-nanobelts[J].Carbon.2006.44:734-741
    [37]Ki-Hong Leea.Won-Seon Seob.Youngho Leeb.Myung-Hyun Leeb.Sun-Ju Songa.Wolfgang Sigmunda.Growth of SiC/C nanocables on SiO_2 films derived by gaseous composition control using Ti[J].Journal of Crystal Growth,2005,281:556-562
    [38]Congkang Xu.Misuk Kim,Sangyong Chung.Junghwan Chun.Dong Eon Kim.The formation of SiGaN/SiO_xN_y nanocables and SiO_xN_y-based nanostructures using GaN as a resource of Ga[J].Chemical Physics Letters.2004,398:264-269
    [39]Renzhi Ma.Yoshio Bando,Tadao Sato.Coaxial nanocables:Fe nanowires encapsulated in BN nanotubes with intermediate C layers[J].Chemical Physics Letters.2001.350:1-5
    [40]X.C.Wu.W.H.Song.B.Zhao.W.D.Huang.M.H.Pu.Y.P.Sun.J.J.Du.Synthesis of coaxial nanowires of silicon nitride sheathed with silicon and silicon oxide[J].Solid State Communications.2000.115:683-686
    [41]张双虎.徐淑芝.董相廷等.同轴纳米电缆的最新研究进展[J].稀有金属材料与工程.2008,37(6):1117-1123
    [42]张贺.稀土复合氧化物发光同轴纳米电缆的制备与表征,[硕士学位论文].长春.化学与环境工程学院.2009
    [43]H.Yoneyama,Y.Yamashita.H.Tamura,HETEROGENEOUS PHOTOCATALYTIC REDUCTION OF DICHROMATE ON N-TYPE SEMICONDUCTOR CATALYSTS[J].Nature.1979,282:817-818
    [44]J.Munoz.X.Dome'nech,TIO_2 CATALYZED REDUCTION OF CR(Ⅵ) IN AQUEOUS-SOLUTIONS UNDER ULTRAVIOLET ILLUMINATION[J].J.Appl.Electrochem.1990.20:518-521
    [45]L.B.Khalil,W.E.Mourad.M.W.Rophael.Photocatalytic reduction of environmental pollutant Cr(Ⅵ) over some semiconductors under UV/visible light illumination[J].Appl.Catal.B:Environ.1998.17:267-273
    [46]J.Domenech,J.Munoz.PHOTOCHEMICAL REDUCTION OF CHROMIUM(Ⅵ) OVER CADMIUM-SULFIDE.ZINC-SULFIDE.AND TUNGSTEN(Ⅵ) OXIDE[J].J.Chem.Res.Synopses.1987.15:106-107
    [47]G.Sivalingam.K.Nagaveni.M.S.Hegde.G.Madras.Photocatalytic degradation of various dyes by combustion synthesized nano anatase TiO_2[J].Appl.Catal.B:Environ.2003.45:23-38
    [48]P.Mohapatra,K.M.Parida,Photocatalytic activity of sulfate modified titania 3:Decolorization of methylene blue in aqueous solution[J].J.Mol.Catal.A:Chem.2006.258:118-123
    [49]M.Zalas.M.Laniecki.Photocatalytic hydrogen generation over lanthanides-doped titania[J].Sol.Energy Mater.Sol.Cells.2005.89:287-296
    [50]Y.Xie.C.Yuan,X.Li.Photocatalytic degradation of X-3B dye by visible light using lanthanide ion modified titanium dioxide hydrosol system[J].Colloids Surf.A.2005.252:87-94
    [51]X.Yan.J.He.D.Evans,X.Duan.Y.Zhu.Preparation.characterization and photocatalytic activity of Si-doped and rare earth-doped TiO_2 from mesoporous precursors[J].Appl.Catal.B:Environ.2005,55:243-252
    [52]H.Cuiying.Y.Wansheng,D.Liqin.L.Zhibin.S.Zhengang,Z.Lancui.Effect of Nd~(3-)Doping on Photocatalytic Activity of TiO_2 Nanoparticles for Water Decomposition to Hydrogen[J].Chin,J.Catal.2006.27:203-209
    [53]T.Peng,D.Zhao.H.Song.C.Yan.Preparation of lanthana-doped titania nanoparticles with anatase mesoporous walls and high photocatalytic activity[J].J.Mol.Catal.A:Chem.2005.238:119-126
    [54]Y.Zhang,H.Zhang.Y.Xu.Y.Wang.Significant effect of lanthanide doping on the texture and properties of nanocrystalline mesoporous TiO_2[J].J.Solid State Chem.2004.117:3490-3498
    [55]F.Li,X.Li.M.Hou.Photocatalytic degradation of 2-mercaptobenzothiazole in aqueous La~(3+)-TiO_2 suspension for odor control[J].Appl.Catal.B:Environ.2004,48:185-194
    [56]K.M.Parida.Nruparaj Sahu.Visible light induced photocatalytic activity of rare earth titania nanocomposites[J].Journal of Molecular Catalysis A:Chemical.2008.287:149-156
    [57]石建稳.郑经堂,胡燕等.Ho掺杂对纳米TiO_2晶体结构和光催化性能的影响[J].硅酸盐学报.2007.35(2):182-186
    [58]王怡中.符雁,汤鸿霄.甲基橙溶液多相光催化降解[J].环境科学.1998.19(1):1-4
    [59]沈伟韧,贺飞,赵文宽等.TiO_2纳米粉体的制备及光催化活性[J].武汉大学学报.1999.45(4):389-392
    [60]张慧.陈建华.陈鸿博等.纳米TiO_2混晶的形成及其对光催化性能的影响[J].分子催化.2006.20(3):249-254
    [61]陈剑雄.稀土掺杂二氧化钛的制备及其光催化性能研究:[硕士学位论文].福州:福州大学化学化工学院.2005
    [62]Horikoshi S.Hidaka H.Serpone N.Environmental remediation by an integrated mjcorowave/UV-illumination method microwaveassisted degradation of Rhodamine-B dye in aqueous TiO_2 dispersions[J].Environmental Science &Technology.2002.36(6):1357-1366
    [63]张立德.牟季美.纳米材料和纳米结构[M].北京:科学出版社.2001.88-93
    [64]贺北平.王占生.张锡辉.半导体光催化有机物的研究现状及发展趋势[J].环境科学.1994(5):80-83
    [65]XU Yiming,YU Xiaohan.LIU Huijun.et al.Synthesis of TiO_2 Nanoparticles Via a Ti(Ⅳ) Complex With StearicAcid and the Photocatalytic Activity for Organic Oxidation[J].Chinese Journal of Chemistry 2002.20(1):9-13
    [66]Fujii H.Ohtaki M.Eguchi K.Synththesis and Photocatalytic Activity of Lamellar Lamellar Titanium Oxide Formed by Surfactant Biloyer Templating[J].J Am Chem Soc.1998.120:6832-6839
    [67]Yan Y F.Liu P.Romeo M J.Al-Jassim M M.Formation of metallic zinc nanowires[J].J Appl Phys.2003.93(8):4807-4809
    [68]Hu J Q,Li Q,Meng XM.Lee C S.Lee S T.Thermal Reduction Route to the Fabrication of Coaxial Zn/ZnO Nanocables and ZnO Nanotubes[J].Chem Mater,2003.15(1):305-308
    [69]Kong X Y.Ding Y.Wang ZL.Metal Semiconductor Zn-ZnO Core-Shell Nanobelts and Nanotubes[J].J Phys Chem B.2004.108(2):570-574
    [70]Chiou W T.Wu W Y.Ting J M.Growth of single crystal ZnO nanowires using sputter deposition[J].Diamond and Related Materials,2003.12(10-11):1841-1844
    [71]Srikant V,Clarke D R.On the optical band gap of zinc oxide[J].J Appl Phys.1998.83:5447-5451
    [72]Zhang H.Yang D.Li S Z.Controllable growth of ZnO nanostructures by citric acid assisted hydrothermal process[J].Materials Letters.2005.59(13):1696-1700
    [73]Wang Y D,Zhang S.Wu X H.Green Light Luminescence from ZnO/Dodecylamine Mesolamellar Nanocomposites Synthesized by Self-Assembly[J].European Journal of Inorganic Chemistry.2005.2005(4):727-731
    [74]M.Abdullah.T.Morimoto.K.Okuyama.Generating Blue and Red Luminescence fromZnO/Poly(ethylene glycol) Nanocomposites Prepared Using an In-Situ Method[J].Advanced Functional Materials,2003,13(10):800-804
    [75]王存.王鹏.徐柏庆.ZnO_2/SnO_2纳米复合氧化物光催化剂催化降解对硝基苯胺[J].催化学报.2004.25(12):967-972
    [76]李红.张风梅.彭秧.徐清山.磁载光催化剂ZnO/SiO_2/γ-Fe_2O_3的光催化性能[J].光散射学报.2009,21(3):246-250
    [77]Wang N,Zhang Y F.Tang Y H,et al.SiO_2-enhanced synthesis of Si nanowires by laser ablation[J].Appl Phys Lett.1998,73(26):3902-3904
    [78]Look D C.Recent advances in ZnO materials and devices[J].Mater Sci Eng B,2001.80:383-387
    [79]Tang Z K,Wong G K L.Yu P,et al.Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films[J].Appl Phys Lett.1998,72:3270-3275
    [80]Wang Z L.Nano structure of zinc oxide[J].Mater Today.2004.6:26-30
    [81]Pan Z W,Dai Z R.Wang Z L.Nanobelt of semiconducting oxide[J].Science.2001.291:1947-1950

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700