超声和微波处理对乳蛋白浓缩水解物功能特性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
乳蛋白浓缩物(MPC)是一种新型乳制品,由于其具有高蛋白、低糖、低脂肪的特点,MPC需求量逐渐增加。有研究表明MPC用在奶酪、冰淇淋和酸奶上能改进产品的物理化学特性。然而,同其它乳蛋白如乳清蛋白和酪蛋白钠的浓缩物相比较时,MPC的功能特性相对较差。这可以通过一定的技术手段,增强浓缩物中的天然蛋白质基团暴露率加以改进。本研究利用微波(microwave,MW)和超声(ultrasound,US)技术将MPC进行预处理,以期提高MPC的水解率及功能特性。
     首先,利用微波或者超声对MPC做预处理,然后利用5种蛋白酶(碱性蛋白酶,胰蛋白酶,中性蛋白酶,碱性蛋白酶和风味蛋白酶)将其水解。微波及超声处理能够显著提高MPC水解产物的稳定性及水解程度,但不能降低水解物的苦味。水解物的血管紧张素转换酶(ACE)抑制活性有所提高,5分钟的超声波预处理后的中性蛋白酶水解物ICso值为0.23mgmL-1。利用液相色谱法分析MPC经中性蛋白酶酶解后产物中肽的水解状况。研究发现,在1-5分钟超声处理样品中出现的小分子肽不存在于对照组样品和8分钟超声处理的样品中。这可能由于随着预处理时间增长,ACE抑制活性的增加,这些小肽在8分钟预处理时被分解。同ACE抑菌活性相关的蛋白通过鉴定,其序列为:p-酪蛋白上WMHHQPHQPLPPT, AVPYPQRDMP, LSQSKVLPVPQ, AMAPKHKEMPFPKYP, αs1-酪蛋白上IKHQGLPQEVLNEN,LLRLKKYKVPQ.其他的活性肽通过芯片消化技术进行鉴定。
     采用响应曲面法得出用于生产出具有最高ACE抑制活性的中性蛋白酶水解物的最佳条件是超声预处理时间为4.11min,酶解时间2.32h及酶与底物的比例2.33%。在此条件下,理论上的ACE抑制活性是0.044mgmL-1。使用此处理方式进行中试规模验证实验。成功地从牛奶蛋白浓缩物中生产出ACE抑制物和抗氧化肽。生产出了四种分离组分(F1,>8kDa;F2,3.5-8kDa;F3,0.2-3.5kDa;and F4,<0.2kDa),研究表明,组分3是理想的ACE抑制齐(IC50:0.096±0.010mgmL-1)而组分2是很好的抗氧化肽。通过经济成本分析,此方法用于生产中可取得良好的经济效益。
Milk protein concentrate (MPC) is a relatively new milk product with increasing demand and usage as an ingredient because of its high protein and low sugar/fat content. It has found applications in cheese, ice cream and yogurts with reported improvements in physicochemical characteristics. However, when compared to other milk proteins such as whey protein and sodium caseinate concentrates, the functional characteristics of MPC are inferior. This can be improved by the application of technologies that enhances the exposure of the native proteins in the concentrate. It is in this context that microwave (MW) and ultrasound (US) technologies were investigated in this study as pretreatments in order to enhance the subsequent enzyme hydrolysis and functional characteristics of milk protein concentrate.
     Initially, MPC was pretreated either by MW or US before enzymatic hydrolysis with5enzymes (Alcalase, Trypsin, Neutrase, Alkaline Protease and Flavourzyme). Pretreatments increased the degree of hydrolysis and stabilized the solubility of the hydrolysates but could not significantly reduce bitterness of the hydrolysates The angiotensin converting enzyme (ACE) inhibitory activity of the hydrolysates were improved with5-min ultrasound pretreated-Neutrase hydrolysates giving IC50value of0.23mgmL-1. Then, the peptide profiles of the Neutrase-derived hydrolysates of MPC were analysed by liquid chromatography. The profiles indicated that new small peptides in US pretreated samples (1-5min) which were not present in the control samples and8min pretreated samples, could be responsible for increased ACE inhibitory activity. These small peptides were digested in the8min pretreated samples. The6peptides responsible for ACE inhibitory activity were identified as WMHQPHQPLPPT, AVPYPQRDMP, LSQSKVLPVPQ, AMAPKHKEMPFPKYP from β-casein and IKHQGLPQEVLNEN, LLRLKKYKVPQ from αs1-casein using MALDI-TOF-LC-MS2. Other possible bioactive peptides were predicted using the in silico digestion.
     Using response surface methodology, the optimum conditions for producing Neutrase hydrolysates with the highest ACE inhibition were US pretreatment time, hydrolysis time and enzyme-to-substrate ratio of4.11min,2.32h and2.33%, respectively. Under these optimal conditions, the theoretical ACE inhibition was0.044mgmL-'. Using the near-optimal conditions, a batch mode, pilot-scale process, was successful in the production of ACE inhibitory and antioxidative peptides from milk protein concentrate (MPC). Four fractions were produced (F1,>8kDa; F2,3.5-8kDa; F3,0.2-3.5kDa; and F4,<0.2kDa) and analyses showed that F3was ideal for ACE inhibition (IC50=0.096±0.010mgmL-1) while F2was good for antioxidative peptides. Economic analysis showed that it was feasible to produce these peptides at a profit.
引文
1. Akbari Mousavi, S.A.A., Feizi, H.,& Madoliat, R. (2007). Investigations on the effects of ultrasonic vibrations in the extrusion process. Journal of Materials Processing Technology,187-188,657-661.
    2. Akillioglu, H.G.,& Karakaya, S. (2009). Effects of heat treatment and in vitro digestion on the angiotension-converting enzyme inhibitory activity of some legume species. European Food Research and Technology,229,915-921.
    3. AL-Jundi, N. (2004). Elucidation of nonthermal effects of microwave irradiation on the unfolding pathways of β-lactoglobulin and hemoglobin, Master's Thesis, Food Science Dept, McGill University.
    4. Alvarez, V. B., Wolters, C. L., Vodovotz, Y.,& Ji, T. (2005). Physical properties of ice cream containing milk protein concentrates. Journal of Dairy Science,88,862-871.
    5. Anantheswaran, R.C.,& Ramaswamy, H.S. (2001). Bacterial destruction and enzyme inactivation during microwave heating. In:Handbook of Microwave Technology for Food Applications, eds. A.K. Datta and R.C. Anantheswaran, Marcel Dekker, New York, pp.191-213.
    6. Ao, J.,& Li, B. (2013). Stability and antioxidative activities of casein peptide fractions during simulated gastrointestinal digestion in vitro:Charge properties of peptides affect digestive stability. Food Research International,52,334-341.
    7. Arzeni, C., Martinez, K., Zema, P., Arias, A., Perez, O.E.,& Pilosof, A.M.R (2012). Comparative study of high intensity ultrasound effects on food proteins functionality. Journal of Food Engineering,108,463-472.
    8. Augustin M. A, Oliver, C.M.,& Hemar, Y. (2011) Casein, caseinates, and milk protein concentrates:In Dairy Ingredients for Dairy Processing, Eds; R.C. Chandan and A Kilara, Wiley and Blackwell, Iowa, USA, pp 161-178.
    9. Augustin, M. A.,& Udabage P. (2007). Influence of processing on functionality of milk and dairy proteins. Advances in Food and Nutrition Research,53,1-38.
    10. Awad, T.S., Moharram, H.A., Shaltout, O.E., Asker, D.,& Youssef, M.M. (2012). Applications of ultrasound in analysis, processing and quality control of food:A review. Food Research International,48,410-427.
    11. Azuma, J., Higashino, J., Asai, T.,& Koshijima, T. (1985). Microwave irradiation of lignocellulosic materials. IV. Enhancement of enzymatic susceptibility of microwave-irradiated softwoods. Wood Research,71,13-24.
    12. Bak, J. S, Ko, J. K., Han, Y. H., Lee, B. C., Choi, I. G.,& Kim, K. H. (2009). Improved enzymatic hydrolysis yield of rice straw using electron beam irradiation pretreatment. Bioresource Technology,100,1285-1290.
    13. Barbana, C.,& Boye, J.I. (2010) Angiotensin I-converting enzyme inhibitory activity of chickpea and pea protein hydrolysates. Food Research International,43,1642-1649.
    14. Bartlett, A. I.,& Radford, S. E. (2009). An expanding arsenal of experimental methods yields an explosion of insights into protein folding mechanisms. Nature Structural and Molecular Biology,16,582-588.
    15. Bates, D.M., Bagnall, W.A.,& Bridges, M.W. (2006). Method of treatment of vegetable matter with ultrasonic energy, US patent application 20060110503.
    16. Benzie, I.F.F.,& Strain, J.J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power":the FRAP assay. Analytical Biochemistry,239, 70-76.
    17. Bohr, H.,& Bohr, J. (2000). Microwave enhanced kinetics observed in ORD studies of a protein. Bioelectromagnetics,21,68-72.
    18. Bougatef, A., Nedjar-Arroume, N., Manni, L., Ravallec, R., Barkia, A., Guillochon, D.,& Nasri, M. (2010). Purification and identification of novel antioxidant peptides from enzymatic hydrolysates of sardine lle (Sardinella aurita) by-products proteins. Food Chemistry,118,559-565.
    19. Buchert, J., Cura, D., Ma, H., Gasparetti, C., Mongioudi, E., Faccio, G., Mattinen, M., Boer, H., Partanen, R., Selinheimo, E., Lantto, R.,& Kruus, K. (2010). Crosslinking food proteins for improved functionality. Annual Review of Food Science and Technology,1,113-138.
    20. Camino NA, Perez OE and Pilosof AMR, Molecular and functional modification of hydroxypropylmethylcellulose by high-intensity ultrasound. Food Hydrocolloid 23: 1089-1095 (2009).
    21. Caro, I., Soto, S., Franco, M. J., Meza-Nieto, M., Alfaro-Rodriguez, R. H.,& Mateo J. (2011). Composition, yield, and functionality of reduced-fat Oaxaca cheese:Effects of using skim milk or a dry milk protein concentrate. Journal of Dairy Science,94, 580-588.
    22. Castro-Morel de, M.& Harper, W.J. (2002). Basic functionality of commercial milk protein concentrates. Milchwissenschaft,57,367-370.
    23. Certel, M., Uslu, M. K.,& Ozdemir, F. (2004). Effects of sodium caseinate and milk protein concentrate-based edible coatings on the postharvest quality of Bing cherries. Journal of the Science of Food and Agriculture,84,1229-1234.
    24. Chabanon, G., Chevalot, I., Framboisier, X., Chenu, S.,& Marc, I. (2007). Hydrolysis of rapeseed protein isolates:Kinetics, characterization and functional properties of hydrolysates. Process Biochemistry,42,1419-1428.
    25. Chabeaud, A., Vandanjon, L., Bourseau, P., Jaouen, P.,& Guerard, F. (2009). Fractionation by ultrafiltration of a saithe protein hydrolysate (Pollachius virens): Effect of material and molecular weight cut-off on the membrane performances. Journal of Food Engineering,91,408-414.
    26. Chandrapala, J., Zisu, B., Kentish, S.,& Ashokkumar, M. (2012). The effects of high-intensity ultrasound on the structural and functional properties of a-Lactalbumin, β-Lactoglobulin and their mixtures. Food Research International,48,940-943.
    27. Chen, L., Chen, J., Ren, J.,& Zhao, M. (2011). Effects of ultrasound pretreatment on the enzymatic hydrolysis of soy protein isolates and on the emulsifying properties of hydrolysates. Journal of Agricultural & Food Chemistry,59,2600-2609.
    28. Cheung I.M.Y.,& Li-Chan, E. C. Y. (2010). Angiotensin-I-converting enzyme inhibitory activity and bitterness of enzymatically-produced hydrolysates of shrimp (Pandalopsis dispar) processing byproducts investigated by Taguchi design. Food Chemistry,122,1003-1012.
    29. Cisse, M., Vaillant, F., Pallet, D.,& Dornier, M. (2011). Selecting ultrafiltration and nanofiltration membranes to concentrate anthocyanins from roselle extract (Hibiscus sabdariffa L.). Food Research International,44,2607-2614.
    30. Clapes, P., Pera, E.,& Torres, J. (1997). Peptide bond formation by the industrial protease, neutrase, in aqueous media. Biotechnology Letters,19,1023-1026.
    31. Clemente, A. (2000). Enzymatic hydrolysates of proteins in human nutrition. Trends in Food Science & Technology,11,254-262.
    32. Considine, T., Patel, H. A., Anema, S. G., Singh, H.,& Creamer, L.K. (2007). Interactions of milk proteins during heat and high hydrostatic pressure treatments-a review. Innovative Food Science and Emerging Technologies,8,1-23.
    33. Contreras, M., Carron, R., Montero, M., Ramos, M.,& Recio, I. (2009). Novel casein-derived peptides with antihypertensive activity. International Dairy Journal, 19,566-573.
    34. Contreras, M., Hernandez-Ledesma, B., Amigo, L., Martin-Alvarez, P.,& Recio, I. (2011a). Production of antioxidant hydrolyzates from a whey protein concentrate with thermolysin:Optimization by response surface methodology. LWT-Food Science and Technology,44,9-15.
    35. Contreras, M., Sevilla, M.A., Monroy-Ruiz, J., Amigo, L., Gomez-Sala, B., Molina E., Ramos, M.,& Recio, I. (2011b). Food-grade production of an antihypertensive casein hydrolysates and resistance of active peptides to drying and storage. International Dairy Journal,21,470-476.
    36. Correa, A.P., Daroit, D.J., Coelho, J., Meira, S.M., Lopes, F.C., Segalin, J., Risso, P.H., Brandelli, A. (2011). Antioxidant, antihypertensive and antimicrobial properties of ovine milk caseinate hydrolyzed with a microbial protease. Journal of the Science of Food and Agriculture,91,2247-2254.
    37. Custodio, M. F., Goulart, A. J., Marques, D. P., Giordano, R. C., Giordano, R. L. C.,& Monti, R. (2005). Hydrolysis of cheese whey proteins with trypsin, chymotrypsin and carboxypeptidase A. Brazilian Journal of Food and Nutrition,16, 105-109.
    38. Darewicz, M., Dziuba, J.,& Dziuba, M. (2006). Functional properties and biological activities of bovine casein proteins and peptides. Polish Journal of Food and Nutrition Science,15,79-86.
    39. De Pomerai, D.I., Smith, B., Dawe, A., North, K., Smith, T., Archer, D.B., Duce, I.R., Jones, D.,& Candido, E.P.M. (2003). Microwave radiation can alter protein conformation without bulk heating, FEBS Letters,543,93-97.
    40. Decareau, R.V. (1985). Microwave in the Food Processing Industry, Academic Press, Orlando, Florida.
    41. Dhar, B.R., Nakhla, G.,& Ray, M.B. (2012). Techno-economic evaluation of ultrasound and thermal pretreatments for enhanced anaerobic digestion of municipal waste activated sludge. Waste Management,32,542-549.
    42. Di Pierro, G., O'Keeffe, M.B., Poyarkov, A., Lomolino, G.,& FitzGerald, R.J. (2014). Antioxidant activity of bovine casein hydrolysates produced by Ficus carica L. derived proteinase. Food Chemistry,156,305-311.
    43. Dryakova, A., Pihlanto, A., Marnila, P., Curda, L.,& Korhonen, H.J.T. (2010). Antioxidant properties of whey protein hydrolysates as measured by three methods. European Food Research and Technology,230,865-874.
    44. Dudonne, S., Vitrac, X., Coutiere, P., Woillez, M.,& Merillon, J.M. (2009). Comparative study of antioxidant properties and total phenolic content of 30 plant extracts of industrial interest using DPPH, ABTS, FRAP, SOD, and ORAC assays. Journal of Agricultural and Food Chemistry,57,1768-1774.
    45. Dziuba, J., Minkiewicz, P.,& Mogut, D. (2011) Determination of theoretical retention times for peptides analyzed by reversed-phase high-performance liquid chromatography. ACTA Scientiarum Polonorum Technologia Alimentaria,10,209-221.
    46. Dziuba, J., Minkiewicz, P., Nalecz, D.,& Iwaniak, A. (1999). Database of biologically active peptide sequences. Nahrung,43,190-195.
    47. Elias, R. J., Kellerby, S.S.,& Decker, E.A. (2008). Antioxidant activity of proteins and peptides. Critical Reviews in Food Science and Nutrition,48,430-441.
    48. Elias, R.J., McClements D.J.,& Decker, E.A. (2005). Antioxidant activity of cysteine, tryptophan and methionine residues in continuous phase beta-lactoglobulin in oil-in-water emulsions. Journal of Agricultural and Food Chemistry,53,10248-10253.
    49. Eriksen, E.K., Vegarud, G.E., Langsrud, T., Almaas, H.,& Lea T. (2008). Effect of milk proteins and their hydrolysates on in vitro immune responses. Small Ruminant Research,79:29-37.
    50. Espejo-Carpio, F. J., Perez-Galvez, R., Guadix, E. M.,& Guadix, A. (2013). Optimisation of the hydrolysis of goat milk protein for the production of ACE-inhibitory peptides. Journal of Dairy Research,80,214-222.
    51. Estevez N, Fucinos P, Sobrosa AC, Pastrana L, Perez N & Rua ML (2012). Modeling the angiotensin-converting enzyme inhibitory activity of peptide mixtures obtained from cheese whey hydrolysates using concentration-response curves. Biotechnology Progress,28,1197-1206.
    52. Ferreira, I.M.P.L.V.O., Pinho, O., Mota, M.V., Tavares, P., Pereira, A, Goncalves, M.P., Torres, D., Rocha, C.,& Teixeira, J.A. (2007). Preparation of ingredients containing an ACE-inhibitory peptide by tryptic hydrolysis of whey protein concentrates. International Dairy Journal,17,481-487.
    53. Finkel, T. and Holbrook, N.J. (2000). Oxidants, oxidative stress and the biology of ageing. Nature,408,239-247.
    54. Foegeding, E. A.,& Davis, J. P. (2011). Food protein functionality:A comprehensive approach. Food Hydrocolloids,25,1853-1864.
    55. Francolino, S., Locci, F., Ghiglietti, R., Iezzi, R.,& Mucchetti, G. (2010). Use of milk protein concentrate to standardize milk composition in Italian citric Mozzarella cheese making. LWT-Food Science and Technology,43,310-314.
    56. Freitas, S., Hielscher, G., Merkle, H.P.,& Gander, B. (2006). Continuous contact and contamination free ultrasonic emulsification-a useful tool for pharmacuetical development and production. Ultrasonics Sonochemistry,13,76-85.
    57. Fuente-Blanco, S., Riera-Franco de Sarabia, E., Acosta-Aparicio, V.M., Blanco-Blanco, A.,& Gallego-Jurez, J.A. (2006). Food drying process by power ultrasound. Ultrasonics,44,523-527.
    58. Galazka, V., Dickinson, E.,& Ledward, D. (2000). Influence of high pressure processing on protein solutions and emulsions. Current Opinion in Colloid and Interface Science,5,182-187.
    59. Galesio, M., Lourenc, J., Madeira, D., Diniza, M.,& Capelo. J.L. (2012). Unravelling the role of ultrasonic energy in the enhancement of enzymatic kinetics. Journal of Molecular Catalysis B:Enzymatic,74,9-15.
    60. Galvao, C. M. A., Pinto, G. A., Jesus, C. D. F., Giordano, R. C.,& Giordano, R.L.C. (2009). Producing a phenylalanine-free pool of peptides after tailored enzymatic hydrolyses of cheese whey. Journal of Food Engineering,91,109-117.
    61. Gartside, C.S.,& Robins, M.M. (1990). Ultrasound in diagnosis, inspection, and monitoring. In:Sonochemistry, the Uses of Ultrasound in Chemistry, ed. T.J. Mason, Royal Society of Chemistry, pp 27-46.
    62. Geerlings, A., Villar, I.C., Zarco, F.H., Sanchez, M, Vera, R., Gomez, A.Z., Boza, J., & Duarte, J. (2006). Identification and characterization of novel angiotensin-converting enzyme inhibitors obtained from goat milk. Journal of Dairy Science, 89,3326-3335.
    63. Geirsdottir, M., Sigurgisladottir, S., Hamaguchi, P.Y., Thorkelsson, G., Johannsson, R., Kristinsson, H.G.,& Kristjansson, M.M. (2011). Enzymatic hydrolysis of blue whiting (Micromesistius poutassou); functional and bioactive properties. Journal of Food Science,76, C14-C20.
    64. Girgih, A. T., Udenigwe, C. C., Li, H., Adebiyi, A. P.,& Aluko, R. E. (2011). Kinetics of enzyme inhibition and antihypertensive effects of hemp seed (Cannabis sativa L.) protein hydrolysates. Journal of the American Oil Chemists'Society,88, 1767-1774.
    65. Gomaa, A.I. (2010). An investigation of effects of microwave treatment on the structure, enzymatic hydrolysis, and nutraceutical properties of β-lactoglobulin. Unpublished PhD thesis, McGill Univesity.
    66. Gomez-Ruiz, J.A., Lopez-Expos it o, I., Pihlanto, A., Ramos, M.,& Recio, I. (2008). Antioxidant activity of ovine casein hydrolysates:Identification of active peptides by HPLC-MS/MS. European Food Research and Technology,227,1061-1067.
    67. Gosch, T., Apprich, S., Kneifel, W.,& Novalin, S. (2013). Improved isolation of bioactive components of bovine colostrum using cross-flow microfiltration. International Journal of Dairy Technology,66,175-181.
    68. Gu, Y., Majumder, K.,& Wu, J. (2011). QSAR-aided in silico approach in evaluation of food proteins as precursors of ACE inhibitory peptides. Food Research International,44,2465-2474.
    69. Gu, F., Kim, J.M., Abbas, S., Zhang, X., Xia, S., Chen, Z. (2010). Structure and antioxidant activity of high molecular weight Maillard reaction products from casein-glucose. Food Chemistry,120,505-511.
    70. Guo, Y., Pan, D.,& Tanokura, M. (2009). Optimisation of hydrolysis conditions for the production of the angiotensin-I-converting enzyme (ACE) inhibitory peptides from whey protein using response surface methodology. Food Chemistry,114, 328-333.
    71. Gupta, M.,& Wong, W. L. E. (2007). Microwaves and metals. John Wiley & Sons (Asia) Pte Ltd., Singapore.
    72. Guzey, D., Gulseren, I., Bruce, B.,& Weiss, J. (2006). Interfacial properties and structural conformation of thermosonicated bovine serum albumin. Food Hydrocolloids,20,669-677.
    73. Guzman-Gonzalez M., Morais, F., Ramos, M.,& Amigo, L. (1999). Influence of skimmed milk concentrate replacement by dry dairy products in a low fat set-type yoghurt model system. I:Use of whey protein concentrates, milk protein concentrates and skimmed milk powder. Journal of the Science of Food and Agriculture,79,1117-1122.
    74. Halliwell, B. (2007) Dietary polyphenols:Good, bad, or indifferent for our health? Cardiovascular Research,73,341-347.
    75. Haque, E., Bhandari, B.R., Gidley, M.J., Deeth, H.C.,& Whittaker, A.K. (2011). Ageing-induced solubility loss in milk protein concentrate powder:Effect of protein conformational modifications and interactions with water. Journal of the Science of Food and Agriculture,91,2576-2581.
    76. He,R. H., Ma, H. L., Zhao, W. R, Qu,W. J., Zhao, J. W., Luo, L.,& Zhu, W. X. (2012). Modeling the QSAR of ACE-inhibitory peptides with ANN and its applied illustration. International Journal of Peptides,2012,1-9:doi:10.1155/2012/620609.
    77. He, R, Girgih, A.T., Malomo, S.A., Ju, X.,& Aluko, R.E. (2013). Antioxidant activities of enzymatic rapeseed protein hydrolysates and the membrane ultrafiltration fractions. Journal of Functional Foods,5,219-227.
    78. Hernandez-Ledesma B, Contreras M and Recio I, Antihypertensive peptides: Production, bioavailability and incorporation into foods. Adv Colloid Interface Sci 165:23-35(2011).
    79. Hernandez-Ledesma B, Miralles B, Amigo L, Ramos M and Recio I, (2005). Identification of antioxidant and ACE-inhibitory peptides in fermented milk. Journal of the Science of Food and Agriculture,85,1041-1048.
    80. Hernandez-Ledesma, B., Contreras, M.,& Recio, I. (2011). Antihypertensive peptides:Production, bioavailability and incorporation into foods. Advances in Colloid and Interface Science,165,23-35.
    81. Hernandez-Ledesma, B., Recio, I., Ramos, M.,& Amigo, L. (2002). Preparation of ovine and caprine β-lactoglobulin hydrolysates with ACE-inhibitory activity. Identification of active peptides from caprine β-lactoglobulin hydrolysed with thermolysin. International Dairy Journal,12,805-812.
    82. Holder, A., Birke, A., Eisele, T., Klaiber, I., Fischer, L.,& Hinrichs, J. (2013). Selective isolation of angiotensin-I-converting enzyme-inhibitory peptides from micellar casein and b-casein hydrolysates via ultrafiltration, International Dairy Journal,31,34-40.
    83. Hong, L. G., Wei, L., Liu, H.,& Hui, S.Y. (2005). Mung-bean protein hydrolysates obtained with alcalase exhibit angiotensin I-converting enzyme inhibitory activity. Food Science and Technology International,11,281-287.
    84. Huang, L., Liu, B., Ma, H.,& Zhang, X. (2013). Combined effect of ultrasound and enzymatic treatments on production of ACE inhibitory peptides from wheat germ protein. Journal of Food Processing and Preservation, DOI:10.1111/jfpp.12125.
    85. IDF. (1993). Determination of the nitrogen (Kj eldahl method) and calculation of the crude protein content. IDF Standard 20B. Brussels, Belgium:International Dairy Federation.
    86. Igoshi, K., Kondo, Y., Kobayashi, H., Kabata, K.,& Kawakami, H. (2008). Antioxidative activity of cheese. Milchwissenschaft,63,424-426.
    87. Ishimori, Y., Karube, I.,& Suzuki, S. (1981). Acceleration of immobilized a-chymotrypsin activity with ultrasonic irradiation, Journal of Molecular Catalysis, 12,253-259.
    88. Izquierdo F. J., Penas, E., Baeza, M. L., and Gomez, R. (2008). Effects of combined microwave and enzymatic treatments on the hydrolysis and immunoreactivity of dairy whey proteins. International Da iry Journa I.18:918-922.
    89. Izquierdo, F. J., Alli, I., Gomez, R., Ramaswamy, H. S.,& Yaylayan, V. (2005). Effects of high pressure and microwave on pronase and a-chymotrypsin hydrolysis of β-lactoglobulin. Food Chemistry,92,713-719.
    90. Jackowiak, D., Frigon, J.C., Ribeiro, T., Pauss, A.,& Guiot, S. (2011). Enhancing solubilisation and methane production kinetic of switchgrass by microwave pretreatment. Bioresource Technology,102,3535-3540.
    91. Jakala, P., Jauhiainen, T., Korpela, R.,& Vapaatalo, H. (2009). Milk protein-derived bioactive tripeptides Ile-Pro-Pro and Val-Pro-Pro protect endothelial function in vitro in hypertensive rats. Journal of Functional Foods,1,266-273.
    92. Jambrak, A. R., Mason, T. J., Lelas, V.,& Kresic, G. (2010). Ultrasonic effect on physicochemical and functional properties of a-lactalbumin. LWT-Food Science and Technology,43,254-262.
    93. Jambrak, A. R., Mason, T. J., Lelas, V., Herceg, Z.,& Herceg, I. L. (2008). Effect of ultrasound treatment on solubility and foaming properties of whey protein suspensions. Journal of Food Engineering,86,281-287
    94. Javanaud, C., Gladwell, N.R., Gouldby, S.J., Hibberd, D.J., Thomas, A,& Robins, M.M. (1991). Experimental and theoretical values of the ultrasonic properties of dispersions:Effect of particle state and size distribution. Ultrasonics,29331-337.
    95. Jia, J. Q., Ma, H. L., Zhao, W. R., Wang, Z. B., Tian, W. M., Luo, L.,& He, R. H. (2010). The use of ultrasound for enzymatic preparation of ACE-inhibitory peptides from wheat germ protein. Food Chemistry,119,336-342.
    96. Jia, J. Q., Ma, H. L., Zhao, W. R., Wang, Z. B., Tian, W. M, Luo, L.,& He, R. H. (2010). The use of ultrasound for enzymatic preparation of ACE-inhibitory peptides from wheat germ protein. Food Chemistry,119,336-342.
    97. Jiang, J. L, Chen, S. W., Ren, F. Z., Luo, Z.,& Zeng, S. S. (2007). Yak milk casein as a functional ingredient:Preparation and identification of angiotensin-I-converting enzyme inhibitory peptides. Journal of Dairy Research,74,18-25.
    98. Juan, H. F., Chang, S. C., Huang, H. C.,& Chen, S. T. (2005). A new application of microwave technology to proteomics. Proteomics,5,840-842.
    99. Kamau SM and Lu RR, The effects of enzymes and hydrolysis conditions on degree of hydrolysis and DPPH radical scavenging activity of whey protein hydrolysates, Current Research in Dairy Sciences 3:25-35 (2011).
    100. Kanekanian, A., Gallagher, J.,& Evans, E.P. (2000). Casein hydrolysis and peptide mapping. International Journal of Dairy Technology,53,1-5.
    101. Keshwani, D.R., Cheng, J.J.,2010. Modeling changes in biomass composition during microwave-based alkali pretreatment of switchgrass. Biotechnology and Bioengineering,105,88-97.
    102. Khalil, H.,& Villota, R. (1989). The effect of microwave sublethal heating on the ribonucleic acids of Staphylococcus aureus. Journal of Food Protection,52,544-548.
    103. Khantaphant, S., Benjakul, S.,& Ghomi, M. R. (2011). The effects of pretreatments on antioxidative activities of protein hydrolysates from the muscle of brownstripe red snapper (Lutjanus vitta). LWT-Food Science and Technology,44,1139-1148.
    104. Kim, H.Y., Kim, Y.G.,& Kang, B.H. (2004). Enhancement of natural convection and pool boiling heat transfer via ultrasonic vibration. International Journal of Heat and Mass Transfer,47,2831-2840.
    105. Kim, S. K., Byun, H. G., Park, P. J.,& Shahidi, F. (2001). Angiotensin I converting enzyme inhibitory peptides purified from bovine skin gelatin hydrolysate. Journal of Agricultural and Food Chemistry,49,2992-2997.
    106. Kirschvink, J. L. (1996). Microwave absorption by magnetite:A possible mechanism for coupling nonthermal levels of radiation to biological systems. Bioelectromagnetics,17,187-194.
    107. Kitchaiya, P., Intanakul, P.,& Krairish, M.,2003. Enhancement of enzymatic hydrolysis of lignocellulosic wastes by microwave pretreatment under atmospheric pressure. Journal of Wood Chemistry and Technology,23,217-225.
    108. Knezevic-Jugovic, Z.D., Stefanovic, A.B., Zuza, M.G., Milovanovic, S.L. Jakovetic, S.M., Manojlovic, V.B., and Bugarski, B.M. (2012) Effects of sonication and high-pressure carbon dioxide processing on enzymatic hydrolysis of egg white proteins. APTEFF 43:33-41.
    109. Knorr, D. (2004). Applications and potential of ultrasonics in food processing. Trends in Food Science & Technology,15,261-266.
    110. Korhonen, H. (1995). Whey as raw material for development of new products for human nutrition and health:A Review. In:Proceedings of NJF/NMR-seminar no. 252, Turku, Finland,13-15.1.1995. NJF-report 102, pp.207-219.
    111. Korhonen, H. (2009). Milk-derived bioactive peptides:From science to applications. Journal of Functional Foods,1,177-187.
    112. Korhonen, H.,& Pihlanto, A. (2006). Bioactive peptides:Production and functionality. International Dairy Journal,16,945-960.
    113. Korus, A. (2012). Effect of technological processing and preservation method on amino acid content and protein quality in kale (Brassica oleracea L. var. acephala) leaves. Journal of the Science of Food and Agriculture,92,618-625.
    114. Krokhin OV and Spicer V, Peptide retention standards and hydrophobicity indexes in reversed-phase high-performance liquid chromatography of peptides. Anal Chem 81:9522-9530(2009).
    115. Kudoh, Y., Matsuda, S., Igoshi, K.,& Oki, T. (2001). Antioxidative peptide from milk fermented with Lactobacillus delbrueckii subsp. bulgaricus IFO13953. Journal of the Japanese Society of Food Science,48,44-50.
    116. Kwiatkowska, B., Bennett, J., Akunna, J., Walker, G. M,& Bremner, D. H. (2011). Stimulation of bioprocesses by ultrasound. Biotechnology Advances,29,768-780.
    117. La Cara, F., Scarfi, M.R., D'Auria, S., Massa, R., D'Ambrosio, G., Franceschetti, G., Rossi, M.& De Rosa, M. (1999). Different effects of microwave energy and conventional heat on the activity of a thermophilic β-galactosidase from Bacillus acidocaldarius. Bio electromagnetics,20,172-176.
    118. Lacroix, I. M. E.,& Li-Chan, E. C. Y. (2012). Dipeptidyl peptidase-IV inhibitory activity of dairy protein hydrolysates. International Dairy Journal,25,97-102.
    119. Le, T.T., Deeth, H.C., Bhandari, B., Alewood, P.F.,& Holland, J.A. (2012). A proteomic approach to detect lactosylation and other chemical changes in stored milk protein concentrate. Food Chemistry,132,655-662.
    120. Lee, K. J., Kim, S. B., Ryu, J. S., Shin, H. S.,& Lim, J. W. (2005). Separation and purification of angiotensin converting enzyme inhibitory peptides derived from goat's milk casein hydrolysates. Asian-Australasian Journal of Animal Sciences,18, 741-746.
    121. Lei, B., Majumder, K., Shen, S.,& Wu, J. (2011). Effect of sonication on thermolysin hydrolysis of ovotransferrin. Food Chemistry,124,808-815.
    122. Li, G. H., Le, G. W., Shi, Y. H.,& Shrestha, S. (2004b). Angiotensin Ⅰ-converting enzyme inhibitory peptides derived from food proteins and their physiological and pharmacological effects. Nutrition Research,24,469-486.
    123. Li, H., Pordesimo, L.,& Weiss, J. (2004a). High intensity ultrasound assisted extraction of oil from soybeans. Food Research International,37,731-738.
    124. Liu, J., Takada, R, Karita, S., Watanabe, T., Honda, Y.,& Watanabe, T. (2010). Microwave assisted pretreatment of recalcitrant softwood in aqueous glycerol. Bioresource Technology,101,9355-9360.
    125. Liu, Q., Kong, B., Xiong, Y.L.,& Xia, X. (2009) Antioxidant activity and functional properties of porcine plasma protein hydrolysate as influenced by the degree of hydrolysis. Food Chemistry,118,403-410.
    126. Lopez-Alarcon, C.,& Denicola, A. (2013). Evaluating the antioxidant capacity of natural products:a review on chemical and cellular-based assays. Anafytica Chimica Acta,763,1-10.
    127. Lopez-Exposito, I., Quiros, A., Amigo, L.,& Recio, I. (2007). Casein hydrolysates as a source of antimicrobial,antioxidant and antihypertensive peptides. Lait,87, 241-249.
    128. Lopez-Fandino R., Otte, J., van Camp, J. (2006). Physiological, chemical and technological aspects of milk-protein-derived peptides with antihypertensive and ACE-inhibitory activity. International Dairy Journal,16:1277-1293.
    129. Lopez-Fandino, R. (2006). Functional improvement of milk whey proteins induced by high hydrostatic pressure. Critical Reviews in Food Science and Nutrition,46, 351-363.
    130. Madadlou, A., Mousavi, M.E., Emam-Djomeh, Z., Ehsani, M.,& Sheehan, D. (2009). Sonodisruption of re-assembled casein micelles at different pH values. Ultrasonics Sonochemistry,16,644-648.
    131. Madadlou, A., Sheehan, D., Emam-Djomeh, Z.,& Mousavi, M.E. (2011). Ultrasound-assisted generation of ACE-inhibitory peptides from casein hydrolyzed with nanoencapsulated protease. Journal of the Science of Food and Agriculture,91, 2112-2116.
    132. Maehashi, K.,& Huang, L. (2009). Bitter peptides and bitter taste receptors. Cellular and Molecular Life Sciences,66,1661-1671.
    133. Marani, E.,& Feirabend, H. K. (1994). Future perspectives in microwave applications in life sciences. European Journal of Morphology,32,330-334.
    134. Marazza, J.A., Nazareno, M.A., de Gioria, G.S.,& Garro, M.S. (2012). Enhancement of the antioxidant capacity of soymilk by fermentation with Lactobacilus rhamnosus. Journal of Functional Foods,4,594-601.
    135. Martinez-Maqueda, D., Miralles, B., Recio, I.,& Hernandez-Ledesma, B. (2012). Antihypertensive peptides from food proteins:a review. Food & Function,3,350-361.
    136. Meisel, H.,& Schlimme, E. (1996). Bioactive peptides derived from milk proteins: Ingredients for Functional Foods? Kieler Milchwirtschaftliche Forschungsberichte, 48,343-357.
    137. Menrad, K.2003. "Market and marketing of functional food in Europe." Journal of Food Engineering,56,181-188.
    138. Metaxas, A. C.,& Meredith, R. J. (1983). Industrial microwave heating. Peter Peregrinus Ltd., London.
    139. Miguel, M., Aleixandre, M.A., Ramos, M.,& Lopez-Fandino, R. (2006). Effect of simulated gastrointestinal digestion on the antihypertensive properties of ACE-inhibitory peptides derived from ovalbumin. Journal of Agricultural and Food Chemistry,54,726-731.
    140. Miles, C.A., Shore, D.,& Langley, K.R. (1990). Attenuation of ultrasound in milks and creams. Ultrasonics,28,394-400.
    141. Mistry, V. V.,& Hassan, H.N. (1991). Delactosed, high milk protein powder.1. Manufacture and composition. Journal of Dairy Science,74,1163-1169.
    142. Mooney, C., Haslam, N.J., Pollastri, G.,& Shields, D.C. (2012). Towards the improved discovery and design of functional peptides:common features of diverse classes permit generalized prediction of bioactivity. PLoS ONE,7:e45012.
    143. Morey, M.D., Deshpande, N.S.,& Barigou, M. (1999). Foam destabilization by mechanical and ultrasonic vibrations, Journal of Colloid and Interface Science,219, 90-98.
    144. Muthukumaran, S., Kentish, S.E., Ashokkumar, M.,& Stevens, G.W. (2005). Mechanisms for the ultrasonic enhancement of dairy whey ultrafiltration. Journal of Membrane Science,258,106-114.
    145. Nielsen, P. M., Petersen, D.,& Dambmann, C. (2001). Improved method for determining food protein degree of hydrolysis. Journal of Food Science,66,642-646.
    146. Nwabueze, T. U. (2010). Basic steps in adapting response surface methodology as mathematical modelling for bioprocess optimisation in the food systems. International Journal of Food Science and Technology,45,1768-1776.
    147. Ooshima, H., Aso, K.,& Harano, Y. (1984). Microwave treatment of cellulosic materials for their enzymatic hydrolysis. Biotechnology Letters,6,289-294.
    148. Otte, J., Shalaby, S.M., Zakora, M., Pripp, A.H.,& El-Shabrawy, S.A. (2007). Angiotensin converting enzyme inhibitory activity of milk protein hydrolysates: Effect of substrate, enzyme and time of hydrolysis. International Dairy Journal,17, 488-503.
    149. Palmarola-Adrados, B., Galbe, M.,& Zacchi, G. (2005). Pretreatment of barley husk for bioethanol production. Journal of Chemical Technology and Biotechnology,80,85-91.
    150. Pan, D., Cao, J., Guo, H.,& Zhao, B. (2012). Studies on purification and the molecular mechanism of a novel ACE inhibitory peptide from whey protein hydrolysate Food Chemistry,130,121-126.
    151. Panchaud, A., Affolter, M.,& Kussmann, M. (2012). Mass spectrometry for nutritional peptidomics:How to analyze food bioactives and their health effects. Journal of Proteomics,75,3546-3559.
    152. Pang, F., Xue, S., Yu, S., Zhang, C., Li, B.,& Kang, Y. (2013). Effects of combination of steam explosion and microwave irradiation (SE-MI) pretreatment on enzymatic hydrolysis, sugar yields and structural properties of corn stover. Industrial Crops and Products,42,402-408.
    153. Pangu, G.D.,& Feke, D.L. (2004). Acoustically aided separation of oil droplets from aqueous emulsions. Chemical Engineering Science,59,3183-3193.
    154. Panyam, D.,& Kilara, A. (1996). Enhancing the functionality of food proteins by enzymatic modification. Trends in Food Science and Technology,7,120-125.
    155. Parrot, S., Degraeve, P., Curia, C.,& Martial-Gros, A. (2003). In vitro study on digestion of peptides in Emmental cheese:Analytical evaluation and influence on angiotensin I converting enzyme inhibitory peptides. Molecular Nutrition & Food Research,47,87-94.
    156. Patel, M. R., Baer, R. J.,& Acharya, M. R. (2006). Increasing the protein content of ice cream. Journal of Dairy Science,89,1400-1406.
    157. Pena-Ramos, E.A.,& Xiong, Y.I. (2003). Whey and soy protein hydrolysates inhibit lipid oxidation in cooked pork patties. Meat Science,64,259-263.
    158. Peng, X., Kong, B., Xia, X.,& Liu, Q. (2010). Reducing and radical-scavenging activities of whey protein hydrolysates prepared with Alcalase. International Dairy Journal,20,360-365.
    159. Petrides, D.P., E. Sapidou, and J. Calandranis (1995). Computer-aided process analysis and economic evaluation for biosynthetic human insulin production-a case study. Biotechnology and Bioengineering,5,529-541.
    160. Phelan, M.,& Kerins, D. (2011). The potential role of milk-derived peptides in cardiovascular disease. Food & Function,2,153-167.
    161. Pihlanto, A. (2006). Antioxidative peptides derived from milk proteins. International Dairy Journal,16,1306-1314.
    162. Pitt, W.G.,& Rodd, A. (2003). Ultrasound increases the rate of bacterial growth. Biotechnology Progress,19,1030-1044.
    163. Power, O., Jakeman, P.,& FitzGerald, R.J. (2013). Antioxidative peptides: enzymatic production, in vitro and in vivo antioxidant activity and potential applications of milk-derived antioxidative peptides. Amino Acids,44,797-820.
    164. Pralea, D., Dumitrascu, L., Borda, D.,& Starciuc, N. (2011). Functional properties of sodium caseinate hydrolysates as affected by the extent of chymotrypsinolysis. Journal of Agroalimentary Processes and Technologies,17,308-314.
    165. Pramanik, B. N., Mirza, U. A., Ing, Y. H., Liu, Y. H., Bartner, P. L., Weber, P. C., & Bose, AK. (2002). Microwave-enhanced enzyme reaction for protein mapping by mass spectrometry, a new approach to protein digestion in minutes. Protein Science,11,2676-2687.
    166. Pripp, A. H. (2008). Effect of peptides derived from food proteins on blood pressure:a metaanalysis of randomized controlled trials. Food & Nutrition Research,52,1-9.
    167. Pripp, A. H.,& Ardo, Y. (2007). Modelling relationship between angiotensin-(I)-converting enzyme inhibition and the bitter taste of peptides. Food Chemistry,102, 880-888.
    168. Pritchard, S.R.,& Kailasapathy, K., (2008). Chemical, Physical, and Functional Characteristics of Dairy Ingredients. In:Dairy Ingredients for Food Processing eds; R.C. Chandan and A. Kilara Wiley and Blackwell, Iowa, USA, pp 35-58.
    169. Qian, B., Xing, M., Cui, L., Deng, Y., Xu, Y., Huang, M.,& Zhang, S. (2011). Antioxidant, antihypertensive, and immunomodulatory activities of peptide fractions from fermented skim milk with Lactobacillus delbrueckii ssy.bulgaricus LB340. Journal of Dairy Research,78,72-79.
    170. Quansah, J.K., Udenigwe, C.C.,& Saalia, F.K.,& Yada, R.Y. (2013). The effect of thermal and ultrasonic treatment on amino acid composition, radical scavenging and reducing potential of hydrolysates obtained from simulated gastrointestinal digestion of cowpea proteins. Plant Foods for Human Nutrition,68,31-38.
    171. Quiros, A., Chichon, R., Recio, I.,& Lopez-Fandino, R. (2007a).The use of high hydrostatic pressure to promote the proteolysis and release of bioactive peptides from ovalbumin, Food Chemistry,104,1734-1739.
    172. Quiros, A., Hernandez-Ledesma, B., Ramos, M., Martin-Alvarez, P. J.,& Recio, I. (2012). Production of antihypertensive peptide HLPLP by enzymatic hydrolysis: Optimization by response surface methodology. Journal of Dairy Science,95, 4280-4285.
    173. Quiros, A., Ramos, M.., Muguerza, B., Delgado, M., Miguel, M., Aleixandre, A.,& Recio, I. (2007b). Identification of novel antihypertensive peptides in milk fermented with Enterococcus faecalis. International Dairy Journal,17,33-41.
    174. Qureshi, T.M., Vegarud, G.E., Abrahamsen, R.K.,& Skeie, S. (2013). Angiotensin I-converting enzyme-inhibitory activity of the Norwegian autochthonous cheeses Gamalost and Norvegia after in vitro human gastrointestinal digestion. Journal of Dairy Science,96,1-16.
    175. Raikos, V. (2010). Effect of heat treatment on milk protein functionality at emulsion interfaces. A review. Food Hydrocolloids,24,259-265.
    176. Rehman, S. U., Farkye, N. Y., Considine, T., Schaffner, A.,& Drake, M. A. (2003b). Effects of standardization of whole milk with dry milk protein concentrate on the yield and ripening of reduced-fat Cheddar cheese. Journal of Dairy Science, 86,1608-1615.
    177. Rehman, S.U., Farkye, N.Y.,& Yim, B. (2003a). Use of dry milk protein concentrate in Pizza Cheese manufactured by culture or direct acidification. Journal of Dairy Science,86,3841-3848.
    178. Ricci, I., Artacho, R.,& Olalla, M. (2010). Milk protein peptides with angiotensin I-converting enzyme inhibitory (ACEI) activity. Critical Reviews in Food Science and Nutrition,50,390-402.
    179. Risman, P. (1996). Editorial. Journal of Microwave Power and Electromagnetic Energy,31,69-70.
    180. Rob let, C., Amiot, J., Lavigne, C., Marette, A., Lessard, M., Jean, J., Ramassamy, C., Moresoli, C.,& Bazinet, L. (2012). Screening of in vitro bioactivities of a soy protein hydrolysate separated by hollow fiber and spiral-wound ultrafiltration membranes. Food Research International,46,237-249.
    181. Rojas-Ronquillo, R., Cruz-Guerrero, A., Flores-Najera, A., Rodriguez-Serrano, G., Gomez-Ruiz, L., Reyes-Grajeda, J.P., Jimenez-Guzman, J.,& Garcia-Garibay, M. (2012). Antithrombotic and angiotensin-converting enzyme inhibitory properties of peptides released from bovine casein by Lactobacillus casei Shirota. International Dairy Journal,26,147-154.
    182. Rosenfeld, E.,& Schmidt, P. (1984). The influence of ultrasound on the reaction of immobilized enzymes. Archives of Acoustics,9,105-112.
    183. Rui, X. (2012). Assessment of the angiotensin-I-converting enzyme (ACE) inhibitory properties of bean protein hydrolysates. Unpublished PhD thesis, McGill University.
    184. Sakanaka, S.,& Tachibana, Y. (2006). Active oxygen scavenging activity of egg-yolk protein hydrolysates and their effects on lipid oxidation in beef and tuna homogenates. Food Chemistry,95,243-249.
    185. Sala, F.J., Burgos, J., Condon, S., Lopez, P.,& Raso, J. (1995). Effect of heat and ultrasound on microorganisms and enzymes. In:New Methods of Food Preparation, ed. Gould, G.W., pp 176-204, Blackie Academic & Professional, London.
    186. Salazar-Gonzalez, C., San Martin-Gonzalez, M. F., Lopez-Malo, A.,& Sosa-Morales, M. E. (2012). Recent studies related to microwave processing of fluid foods. Food Bioprocess and Technology,5,31-46.
    187. Samaranayaka, A.G.P., Kitts, D.D.& Li-Chan, E.C.Y. (2010). Antioxidative and angiotensin-I-converting enzyme inhibitory potential of a pacific hake(Merluccius productus) fish protein hydrolysate subjected to simulated gastrointestinal digestion and caco-2 cell permeation. Journal of Agricultural and Food Chemistry,58,1535-1542.
    188. Samaranayaka, A.G.P.& Li-Chan, E.C.Y. (2011). Food-derived peptidic antioxidants:A review of their production, assessment, and potential applications. Journal of Functional Foods,3,229-254.
    189. Segura-Campos, M.R., Salazar-Vega, I.M., Chel-Guerrero, L.A.,& Betancur-Ancona, D. (2013) Biological potential of chia (Salvia hispanica) protein hydrolysates and their incorporation into functional foods. LWT-Food Science and Technology,50,723-731.
    190. Sener, N., Kilic, D.,& Ozbek, A.B. (2006). A modelling study on milk lactose hydrolysis and b-galactosidase stability under sonication. Process Biochemistry,41, 1493-1500.
    191. Shalaby, S.M., Zakora, M.,& Otte, J. (2006).Performance of two commonly used angiotensin-converting enzyme inhibition assays using FAPGG and HHL as substrates. Journal of Dairy Research,73,178-186.
    192. Shi, J., Pu, Y.Q., Yang, B., Ragauskas, A.J.,& Wyman, C.E. (2011). Comparison of microwaves to fluidized sand baths for heating tubular reactors for hydrothermal and dilute acid batch pretreatment of corn stover. Bioresource Technology,102, 5952-5961.
    193. Shimizu, H., Yoshimura, Y., Hinou, H.,& Nishimura, S. (2008). A new glycosylation method part 3:study of microwave effects at low temperatures to control reaction pathways and reduce byproducts. Tetrahedron,64,10091-10096.
    194. Shin, S., Yang, H.J., Kim, J.,& Kim, J. (2011). Effects of temperature on ultrasound-assisted tryptic protein digestion. Analytical Biochemistry,414,125-130.
    195. Sieber, R., Butikofer, U., Egger, C., Portmann, R., Walther, B.,& Wechsler, D. (2010). ACE-inhibitory activity and ACE-inhibiting peptides in different cheese varieties. Dairy Science and Technology,90,47-73.
    196. Sikand, V., Tong, P. S., Roy, S., Rodriguez-Saona, L. E.,& Murray, B. A. (2011). Solubility of commercial milk protein concentrates and milk protein isolates. Journal of Dairy Science,94:6194-6202.
    197. Sikder, J., Chakraborty, S., Pal, P., Drioli, E.,& Bhattacharjee, C. (2012) Purification of lactic acid from microfiltrate fermentation broth by cross-flow nanofiltration. Biochemical Engineering Journal,69,2012,130-137.
    198. Singh, H (2011). Functional properties of milk proteins. In:Encyclopedia of Dairy Sciences, pp 887-893. Fuquay, J.W., Fox, P.F. and McSweeney, P.L.H., Eds., Academic press, London, UK.
    199. Slattery, H.,& Fitzgerald, R. J. (1998). Functional properties and bitterness of sodium caseinates hydrolysates prepared with a bacillus proteinase. Journal of Food Science,63,418-422.
    200. Song, J., Tao, W. Y.,& Chen, W. Y. (2008). Ultrasound-accelerated enzymatic hydrolysis of solid leather waste. Journal of Cleaner Production,16,591-597.
    201. Soria, A.C.,& Villamiel, M. (2010). Effect of ultrasound on the technological properties and bioactivity of food:A review. Trends in Food Science and Technology,21,323-331.
    202. Spellman, D., O'Cuinn, G.,& FitzGerald, R. J. (2005). Physicochemical and sensory characteristics of whey protein hydrolysates generated at different total solids levels. Journal of Dairy Research,72,138-143.
    203. Spellman, D., O'Cuinn, G.,& FitzGerald, R. J. (2009). Bitterness in Bacillus proteinase hydrolysates of whey proteins. Food Chemistry,114,440-446.
    204. Sun, W., Gao, S., Wang, L., Chen, Y., Wu, S., Wang, X., Zheng, D.,& Gao, Y. (2006). Microwave-assisted protein preparation and enzymatic digestion in proteomics. Molecular & Cellular Proteomics,5,769-776.
    205. Sun, Y., Chen, J., Zhang, S., Li, H., Lu,J., Liu, L., Uluko, H., Su, Y., Cui, W., Ge, W.,& Lv, J. (2014). Effect of power ultrasound pre-treatment on the physical and functional properties of reconstituted milk protein concentrate, Journal of Food Engineering,124,11-18.
    206. Takemoto, Y. (2012). Amino acids that centrally influence blood pressure and regional blood flow in conscious rats. Journal of Amino Acids,2012,1-14, doi:10.1155/2012/831759
    207. Tardioli, P. W., Sousa, J. R, Giordano, R.C.,& Giordan, R. L. C. (2005). Kinetic model of the hydrolysis of polypeptides catalyzed by Alcalase immobilized on 10% glyoxyl-agarose. Enzyme and Microbial Technology,36,555-564.
    208. Tavares, T., Contreras, M., Amorim, M., Martin-Alvarez, P., Pintado, M., Recio, I., & Malcata, F. (2011a). Optimisation, by response surface methodology, of degree of hydrolysis and antioxidant and ACE-inhibitory activities of whey protein hydrolysates obtained with cardoon extract, International Dairy Journal,21,926-933.
    209. Tavares, T., Contreras, M., Amorim, M., Pintado, M., Recio, I.,& Malcata, F. (2011b). Novel whey-derived peptides with inhibitory effect against angiotensin-converting enzyme:In vitro effect and stability to gastrointestinal enzymes. Peptides,32,1013-1019.
    210. Taylor, L.S. (1981). The mechanisms of athermal microwave biological effects. Bioelectromagnetics,2,259-267.
    211. Thomas M. E. C, Scher, J. L., Desobry-Banon, S.,& Desobry, S. (2004). Milk powders ageing:Effect on physical and functional properties. Critical Reviews in Food Science and Nutrition,44,297-322.
    212. Toepfl S, Mathys A, Heinz V and Knorr D, Review:Potential of high hydrostatic pressure and pulsed electric fields for energy efficient and environmentally friendly food processing. Food Res Int 22:405-423 (2006).
    213. Tong, C.H. (1996). Effect of microwaves on biological and chemical systems, Microwave World 17,14-23.
    214. Tsopmo A., Romanowski, A., Banda, L., Lavoie, J. C., Jenssen, H., and Friel, J. K. (2011). Novel anti-oxidative peptides from enzymatic digestion of human milk. Food Chemistry.126:1138-1143.
    215. Udenigwe, C.C., Gong, M.,& Wu, S. (2013). In silico analysis of the large and small subunits of cereal RuBisCO as precursors of cryptic bioactive peptides. Process Biochemistry,48,1794-1799.
    216. Uluko, H., Li, H., Cui, W., Zhang, S., Liu, L., Chen, J., Sun, Y., Su, Y.,& Lv, J. (2013b). Response surface optimization of angiotensin converting enzyme inhibition of milk protein concentrate hydrolysates in vitro after ultrasound pretreatment. Innovative Food Science and Emerging Technologies,20,133-139.
    217. Uluko, H., Liu, L., Li, H., Cui, W., Zhang, S., Zhao, L., Xue, H.,& Lv, J. (2014b). Effect of power ultrasound pretreatment on peptidic profiles and angiotensin converting enzyme inhibition of milk protein concentrate hydrolysates, Journal of the Science of Food and Agriculture, Accepted, DOI:10.1002/jsfa.6572.
    218. Uluko, H., Zhang, S., Liu, L., Chen, J., Sun, Y., Su, Y., Li, H., Cui, W.,& Lv, J. (2013a). Effects of microwave and ultrasound pretreatment on enzymolysis of milk protein concentrate. International Journal of Food Science and Technology,48, 2250-2257.
    219. Uluko, H., Zhang, S., Liu, L., Li, H., Cui, W., Xue, H., Zhao, L., Sun, Y., Lu, J., Lv, J. (2014a). Pilot-scale membrane fractionation of ACE inhibitory and antioxidative peptides from ultrasound pretreated milk protein concentrate hydro lysates. Journal of Functional Foods, In Press, http://dx.doi.org/10.1016/j.jff.2014.01.025.
    220. Vadivambal, R.,& Jayas, D. S. (2010). Non-uniform temperature distribution during microwave heating of food materials - A review. Food and Bioprocess Technology,3,161-171.
    221. van der Ven, C., Gruppen, H., de Bont, D. B. A.,& Voragen, A. G. J. (2002). Optimisation of the angiotensin converting enzyme inhibition by whey protein hydrolysates using response surface methodology. International Dairy Journal,12, 813-820.
    222. Verma, P., Watanabe, T., Honda, Y.,& Watanabe, T. (2011). Microwave-assisted pretreatment of woody biomass with ammonium molybdate activated by H2O2. Bioresource Technology,102,3941-3945.
    223. Vermeirssen, V., Van Camp, J., Decroos, K., Van Wijmelbeke, L.,& Verstraete, W. (2003). The impact of fermentation and in vitro digestion on the formation of angiotensin-i-converting enzyme inhibitory activity from pea and whey protein. Journal of Dairy Science,86,429-438.
    224. Vilkhu, K., Mawson, R., Simons, L.,& Bates, D. (2008). Applications and opportunities for ultrasound assisted extraction in the food industry - A review. Innovative Food Science and Emerging Technologies,9,161-169.
    225. Villamiel, M.,& de Jong, P. (2000). Inactivation of Pseudomonas fluorescens and Streptococcus thermophilus in trypticase soy broth and total bacterial milk by continuous-flow ultrasonic treatment and conventional heating. Journal of Food Engineering,45,171-179.
    226. Virtanen, T., Pihlanto, A., Akkanen, S.,& Korhonen, H. (2007). Development of antioxidant activity in milk whey during fermentation with lactic acid bacteria. Journal of Applied Microbiology,102,106-115.
    227. Walstra, P., Wouters, J.T.M.,& Geurts, T.J. (2006). Dairy Science and Technology. Taylor and Francis, Boca Raton.
    228. Wang, H., Tu, Z.C., Liu, G.X., Liu, C.M., Huang, X.Q.,& Xiao, H. (2013). Comparison of glycation in conventionally and microwave-heated ovalbumin by high resolution mass spectrometry. Food Chemistry,141,985-991.
    229. Xu, J., Zhao,Q., Qu,Y., Ye, F. (2013). Free radical scavenging activity of peptide fractions from defatted soybean meal hydrolysates evaluated by electron spin resonance. Food Science and Technology International, doi: 10.1177/1082013212469612.
    230. Xu, W., Kong, B. H.,& Zhao, X. H. (2014). Optimization of some conditions of Neutrase-catalyzed plastein reaction to mediate ACE-inhibitory activity in vitro of casein hydrolysate prepared by Neutrase. Journal of Food Science and Technology, 51,276-284.
    231. Yen, G.C.,& Chen, H.Y. (1995). Antioxidant activity of various tea extracts in relation to their antimutagenicity. Journal of Agricultural and Food Chemistry,46, 849-854.
    232. Zeece, M., Huppertz, T.,& Kelly, A. (2008). Effect of high-pressure treatment on in-vitro digestibility of P-lactoglobulin. Innovative Food Science and Emerging Technologies,9,62-69.
    233. Zhang, C.H.,& Wang, X (2008). Effect of microwave process on some functionality of soybean protein isolate, China Brewing.24:doi: CNKI:SUN:ZNGZ.0.2008-24-031
    234. Zhang, M., Tang, J., Mujumdar, A. S.,& Wang, S. (2006). Trends in microwave-related drying of fruits and vegetables. Trends in Food Science & Technology,17, 524-534.
    235. Zhang, Q., Zhou, M., Chen, P., Cao, Y.,& Tan, X. (2011). Optimization of ultrasonic-assisted enzymatic hydrolysis for the extraction of luteolin and apigenin from celery. Journal of Food Science,76, C680-C685.
    236. Zhang, Q., Wu, H., Ling, Y.,& Lu, R. (2013). Isolation and identification of antioxidant peptides derived from whey protein enzymatic hydrolysates by consecutive chromatography and Q-TOF MS. Journal of Dairy Research,80,367-373.
    237. Zhao W, Yang R, Tang Y, Zhang W, Hua X (2009) Investigation of the protein-protein aggregation of egg white proteins under pulse electric fields. Journal of Agricultural and Food Chemistry,57,3571-3577.
    238. Zhao, X H.,& Li, Y. Y. (2009). An approach to improve ACE-inhibitory activity of casein hydrolysates with plastein reaction catalyzed by Alcalase. European Food Research and Technology,229,795-805.
    239. Zheng, H., Shen, X. Q., Bu, G. H.,& Luo, Y. K. (2008). Effects of pH, temperature and enzyme to substrate ratio on the antigenicity of whey protein hydrolysates. International Dairy Journal,18,1028-1033.
    240. Zheng, L.,& Sun, D.W. (2006). Innovative applications of power ultrasound during food freezing processes-a review. Trends in Food Science & Technology,17,16-23.
    241. Zhu, S.D., Wu, Y.X, Yu, Z.N., Zhang, X., Li, H.,& Gao, M. (2006). The effect of microwave irradiation on enzymatic hydrolysis of rice straw. Bioresource Technology,97,1964-1968.
    242. Zhuang, H., Tang, N.,& Yuan, Y. (2013). Purification and identification of antioxidant peptides from corn gluten meal. Journal of Functional Foods,5,1810-1821.
    243. Zisu, B., Bhaskaracharya, R., Kentish, S.,& Ashokkumar, M. (2010). Ultrasonic processing of dairy systems in large scale reactors. Ultrasonics Sonochemistry,17, 1075-1081.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700