榨菜和紫甘蓝嫁接嵌合体生长发育特性与不定器官起源的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
榨菜(Brassica juncea Coss.var.tumida Tsen et Lee)和紫甘蓝(B.oleracea var.capitata L.)属于十字花科芸薹属植物,是重要的蔬菜作物。以榨菜和紫甘蓝为材料通过试管离体嫁接可以获得种间嵌合体。本论文以榨菜和紫甘蓝种间嵌合体为研究材料,通过植物学、细胞学、生物化学、分子生物学等方法,研究了嵌合体营养时期和生殖时期生长发育特性;通过嵌合体光合特性研究,探讨嫁接“优势”’与两种遗传型的细胞系之间的相互关系;通过嵌合体不同部位的不定器官再生研究,揭示了植物不定器官的起源和发生规律,以及不同细胞层间的相互影响。本研究为植物育种学和植物发育学研究提供了新思路和新方法,为细胞互作机制研究提供了良好的试验体系,也为利用嵌合体改良植物性状以及生产实践应用提供理论依据,主要研究结果如下:
     1在形态学、细胞水平、蛋白质水平和分子水平上对榨菜和紫甘蓝的种间嵌合体进行了分析。研究结果发现嵌合体的形态特征在具有了两个亲本特点的基础上,其形态发生了一定变化。利用扫描和透射电镜观察叶片表皮和叶肉细胞亚显微结构,发现嵌合体的气孔密度超过两个亲本,叶绿体、淀粉粒等的形态指标基本处于两个亲本之间。通过可溶性蛋白质的SDS-PAGE电泳图谱观察到嵌合体产生了特异性条带。分子水平上的RAPD和特异引物PCR扩增结果显示,嵌合体没有产生其特异性条带。这些研究结果证明嵌合体中两种基因型不同的细胞系之间存在着相互作用,使嵌合体在形态学、细胞学和生物化学特性发生了改变。另外,嵌合体采用离体保存的方法,用1/2MS培养基可以长期保存。利用腋芽繁殖途径对嵌合体进行无性繁殖,这种方法可以使后代植株保持与母株一样的嵌合状态。用1/2MS+1mg/L BA培养基扩繁时,周缘嵌合体转化为扇形嵌合体和混合型嵌合体的比例分别是8.2%和2.4%。而用1/2MS+0.1mg/L BA时周缘嵌合体基本不会产生其它类型的嵌合体,但腋芽生长速度较慢。田间植株腋芽离体繁殖所用的诱导培养基为1/2 MS+1mg/LBA,但腋芽的诱导率比试管苗低。
     2从光合作用、叶绿素荧光、叶绿素含量、Rubisco的活性以及Rubisco大亚基和小亚基基因的转录水平等进行了测定分析。研究结果发现,周缘嵌合体TCC(LⅠ-LⅡ-LⅢ=TCC,LⅠ-茎尖分生组织层最外层;LⅡ-中间层;LⅢ-最内层.T表示榨菜,C表示紫甘蓝)的净光合速率为18.09μmol CO2·m~(-2)·s~(-1),与亲本榨菜相当,但比亲本紫甘蓝高出24%。而嵌合体的气孔导度和胞间CO_2浓度显著高于两个亲本。叶绿素荧光参数中光系统Ⅱ实际的量子效率(φPSⅡ)和光化学猝灭系数(qP)在榨菜中最高,而嵌合体和紫甘蓝的这两个参数基本一致。叶绿素含量测定后发现,嵌合体的叶绿素a和b的总含量与榨菜的比较接近,比紫甘蓝高97%。TCC嵌合体Rubisco酶的初始活性和总活性处于榨菜(最高)和紫甘蓝(最低)之间,为1.76和3.75μmolCO_2·g~(-1)·min~(-1)。而TCC嵌合体的Rubisco酶大亚基和小亚基基因的相对表达量与榨菜和紫甘蓝相比明显增高。以上结果说明,与TCC嵌合体光合机构的层源亲本——紫甘蓝相比,其叶绿素含量升高、Rubisco酶的活性以及其大小亚基基因表达的增强导致其净光合速率的提高。可见,TCC嵌合体的异源表皮(来自榨菜)对其内部光合组织光合能力的改善有很大的促进作用。
     3对榨菜和紫甘蓝种间周缘嵌合体TCC的生殖器官和生殖特性等方面进行了研究。研究结果发现,TCC嵌合体的有性生长发育与紫甘蓝相近,具有严格的绿体春花特性。其抽薹开花习性和花序、花冠形态也与紫甘蓝类似,但在异源表皮——榨菜的影响下发生了改变,很多形态指标,如花蕾长、短轴长度,花瓣的长、宽,雄蕊、雌蕊的长度以及花粉粒的大小等都基本介于榨菜和紫甘蓝相应指标的中间。此外,对嵌合体进行蕾期自交、杂交后,嵌合体可以产生果实但不能产生种子。从以上的研究可以说明,在TCC嵌合体的有性生殖生长发育过程中LⅠ(榨菜)与LⅡ和LⅢ(紫甘蓝)之间的相互作用使TCC嵌合体的生殖器官和生殖特性相对于亲本发生了较大变化。从嵌合体花冠的大小和形状改变以及产生无籽果实的角度来看,嵌合体在花卉和瓜类等作物育种上有很大的应用潜力。
     4以榨菜和紫甘蓝种间周缘嵌合体TCC的茎段和叶片为外植体诱导了不定芽的再生。利用形态标记和分子生物学方法鉴定分析不定芽的起源。经统计分析结果显示,茎段上叶腋处不定芽的诱导频率随着MS培养基中BA浓度的增加而升高,而茎段基部不定芽的诱导频率在含有不同浓度BA的培养基中没有差异。叶腋处产生的不定芽绝大多数是榨菜(TTT),只有4个嵌合体的产生,由此可知:与LⅡ和LⅢ相比,这些不定芽更多的起源于LⅠ层。从茎段基部产生的不定芽全部为紫甘蓝(CCC),说明这些不定芽起源于LⅡ或LⅢ,或者是两层共同参与的结果。叶片外植体上不定芽的再生频率在三种不同的NAA和BA组合的培养基之间存在着显著的差异。叶片切块边缘再生的不定芽绝大多数是紫甘蓝(CCC),70个不定芽中只有2个是嵌合体。从这一结果可以推出:叶片上再生的不定芽绝大多数是由LⅡ或(和)LⅢ参与形成的,LⅠ参与的几率较低。另外由试验发现,再生的嵌合体类型与其亲本TCC的类型相比完全不同。从上述的研究结果可以推出,不定芽的起源会因为外植体从供体植株上的来源不同而发生改变,而且嵌合体是多细胞甚至是多组织参与起源的。
     5同样以周缘嵌合体TCC的叶片和茎段为外植体诱导不定根。TCC嵌合体叶片和茎段上的诱导频率分别为94%和86%,显著高于它的亲本。其中榨菜叶片和茎段不定根的诱导频率分别为25%和38%,而紫甘蓝分别为73%和47%。另外,每株TCC嵌合体不定根的数目平均是13.11,平均重量为0.274g,这些指标也显著高于榨菜和紫甘蓝。这些结果说明嵌合体异源LⅠ(表皮)与内部LⅡ和LⅢ之间可能存在着正向互作从而改善了嵌合体不定根的再生能力。利用PCR技术(聚合酶链式反应)和组织解剖学观察来鉴定不定根的起源部位。鉴定结果显示,不定根最终起源于LⅢ。
     通过本论文的研究,可以发现种间嵌合体的不同发育时期和各个器官的特性都受到两种基因型不同的细胞层相互作用的影响,特别是数量性状基本介于两个亲本的中间。嵌合体的不定根的再生能力、营养生长时期的光合能力相比其层源亲本有很大改善,同时嵌合体的生殖器官和生殖特性也有较大的变化。嵌合体中不同遗传型细胞之间的相互作用所带来的性状改变在植物育种中有较大的应用潜力。另外,利用嵌合体茎尖细胞层组成的特殊性揭示了不定器官的起源规律,为植物的无性繁殖和组织培养提供了一定的理论基础。
Tuber mustard (Brassica juncea ) and red cabbage (B. oleracea) are importantvegetable crops of the Brassica in the Cruciferae. The plant chimeras obtained by invitro grafting between tuber mustard and red cabbage were used as the materials forthis study. The characteristics of vegetative and reproductive stages at the aspects ofbotany, cytology, biochemistry and molecular biology, and the photosyntheticcharacteristics of the chimeras were studied for clarifying the interactions betweengenetically different apical cell layers.The regeneration of adventitious organs indifferent explants of the chimeras was investigated in quest of the origin and ontogeny.The interactions in the chimeras can result in changes of phenotypes and improvemany characters, which can be useful for plant breeding. In addition, these studieswill provide academic supports for applying chimeras to plant improvement and putforward some novel ideas and viewpoints at the aspect of plant development. Themain results as follows:
     1 The characterization of chimera was observed at the level of morphology,cytology, molecular biology and so on. The results were that the chimeras not onlycombined the morphological characters from both donor plants, tuber mustard and redcabbage, but also they undergo some changes in phenotypes. The stomata density ofthe leaf epidermis in the chimeras surpassed the tuber mustard and red cabbage, andthe morphology of chloroplast and starch grains were altered in the chimeras. Inaddition, there were novel bands in the soluble proteins of the chimeras bySDS-PAGE analysis. However, no novel band sepsific for chimeras was detected inRAPD and PCR analysis of the chimeras compared with their donor plants. Thesestudies suggested that there were interactions at the level of morphology, cytology andbiochemistry in the interspecific chimeras of tuber mustard and red cabbage. Theoptimal medium and method for the chimera vegetative proliferation was selected.The chimeras could be conserved in half strength MS medium and propagated in half strength MS medium with 0.1 mg/L BA in which periclinal chimeras would notchange to sectorial and mericlinal chimeras by culturing the nodes with axillary buds.
     2 In this study, the photosynthesis, chlorophyll fluorescence and chlorophyllcontent, Rubisco activities and the large and small subunits of Rubisco were assayedin the periclinal chimera TCC (LⅠ-LⅡ-LⅢ=T-C-C, LⅠ-the outmost layer of shootapical meristem; LⅡ-the middle layer; LⅢ-the innermost layer T=tuber mustard, C=red cabbage) synthesized by grafting in vitro between tuber mustard (Brasscia juncea)and red cabbage (B. oleracea). The net photosynthesis rate of TCC chimera was18.09μmol CO2·m~(-2)·s~(-1), much higher by 24.8% than that of its donor plant redcabbage, and the stomatal conductance and intercellular CO2 concentration of TCCchimera markedly higher than that of both donor plants. The quantum efficiency ofphotosystemⅡ(φPSⅡ) and photochemical quenching coefficient (qP) were almostsame in TCC and red cabbage, but distinctly lower than that of tuber mustard. Thetotal content of chlorophyll a and chlorophyll b in TCC chimera was close with that oftuber mustard, but remarkably higher by 97% than that of red cabbage. The initial andtotal activities of Rubisco of TCC chimera were 1.76 and 3.75μmolCO2·g~(-1)·min-~1,intermediate between tuber mustard and red cabbage, while the expression of rbcLand rbcS of Rubisco in TCC chimera exceeded both donor plants. The resultssuggested that the enhancement of stomatal conductance, chlorophyll content,Rubisco activities and transcription of rbcL and rbcS genes may contribute to higherPN of TCC chimera than the donor red cabbage, and heterogenous epidermis (LⅠ) inTCC chimera exerted large effects on these physiological characteristics determinedby inner tissues (LⅡand LⅢ).
     3 The characteristics of the TCC chimera reproductive organs and crossing weredetermined. It was noted that TCC chimeras required strict vernalization condition toflower, which was same with red cabbage, while tuber mustard was not so strict as redcabbage and TCC chimeras. Moreover, the flowering habit and morphologycharacteristics of inflorescence in TCC chimeras were more similar with red cabbage.However, the length and width of flower buds and petals, the size of pistils, stamensand pollens were intermediate between those of red cabbage and tuber mustard. In addition, TCC chimeras were artificially pollinated with the pollens of TCC chimera,red cabbage and tuber mustard. The capsule setting frequency of TCC chimera wasclose with both donor plants, but there was no seed in the capsule while the seedsettings of red cabbage and tuber mustard in every capsule were 5.3 and 14.6 for selfpollination, and 0.2 and 7.6 for cross pollination with TCC pollens. It suggested thatthe reproductive characteristics of TCC chimeras were changed by the effects ofinteractions between genetically different apical cell layer LⅠand LⅡ, LⅢ.
     4 Adventitious shoots were induced from nodal segments and leaf discs of TCC(LⅠ-LⅡ-LⅢ, LⅠ-the outmost layer of shoot apical meristem; LⅡ-the middle layer;LⅢ-the innermost layer. T=Tuber mustard, C=Red cabbage) chimeras. The origin ofshoots was analyzed by histology and molecular biology. As a result, the frequency ofadventitious shoot induction rose with the increase of BA in MS medium in the areaof nodes. However, there was no different induction frequency of adventitious shootsfrom nodal segment bases in the media with different BA concentrations. Mostadventitious shoots (clustered shoots) arose from node area were TTT (Tubermustard- Tuber mustard- Tuber mustard) but only 4 shoots were chimeras, whichindicated that more shoots originated from LⅠthan from LⅡand LⅢ. All shoots fromnodal segment bases were CCC (Red cabbage-Red cabbage- Red cabbage), indicatingthe shoots originated from LⅡor LⅡand LⅢ. There were significant differences ofthe regeneration rate in the margin of leaf discs among the three combinations of BAand NAA. Most adventitious shoots from the margin of leaf discs were CCC but 2 of70 were chimeras, which indicated that more shoots originated from LⅡor LⅡandLⅢthan from LⅠ. All chimeras obtained by regeneration in types were different fromthe original of explants in the present study. The origin of adventitious shoots variedwith the sites of origin on the plants, and could be multicellular and multhistogenic.
     5 Adventitious roots were induced from stems and leaves of chimera TCC(LⅠ-LⅡ-LⅢ= TCC, T = Tuber mustard, C = Red Cabbage) synthesized by in vitrografting between tuber mustard and red cabbage previously. The induction frequencyof adventitious roots from TCC stems and leaf discs were 86% and 94%, markedlyhigher than its parents, 38% and 25% from TTT (tuber mustard), 47% and 73% from CCC (red cabbage), and the number and fresh weight of adventitious roots from TCCshoots, 13.11 and 0.274 respectively, was also significantly high when compared to itsparents. This investigation demonstrated that the replacement of LI in plants with adifferent genotype might improve the adventitious root regeneration ability because ofa probable positive co-operation between LI and the two inner apical cell layers.Subsequently, the origin of these adventitious roots was examined by morphology,PCR (Polymerase Chain Reaction) and histology, and it was found that adventitiousroots were originated from the LⅢ.
     These studies showed that the growth and development of the interspecificchimeras was affected by the interactions between the different genotypic apical celllayers. Many quantitative traits were intermediate between two donor plants. Theregeneration ability of adventitious roots and the photosynthetic characteristics ofchimeras were remarkably improved by the interactions of genetically different tissuecell layers, compared to the genotype which they derived from. The floralcharacteristics of TCC chimeras were also changed by the interactions. In conclusion,the interactions between the different genotypic apical cell layers and their derivatesresult in many characters and phenotype variation which will contribute to plantbreeding in the future.
引文
K.伊销著,李正理译(1982)《种子植物解剖学》,上海科学技术出版社
    贝时璋(2003)七十年的细胞重建研究.生物化学和生物物理学进展,30(5):1-10.
    陈桂林(200)低温胁迫对西葫芦嫁接苗光合特性的影响.上海农业学报,(1):42-45.
    陈红(2006)嫁接及其接合部的变异研究.四川农业大学博士毕业论文
    陈友根,朱世东,王冬良,朱蕣球(2008)嫁接对薄皮甜瓜叶绿素荧光参数的影响.中国农学通报, 24(7):221-225
    李明银,何云晓(2005)植物遗传嵌合体及其在观赏植物育种中的应用.植物学通报,22(6):641-647
    李润唐,张映南,田大伦(2004)柑橘类植物叶片的气孔研究.果树学报,21(5):419-424
    李天菲,蔡得田(2002)植物嵌合体机理及研究进展.湖北大学学报(自然科学般),24(1):81-86
    栗茂腾,余龙江,王丽梅,刘键民,雷呈(2005)菊花花色遗传及花色嵌合体发现.遗传,27(6):948-952
    刘东强,付志新(2008)嵌合体研究进展.上海畜牧兽医通讯, 3:2-5
    刘用生(2000)对“接穗郁李影响杏砧变异的实验”的解释.遗传,22(6):401-402
    吕秀立,张冬梅,钱又宇(2007)花叶矮牵牛嵌合体再生体系的建立.上海农业学报,23(1):34-38
    魏书銮,于继洲,宣有林,李登科(1994)核桃叶片的叶绿素含量与光合速率关系的研究.北京农业科学,12(5):31-35.
    吴洪明 (2004)一个新培育的小蜡花叶嵌合体--‘新顺’.福建林业科技,31(1): 65-66
    吴姗,黎昊雁,梁月荣,平田丰(2007)一组柑橘嫁接嵌合体及其嫁接亲本的 形态学、遗传学研究.果树学报, 24(1):1-5
    徐启江,陈青奇,陈典(2008)利用茎尖离体嫁接获得大蒜体细胞嵌合体.园艺学报, 35(1):65-70
    许鸿川 (2006) 《植物学》北京:中国林业出版社PP:179-180
    荀守华,姜岳忠,乔玉玲,秦光华,王月梅,王卫东,隋日光 (2008)黑杨派无性系有性生殖特性研究.山东农业大学学报(自然科学搬),39(3):381-387
    杨德奎,孙京田(2001)山东牵牛属植物叶片气孔器及花粉亚显微研究.山东科学14(2):10-15
    杨振杰,卢善发(1995)植物嫁接基础理论研究(上).生物学通报, 30(9):10-12
    振杰,卢善发(1995)植物嫁接基础理论研究(下).生物学通报30(10):4,--6
    张红梅,解静,余纪柱,金海军(2008)不同类型黄瓜嫁接后的生长、光合及品质特性.上海农业学报, 24(1):40-43
    张金林,王锁民,许瑞,曹孜义(2005)植物微嫁接技术的研究及应用.植物生理学通讯,41(2):247-252
    赵明,王美云,李少昆(1998)玉米不同自交系叶片色素及其与光合速率关系的研究.中国农业大学学报,3(1):83-87.
    赵依杰,陈清西,吴宇芬,林强(2008)砧木对小型嫁接西瓜生理生化的影响.中国农学通报, 21(6):319-323
    郑湘如,王丽主编(2001)《植物学》中国农业大学出版社PP:112-113
    Barazi ZA & Schwable WW (1982) Rooting softwood cutting of adult Pistacia Vera. J.Hort. Sci. 57 (2): 247-252
    Binding H, Witt D, Monzer J, Mordhorst G & Kollmann R (1987) Plant cell graft chimeras obtained by co-culture of isolated protoplasts. Protoplasma 141:64-73
    Broertjes C & Van Harten AM (1985) Single cell origin of adventitious buds.Euphytica 34:93-95
    Burge GK, Morgan ER & Seelye JF (2002) Opportunities for synthetic plant chimeral breeding: past and future. Plant Cell Tissue Organ Cult. 70:13-21
    Burgess J (1972) The occurrence of plasmodesmata-like structures in a non-division wall. Protoplasma 74:449-438
    Burk LG, Stewart RN & Dermen H (1964) Histogenesis and genetics of a plastid-controlled chlorophyll variegation in tobacco Am. J. Bot.51:713-724
    Carpenter R & Coen ES (1995) Transposon induced chimeras show that floricaula, a meristem identity gene, acts non-autonomously between cell layers.Development 121: 19-26
    Calamar A & De Klerk GJ (2002) Effect of sucrose on adventitious root regeneration in apple. Plant Cell Tissue Organ Cult. 70(2): 207-212
    Cameron J, Soost R & Olson E (1964) Chimeric basis for color in pink and red grapefruit. J. Hered. 55: 23-28
    Canli FA & Skirvin RM (2008) In Vitro separaation of a rose chimera. Plant Cell Tissue Organ Cult. 95: 353-261
    C(?)sar P, Sonia LN, Nuria A, Jose E & Lorenzo B (2008) An antibiotic-based selection strategy to regenerate transformed plants from apricot leaves with high efficiency. Plant Sci. 175: 777-783
    Chen LP, Ge YM & Zhu XY (2006) Artificial synthesis of interspecific chimeras between tuber mustard (Brassica juncea) and cabbage (Brassica oleracea) and cytological analysis. Plant Cell Rep 25: 907-913.
    Clayberg CD (1975) Insect-resistance in a graft-induced periclinal chimera of tomato.HortScience 10:13-15
    Darwin C (1883) The variation of animals and plants under domestication. D.Appleto & Co., NewYork.
    Davis WJ & Zhang J (1991) Root signals and the regulation of growth and development of plants in drying soil. Annual Review of plant physiology and plant molecular Biology 42: 55-76
    Dellaporta SL, Wood J and Hicks JB (1983) A plant DNA minipreparation: Version II.Plant Mol. Biol. Rep 1 (4): 19.-21
    Dermen H (1953) Periclinal cytochimeras and origin of tissues in stem and leaf of peach. Am. J. Bot. 40: 154-168
    Dermen H & Stewart RN (1973) Ontogenetic study of floral organs of peach (prunus persica) utilizing cytochimeral plants. Am. J. Bot. 60: 283-291
    Dolan L & Poething R (1998) The okra leaf mutation in cotton is active in all cell layers of the leaf. Am. J. Bot. 85: 322-327
    Dominguez A, Cervera M, Perez M, Romero J, Fagoaga C, Cubero J, Lopez MM,Ju(?)rez JA, Navarro L & Pena L (2004) Characterisation of regenerants obtained under selective conditions after Agrobacterium-mediated transformation of citrus explants reveals production of silenced and chimeric plants at unexpected high frequencies. Mol. Breed. 14: 171-183
    D(?)ring Hans-Peter, Lin Jinxing, Uhrig Helmut & Salamini Francesco (1999) Clonal analysis of the development of the barley (Hordeum vulgare L.) leaf using periclinal chlorophyll chimeras. Planta 207: 335-342
    Elena RT, Cristian MA, Camelia D, Ramona T, Adriana A & Michael RD (2007) The usefulness of the gfp reporter gene for monitoring Agrobacterium-mediated transformation of potato dihaploid and tetraploid genotypes. Plant Cell Rep. 26:661-671
    Gardner RL (1968) Mouse chimeras obtaind by the injection of cells into the blastocysts. Nature 220: 596-597
    Gluschchenko IE (1974) Problems on the nature of plant chimera I. Jpn J Michnrin Biol 10:54-67
    Glushchenko IE, Bazavluk VJ & Medvedeva G.B (1948) Plant chimeras as one of the forms of vegetative hybrids. Trudy Inst. Gen. 15: 58-97
    Glushchenko IE (1973) The nature of chimerical plants. Plant Breeding Abstract 43 (6): 335.
    Goffieda JC, Szymkowiak EJ, Sussex IM & Mutschler MA (1990) Chimeric tomato plants show that aphid resistance and triacylglucose production are epidermal autonomous characters. Plant Cell 2: 643-649
    Guo YP, Hu MJ, Zhou HF, Zhang LG, Su JH, Wang HW & Shen YG (2006) Low concentrations of NaHSO_3 increase photosynthesis, biomass, and attenuate photoinhibition in Satsuma mandarin (Citrus unshiu Marc.) plants.Photosynthetica 44 (3): 333-337
    Hake S (2001) Transcription factors on the move. Trends Genet. 17: 2-3
    Hankie SS, Carpenter R & Coen ES (1995) Expression periclinal chimeras activates down-stream homeotic genes in all layers of floral meristems. Development 121:27-35
    Hansen MJ, Pohlheim F & Obermeier C (2004) Development of RAPD markers for studies on a Populus-chimera. Acta Hort. 651: 69-73
    Hartmann H & Kester DE (1960) Plant propagation: principles and practices.Publisher: Prentice-Hall
    Hirata Y, Motegi T, Oguni S & Kan T (1994) Genetic constitution of germ cells in intervarietal and nterspecific chimeras of Brassica induced by in vitro grafting.Theor. App. Genet. 89: 249-254
    Hirata Y, Motegi T, Takeda Y & Morikawa K (2001) Induction of cytoplasmic male sterility in the seed progeny derived from artificially-synthesized interspecific chimera in Brassica. Euphytica 117:143-149
    Hirata Y, Noguchi T, Yagishta N and Sugmoto M (1992) Interspecific graft chimeras between Brassica oleracea and B. campestris. Japn. J. Breed 42: 203-212
    Hirata Y, Xiao QB, Motegi T and Noguchi T (2004) Cell-to-cell interactions in artificial inter-genic chimeras between radish and red cabbage. Acta Hort. 637:183-188
    Hirata Y, Xiao QB, Rhaman R, Noguchi T & Morikawa K (1999) Cell to cell interactions in artificially-synthesized chimeras in Cruciferae. Eacapia Leafy vegetable p: 257-262
    Hirata Y, Yagishita N, Yamamoto K & Sugimoto M (1992) Interspecific graft chimera between Brassica oleracea and B. campestris. Jpn. J. Breed 42: 203-212
    HirataY, Yagishita N, Sugimoto M & Yamamoto K (1990) Intervarietal chimera formationin cabbage (Brassicaoleracea L.). Jpn. J. Breed.40:419-428
    Howard HW (1971a) The stability of LI -mutant periclinal potato chimeras. Potato Res. 14:91-93
    Howard HW (1972) The stability of an L3 mutant potato chimera. Potato Res. 15:374-377
    Howard HW (1978) The contributions of growing-point layers L1, L2 and L3 to potato leaves. Potato Res. 21: 27-30
    Howard HW ( 1970 ) The genetics of the potato, Solarium tuberosum. Logos Press,London.
    Howard HW, Wainwright J & Fuller JM (1963) The number of independent layers at the stem apex in potatoes. Genetica 34:113-120.
    Howard, HW (1971b) A sectorial green-yellow leaf chimera in the potato. New Phytol.70:873-878
    Hussey G & Falavigna A (1980) Origin and production of in vitro adventitious shoot in the onion, Allium cepa L. J. Exp. Bot. 22: 88-147
    Johnson GA & Day TA (2002) Enhancement of photosynthesis in Sorghum bicolor by ultraviolet radiation. Physiol. Plant. 116 (4): 554-562
    Jorgensen CA (1927) A periclinal tomato-potato chimera. Hereditas 10: 293-301
    Jwamasa M, Nishiura M, Okudal N & Ishiuchi D (1977) Characteristics due to chimeras and their stability in citrus cultivars. Proc. Int. Soc. Citricult .2:571-574
    Kaddoura RL & Mantell SH (1991) Synthesis and characterization of Nicotiana-Solanum graft chimeras. Am. Bot. 68: 547-556
    Kirk, JTO, Tilney-Basset, RAE (1978) The Plastids. Amsterdam: Elsevier/North Holland Biomedical Press
    Koll(?)rov(?) K, Henselova M & Li(?)kov(?) D (2005) Effect of auxins and plant oligosaccharides on root formation and elongation growth of mung bean hypocotyls. Plant Growth Regul. 46: 1-9
    Koivuniemi PJ (1980) Isolation and characterization of revertants of phtotsynthetic mutant of Nicotinan tabacum. Ph. D. dissertation , MIch. State Univer., East Lansring.
    Kumagai T & Usami S (1964) Studies on the metabolism of a chimera formed by grafting nightshade upon tomato. Jpn. J. Michurin Biol. 2: 2-14
    Labunskaya EA, Zhigalova TV & Choob VV (2007) Leaf anatomy of the mosaic Ficus benjamina cv. starlight and interaction of source and sink chimera components. Ontogenez 38 (6):397-408
    Larkin PJ & Scowcroft WR (1981) Somaclonal variation - a novel source of variability from cell culture for plant improvement. Theor. App. Genet. 60:197-214
    Li MY (2005) Observation of high-frequency occurrence of chimeral adventitious shoots in tissue culture from the chimeral tissues of Pelargonium zonale. Hort.Sci. 40(5): 1461-1463
    Lindsay GC, Hopping ME, Binding H & Burge GK (1995) Graft chimeras and somatic hybrids for new cultivars. Nz. J. Bot. 33: 79-92
    Liu YS (2006) Historical and modern genetics of plant graft hybridization. Adv. Genet.56: 101-129
    Maeda E & Thorpe TA (1979) Shoot histogenesis in tobacco callus cultures. In Vitro-Journal of the Tissue Culture Association 15: 415-424
    Marcotrigiano M (1984) Experimentally synthesized plant chimeras 1. In vitro recovery of Nicotiana tabacum L. chimeras from mixed callus cultures. Ann. of Bot. 54:503-511
    Marcotrigiano M (1986a) Origin of adventitious shoots regenerated from cultured tobacco leaf tissue. Am. J. Bot. 73 (11): 1541-1547
    Marcotrigiano M (1986b) Experimentally synthesized plant chimeras 3 qualitative and quantitative characteristics of the flowers interspecific Nicotiana chimeras Ann. Bot. 57: 435-442
    Marcotrigiano M (1997) Chimeras and variegation: patterns of deceit. HortScience 32:773-784
    Marcotrigiano M (2001) Genetic mosaic and analysis of leaf development. Int. J.Plant Sci. 162:513-525
    Marcotrigiano M & Bernatzky R (1995) Arrangement of cell layer in the shoot apical meristem of periclinal chimeras infuences cell fate. Plant J. 7: 193-202
    Marcotrigiano M & Gouin FR (1984) Experimentally synthesized chimeras 2 a comparison of in vitro and in vivo techniques for the production of interspecific Nicotiana chimeras. Ann. Bot. 54: 513-521
    Marcotrigiano M & Stewart RN ( 1984) All variegated plants are not chimeras.Science 223 (4635): 505-
    Masubuchi N (1961) Studies on graft chimeras in Solanaceae. I . Chimeras from the grafting between Solarium nigrum and Lycopersicum esculentum. Bot. Mag Tokyo 74: 34-41
    Mezitt LA & Lucas WJ (1996) Plasmodesmal cell-to-cell transport of proteins and nucleic acid. Plant Mol. Biol. 32: 251-27 3
    Naija S, Elloumi N, Jbir N, Ammar S & Kevers C (2008) Anatomical and biochemical changes during adventitious rooting of apple rootstocks MM 106 cutured in vitro.C. R. Biol. 331 (7): 518-525
    Neilson-Jones W (1969) Plant chimeras. (2~(nd) edn.) Methuen and Co.,London.
    Noguchi T & Hirata Y (1994) vegetative and floral characteristics of interspecific Brassica chimeras produced by in vitro grafting. Euphytica 73: 273-280
    Noguchi T, Hirata Y & Yagishita N (1992) Intervarietal and interspecific chimera formation by in vitro graft-culture method in Brassica. Theor. Appl. Genet. 83:727-732
    Norris R, Smith RH & Vaughn KC (1983) Plant chimeras used to establish de novo origin of shoots. Science 220: 75-76
    Ohta Y & Chuong PV (1975a) Hereditary changes in Capsicum annuum L. I .Induced by ordinary grafting. Euphytica 24: 355-368.
    Ohta Y & Chuong PV (1975b) Hereditary changes in Capsicum annuum L. II.Euphytica, 24:605-611
    Pandey KK (1976) Genetic transformation and "graft-hybridizalion" in flowering plants. Theor. Appl. Genet. 47: 299-302
    Peschke VM & Phillips RL (1991) Activation of the maize transposable element Suppressor-mutator (Spm) in tissue culture. Theor. Appl. Genet. 81: 90-97.
    Plaschil S, Olbricht K & Pohlheim F (2003) Flower colour patterns for ornamental purposes. Acta Hort. 612: 61-66
    Polheim F (1981) Genetischer nachweis einer NMH-induzierten plastommutation bei Saintpaulia ionantha H. Wendl. Biol. Rdsch. 19: 47-50
    Pyke K, Zubko MK & Day A (2000) Making cell layers with spectinomycin provides a new tool for monitoring cell fate during leaf development. J. Exp. Bot.51:1713-1720
    Satina S (1945) Periclinal chimeras in Datura in relation to the development and structure (a) of the style and stigmas (b) of calyx and corolla. Am. J. Bot 32:72-81
    Satina S & Blakeslee AF (1941) Periclinal chimeras in Datura stramonium in relation to development of leaf and flower. Am. J. Bot. 28: 862-871
    Satina S Blakeslee AF & Avery AG (1940) Demonstration of the three germ layers in the shoot apex of Datura by means of induced polyploidy in periclinal chimeras.Am. J. Bot. 27: 895-905
    Satina S & Blakeslee AF (1943). Periclinal chimeras in Datura in relation to the development of the carpel. Am. J. Bot. 30, 453-462.
    Schmid PPS & Feucht W (1985). Compatibility in Prunus avium / Prunus cerasus graftings during the initial phase. III. Isoelectrofocusing of proteins, peroxidases and acid phosphatases during union formation. J. Hortic Sci 60 (3): 311-318
    Schmiilling T & Schell Jeff (1993) Transgenic tobacco plants regenerated from leaf discs can be periclinal chimeras. Plant Mol. Biol. 21: 705-708
    Schmiilling T Schafer S & Romanov G (1997) Cytokinkins as regulators of gene expression. Physiol. Plant. 100: 505-517
    Sessions A, Yanofsky MF & Weigel D (2000) Cell-lll signaling and movement by the floral transcription factors LEAFY and APETALA. Science 289: 779-781
    Steinberg G & Kollmam R (1994) A quantitative analysis of the interspecific plasmodesmata in the non-division walls of the plant chimera Laburnocytisus adamii (Poit.) schneid. Planta 192: 75-83
    Stewart RN & Burk LG (1970) Independence of tissue derived from apical layers in ontogeny of the tobacco leaf and ovary. Am. J. Bot. 57:1010-1016
    Stewart RN, Meyer FG & Dermen H (1972) Camellia + Daisy Eagleson', a graft chimera of Camellia sasanqua and C.japonica. Am. J. Bot. 59:515-524
    Stewart RN, Semeniuk P & Dermen H (1974) Competition and accommodation between apical layers and their derivatives in the ontogeny of chimeral shoots of Pelargonium ?hortorum. Am. J. Bot.61: 54-67
    Sugawara K, Oowada A, Moriguchi T & Omura M (1995) Identification of citrus chimera by RAPD markers. HortScience 30 (6): 1276-1278
    Sugawara k, Wakizuka T & Oowada A (2002) Histogenic identification by RAPD analysis of leaves and fruit of newly synthesized chimeric Cutrus. J. Amer. Soc.Hort. Sci. 127(1): 104-107
    Sugawara K, Oowada A, Moriguchi T & Omura M (1998) Improvement of RAPD analysis for discrimination of citrus synthetic chimeras. In: M.Omura,T.Hayasi and N.S.Scott(Eds.), Breeding and Biotechnology for Fruit Trees, 83-86.Proc 2~(nd) Japan-Australia Int Workshop.
    Sussex IM (1955) Morphogenesis in Solamtm tuberosum L.: apical structure and developmental pattern of the juvenile shoot. Phytomorphology 5: 253-273
    Sussex IM (1985) Graft chimeras and the analysis of positional differentiation in plants. Current communication in molecular biology- plant cell/cell interaction,pp: 47-51, Cold Spring Harbor Laboratory
    Sussex IM (1989) Developmental programming of the shoot meristem. Cell 56:225-229
    Suwanaketchanatit C, Piluek J, Peyachoknagul S & Huehne PS (2007) High efficiency of stable genetic transformation in Dendrobium via microprojectile bombardment. Biologia Plantapum 51(4): 720-727
    Szymkowiak E (1996) Is the extent of the proliferations of component cell lineages critical during organ morphogenesis? Semin. Cell Dev. Biol. 7: 849-856
    Szymkowiak E & Irish E (1999) Interactions between jointless and wild-type tomato tissues during development of the pedicel abscission zone and the inflorescence meristem. Plant Cell 11(2): 159-176
    Szymkowiak E & Sussex IM (1992) The internal layer (L3) determined floral meristem size and carpel number in tomato periclinal chimeras. Plant Cell 4:1089-1100
    Szymkowiak EJ & Sussex IM (1989) Chimeric analysis of cell layer interaction during development of the flower pedicel abscission zone. In: Osborne DJ & Jackson MB (eds) Cell Separationin Plants (pp363-368) NATO ASI Series,Vol.H53. Springer Berlin
    Takahashi F, Sato-Nara K, Kobayashi K, Suzuki M & Suzuki H (2003) Sugar-induced adventitious roots in Arabidopsis seedlings. J Plant Res 116(2):83-91
    Takeda Y, Hirata Y, Motegi T & Kita M (1997) Analysis of mitochondrial DNA in the progenies derived from interspecific chimeras between Brassica oleracea and B.campestris. Breed Sci 47 (2):347-
    Tarkowski AK (1961) Mouse chimeras developed from fused eggs. Nature 190:857-860
    Tian HC & Marcotrigiano M (1993) Origin and development of adventitious shoot meristems initiated on plant chimeras. Dev. Biol. 155: 259-269
    Tilney-Bassett RAE (1986) Plant chimeras. Edward Arnold Ltd., London
    Wang HW, Wei JM & Shen YK (2000) Enhancement in wheat leaf photophosphorylation and photosynthesis by spraying low concentration of NaHSO_3. Chin. Sci. Bul. 45: 1308-1311
    Winkler H (1907). Description of S. nigrolycopersicum and method of obtaining graft-hybrids. Ber. Deut.. Bot. Ges. 25: 568-576.
    Yeoman M M (1978) Cellular interactions during graft formation in plants, a recognition phenomenon. Syrup Soc Exp Biol 32:139-160
    Zhang DH, Meng ZH, Xiao WM, Wang XC & Sodmergon (2002) Graft-induced Inheritable variation in mungbean and its application in bungbean breeding. Acta Botanica Sinica 44 (7): 832-837
    Zhang M, Deng XX, Qin CP, Chen CL, Zhang HY, Liu Q, Hu ZY & Guo LL (2007) Characterization of a new natural periclinal navel-satsuma chimera of citrus:"zaohong" navel orange Journal of American Society Horticultural Science 132 (3): 374-380
    Zhao RL & Zhang DX (1992) Primary exploration of chrysanthemum Chimera abruption with tissue culture. Science of Liaoning Agriculture 4: 56-57
    Zhou JM, Hirata Y & Shiotani H (2001) Studies on the chimeras in Citrus 1.Molecular analysis of the chimeras between "Kawano natsudaidai" and"Fukuhara orange". Breed Res 3 (2): 831
    Zhou JM, Hirata Y Shiotani H & Ito T (2004) Genetic interaction between different tissues in Citrus periclinal chimeras. Acta Hor. 632: 271-277
    Zhou JM, Hirata Y, Shiotani. Nou III-Sup, Shiotam H. & Ito T (2002). Interactions between different genotypic tissues in citrus graft chimeras. Euphytica 126:355-364.
    Zhu XY, Zhao M, Ma S, Ge YM, Zhang MF & Chen LP (2007) Induction and origin of adventitious shoots from chimeras of Brassica juncea and Brassica oleracea.Plant Cell Rep 26 (10): 1727-1732.
    Zimmerman TW & Scorza R (1996) Genetic transformation through the use of hyperhydric tobacco meristems. Mol. Breed. 20: 73-80
    Zonneveld Ben JM (2007) Nuclear DNA content of ploidy chimeras of Hosta Tratt.(Hostaceae) demonstrate three apical layers in all organs, but not in the adventitious root. Plant Syst. Evol. 269: 29-38
    Zonneveld Ben JM & Van Iren Frank (2000) Flow cytometric analysis of DNA content in Hosta reveals ploidy chimeras. Euphytica 111: 105-110

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700