表面下微尺度热结构测量方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究的主要目的是探寻实现表面下热物性分布测量的有效方法,实现其关键技术,实现空间分布面方向微米量级,深度方向亚微米量级的测量装置研究,为今后的空间分辨率纳米量级的扫描热显微镜打下基础。
     在实验上采用周期半导体激光为加热源,连续半导体激光为探测光,光学显微镜物镜聚光,应用稳态的光热反射探测技术得到相应于表面温度响应的周期反射信号,此系统主要包括周期加热激光、连续探测激光、显微镜物镜、硅光电探测器、锁相放大器、微米尺度二维扫描平台。
     在测量原理方面,通过对于层状结构试样热传导问题进行解析,引入了传输线理论及其使用方法。为有效利用传输线理论,对能量方程组进行了Laplace变换和Hankel变换。得到解析解后,在简单情况下可通过Laplace反变换和Hankel反变换得到表面温度在空间域和频域的分布,得到加热信号与反射信号的相位差及振幅比与结构的关系,确定结构测量原理。同时开发针对此问题的逆解析算法——模拟退火算法,并根据测量结果进行热物性(导热系数,界面热阻)的计算。对实验中被测参数进行了敏感度分析。
     实验测量与理论分析相结合,提出微尺度表面下结构及瞬态导热性能分布的测量原理及实验方法,建立一套5~10微米分辨率的实验室用测试系统。实现微米量级尺度简单结构复合试样的结构与导热性能分布的测量。
     在单点测量方面,通过对不同厚度SiO_2薄膜导热系数测试的实验测量,发现98nm~322nm厚的SiO_2薄膜的导热系数低于其体参数(1.38W·m~(-1)·K~(-1)),且与厚度有关,厚度越小,导热系数越小;Al/SiO_2之间的界面热阻与SiO_2薄膜的内部热阻数量级相当,不可忽略:SiO_2/Si之间的界面热阻可以忽略。
     通过对表面下埋藏物的光热反射扫描试验,发现当热波在埋藏物中的热扩散长度与埋藏物的厚度相当时,探测异物存在的敏感度最高,由此可得到埋藏物热扩散系数的数量级,精确定量地分析其数值大小时,需要准确地测量泵浦/探测光斑的直径大小、精确的电动扫描平台和精确的三维热波扩散模型。根据数值模拟结果,讨论了埋藏物深度、埋藏物和基体的热浸透率比值对于表面下热结构测量的影响。
This program aims mainly at find out a feasible method to determine the subsurface thermal properties distribution, implement the key technology, set up a system with the resolution of micron in face and the resolution of submicron in depth, which are prepared for the study of nanoscale scanning thermal microscopy.
     With periodically modulated semiconductor laser used as the heating source, continuing semiconductor laser used as probing laser, optic microscopy objective used as focusing optics, the steady photo thermoreflectance experiments are performed. The reflectance signal corresponding to the temperature response is detected. The setup includes periodical heating laser, continuing probing laser, objective, silicon photodiode, lock-in amplifier, 2D microscale scanning stage.
     The multilayer heat conduction is analyzed. The transmission line theory is described and used in the solving of heat conduction equations. Using Laplace transform, Hankel transform and transmission line theory, the expression of surface temperature is deduced in Laplace domain and Hankie domain. The temperature in frequency domain and space domain can be deduced by inverse transformation accordingly. The measurement principles of thermal characteristic are determined by the functions of phase lag or amplitude ratio between heating signal and probing signal. The simulated annealing algorithm in the inverse analysis for determining the thermal conductivity and thermal boundary resistance is developed. The sensitivity of the considered parameter is analyzed.
     The experiment principle and method of measurement of microscale subsurface thermo characteristics distribution are described numerically and experimentally. A laboratory measurement setup with resolutions of 5-10 micron is developed. The measurement of thermo conductivity distribution of microscale composite sample isrealized.
     The thermal conductivities of thermally oxidized SiO_2 films of 98nm, 148nm, and 322nm in thickness deposited on Si substrate are measured. The thermal conductivity of the nano SiO_2 film is found to be less than its bulk value, and thickness dependent. The thermal boundary resistance between SiO_2 and Al coating is found to be comparable to the thermal resistance of the SiO_2 layer. The thermal boundary resistance between SiO_2 and Si can be neglected.
     The results of scanning sample with buried inhomogeneities show that the sensitivity is the highest when the thermal diffusion length is comparatable to the depth of the buried inhomogeneities. The order of magnitude of thermal diffusion can be deduced. Accurate dimension of diameter of heating beam and probing beam and 3D thermal wave model are necessary for determining the exact thermal diffusivity.
     The process of heat conduction is analyzed numerically. Based on the simulation results, various depth and effusivity of the buried inhomogeneities in the microscale subsurface structure measurement is discussed.
引文
[1] A Majumdar, K. Luo, Z. Shi, J. Varesi. Scanning thermal microscopy at nanometer scales: a new frontier in experimental heat transfer. Experimental Heat Transfer. 1996. 8:83-103
    [2] 刘静.微米/纳米尺度传热学.北京:科学出版社.2001
    [3] 曹玉章,邱绪光.实验传热学.北京:国防工业出版社.1998
    [4] K.E.Goodson. Thermal engineering of electric microstructures, Research overview of department of mechanical engineering. Stanford University. 1998.
    [5] D.W. Pohl, W.Denk, M. Lanz. Optical stethoscopy: image recording with resolution λ/20. Applied physics Letter. 1984, 44:651-653
    [6] K.E.Goodson, M. Asheghi. Near-field optical thermometry. Mieroseale Thermophysical Engineering. 1997, 1:225-235
    [7] C.C. Willams, H.K.Wickramasinghe. Scanning thermal profiler. Applied physics Letter. 1986, 49:1587-1589
    [8] A Majumdar, J.P. Carrejo, J. Lai. Thermal imaging using the atomic force microscope. Applied physics Letter. 1993, 62:2501-2503
    [9] 顾毓沁,晋宏师,孙晓毅,陈皓明,谢志刚.用扫描热显微镜测量微小区域热导性质的探讨.工程热物理学报.2004,21(4):456-460
    [10] M. Nonnenmacher, K Wickramasinghe. Scanning probe microscopy of thermal conductivity and subsurface properties. Applied Physics letter. 1992, 61:168-170
    [11] H.M. Pollock, A. Hammiche. Micro-thermal analysis: techniques and applications. Journal of Physics D: Applied Physics. 2001, 34:R23-R53
    [12] A Hammiche, H M Pollock, M Song, D J Hourson. Sub-surface imaging by scanning thermal microscopy. Measurement Science & Technology. 1996, 7:142-150
    [13] K. Friedrich, K. Haupt, U. Seidel, and H. G. Walther, Definition, resolution and contrast in photothermal imaging. Journal of Applied Physics. 1992, 72:3759-3764
    [14] U.Seidel, k.Haupt, H.G.Walther, J.A.Burt, M.Munidasa. An attempt towards quantitative photothermal microscopy. Journal of Applied Physics. 1995,78(3):2050-2056
    [15] U. Seidel, K. Haupt, H. G. Walther, J. Burt, and B. K. Bein. Analysis of the detectability of buried inhomogeneities by means of photothermal microscopy. Journal of Applied Physics. 1994,75(9):4396-4401
    [16] U. Seidel, H. G. Walther. Estimation of depth, width and magnitude of material inhomogeneities from photothermal inhomogeneities from photothermal measurements. SPIE. 1996,2766:240-248
    [17] M. Munidasa, A. Mandelis. Photopyroelectric thermal wave tomography of aluminum with ray-optic reconstruction. Journal of the Optical Society of America A 1991,8: 1851-1858
    [18] D. J. Crowther, L. D. Favro, P. K. Kuo, R. L. Thomas. Inverse scattering algorithm applied to infrared thermal wave images. Journal of Applied Physics. 1993,74(9):5828-5834
    [19] L. D. Favro, X. Han, P. K. Kuo, R. L. Thomas. Improving the resolution of pulsed thermal wave images with a simple inverse scattering technique. Journal of Physique IV 1994,C7-4:545-550
    [20] T. T. N. Lan, U. Seidel, H. G. Walther. Theory of microstructural depth profiling by photothermal measurements. Journal of Applied Physics. 1995,1977(9): 4739-4745
    [21] T. T. N. Lan, U. Seidel, H. G. Walther, G. Goch, B. Schmitz. Experimental results of photothermal microstructural depth profiling. Journal of Applied Physics. 1995,78(6):4108-4111
    [22] S. Paoloni, H.G.Walther. Photothermal radiometry of infrared translucent materials. Journal of Applied Physics. 1997,82(1): 101-106
    [23] A. Salazar, F.Garrido, A Oleaga, R. Celorrio. Degeneracy of the thermal properties of buried structures. Journal of Applied Physics 2005,98:013513
    [24] T.Yagi, N.Taketoshi, H.Kato. Distribution analysis of thermal effusivity for sub-micrometer YBCO thin films using thermal microscope. Physica C 2004, 412-414:1337-1342
    [25] N. Taketoshi, M. Ozawa, H. Ohta, T. Baba, Thermal effusivity distribution measurements using a thermoreflectance technique. AIP Conference Proceeding 1999, 463:315-317
    [26] James Christofferson. Thermal microscopy of active semiconductor devices. Dissertation of University if California Santa Cruz. 2004
    [27] S. Grauby, B. C. Forget. S. Hole. D. Fournier. High resolution photothermal imaging of high frequency phenomena using a visible charge coupled device camera associated with a multichannel lock-in scheme. Review of Scientific Instruments. 1999, 70(9):3603-3608
    [28] James Charistofferson, Daryoosh Vashaee, Ali Shakouri. Thermoreflectance Imaging of Superlattice Micro Refrigerators. Seventeenth IEEE Semi-Thermo Symposium. 2001: 58-62
    [29] James Charistofferson, Ali Shakouri. Camera for Thermal Imaging of Semiconductor Devices Based on Thermoreflectance. Semiconductor Thermal Measurement and Management Symposium. Twentieth Annual IEEE, 2004:87-91
    [30] J. Opsal, A. Rosencwaig, D. L. Wilenborg. Thermal-wave detection and thin-film thickness: Measurements with laser beam deflection. Applied Optics. 1983, 22:3169-3176
    [31] J. Opsal, A. Rosencwaig. Thermal wave depth Profiling. Journal of Applied Physics. 1982, 53(6):4240-4246
    [32] Per-Erik Nordal, Svein Otto Kanstad. Photothermal Radiometry. Physica. Scripta. 1979, 20:659-662
    [33] Jyotsna Ravi, Yuekai Lu Stephane Longuemart. Photothemal depth profiling by neural network infrared radiometry signal recognition. Journal of Applied Physics. 2005, 97(1):014701
    [34] H.G.Walther, T. Kitzing. Sysmatic errors of locally resolved photothermal radiometric measurements. Journal of Applied Physics. 1998, 84(3): 1163-1167
    [35] H.G.Walther. Photothermal inspection of rough steel surfaces. Journal of Applied Physics. 2001, 89(5):2939-2942
    [36] L. Fabbri, F.Cemuschi. Finite laser beam size effects in thermal wave interferometry. Journal of Applied Physics. 1997, 82:5305-5361
    [37] F. Cemuschi, A. Figari. Thermal wave interferometry for measuring the thermal diffusivity of thin slabs. Journal of Materials Science. 2000, 35:5891-5897
    [38] F. Cemuschi, P. G. Bison, A. Figari, S. Marinetti, E. Grinzato. Thermal Diffusivity Measurements by Photothermal and Thermographic Techniques. International Journal of Thermophysics, 2004, 25(2):439-457
    [39] W J Parker, R J Jenkins, C P Butler. Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity. Journal of Applied Physics, 1962, 32:1679-1684
    [40] Tian-Chi Ma, Mahendra Munidasa, Andreas Mandelis. Photoacoustic frequency-domain depth profilometry of surface-layer inhomogeneities: Application to laser processed steels. Journal of Applied Physics. 1992, 71(12):6029-6035
    [41] Y.H.Wong, R.L.Thomas, G.F.Hawkins. Surface and subsurface structure of solids by laser photoacoustic spectroscopy. Applied Physics Letter.1978, 32:538-539
    [42] A Rosencwaig, A Gersho. Theory of the photoacoustic effect with solids. Journal of Applied Physics. 1976. 47(1):64-69
    [43] R.T. Swimm. Photoacoustic determination of thin-film thermal properties. Applied Physics Letter. 1983, 42(2):955-957
    [44] U. Zammit, F. Gasparrini, M. Marinelli, R. Pizzoferrato, F. Scudieri, and S. Martellucci. Surface states studies in semiconductors by photothermal deflection spectroscopy. Journal of Applied Physics. Phys. 1991, 69(4):2577-2560
    [45] 刘鹏程,沈剑峰,施柏煊.投射式光热偏转技术实验装置的建立及应用.光学仪器.2002,24(4/5):73-77
    [46] 施柏煊,殷浩,王聪和,黄元华,谭家麟,Lo K L.横向激光光热偏转相位法测量金刚石薄片的热扩散率.光子学报.2000,29(5):474-477
    [47] 赵超先,罗爱华,张淑仪,张仲宁,水修基.用激光引发热反射栅方法测量固体热扩散率.物理实验.2004.24(9):9-12,23
    [48] D. Dietzel, B. K. Bein, J. Pelzl. Systematical analysis of laser beam modulated optical reflectance signals. Review of Scientific Instruments. 2003, 74 (1):604-607
    [49] J.L.N. Fotsing, M. Hoffmeyer, S. Chotikaprakhan. Laser modulated optical reflectance of thin semiconductor films on glass. Review of Scientific Instruments. 2003, 74 (1):873-876
    [50] J Hartmann, P.Voigt, M. Reiehling. Measuring local thermal conductivity in polycrystalline diamond with a high-resolution photothermal microscope. Journal of Applied Physics. 1997, 81(7):2966-2972
    [51] O.W. Kading, H. Skurk, K. E. Goodson. Thermal conduction in metalized silicon dioxide layers on silicon. Applied Physics letter. 1994, 65:1629-1631
    [52] Zhao Yimin, Zhu Chunlin, Wang Sigen, Tian J. Z, Yang D J, Chen C.K., Cheng Hao, Hing Peter. Pulsed photothermal reflectance measurement of the thermal conductivity of sputtered aluminum nitdde thin films. Journal of Applied Physics. 2004. 96(8):4563-4568
    [53] Zhao Yimin, Chen George, Wang Shanzhong, Soon Fatt Yoon. Thermal characterization of gallium arsenic nitride epilayer on gallium arsenide substrate using pulsed photothermal reflectance technique. Thin Solid Films. 2004, 450:352-356
    [54] George Chen, P. Hui, Shi Xu. Thermal conduction in metalized tetrahedral amorphous carbon (Ta-C) films on silicon. Thin Solid Films 2000, 366:95-99
    [55] P.Hui, H.S.Tan. Modeling of thermal diffusivity measurement of diamond thin films using a pulsed laser technique. Surface and coatings technology. 1993, 62:361-366
    [56] B. Li, L. Pottier, J. P.Roger, D. Fournier, K.Watari, K.Hirao. Measuring the anisotropie diffusivity of silicon nitdde grains by thermoreflectance microscopy. Journal of Europe Ceramic Soceity. 1999, 19:1631-1639
    [57] A. Rosencwaig, J. Opsal, W. L. Smith, D. L. Willenborg, Detection of thermal waves through optical reflectance. Applied Physics letter. 1985, 46(11): 1013-1016
    [58] L. Pottier. Micrometer scale visualization of thermal waves by photoreflectance microscopy. Applied Physics letter. 1994, 64(13): 1618-1619
    [59] F.Lepoutre, D.Balageas, Ph.Forge, S.Hirschi, J.L.Joulaud, D. Rochais, F. C. Chen. Micron-scale thermal characterizations of interfaces parallel or perpendicular o the surface. Journal of Applied Physics. 1995,78(4): 2208-2223
    [60] L.R. de Freitas, E. C. da Silva, A. M. Mansanares, G. Tessier, D. Fournier. Sensitivity enhancement in thermoreflectance microscopy of semiconductor devices using suitable probe wavelengths. Journal of Applied Physics. 2005,98: 063508-7
    [61] L.R. de Freitas, A. M. Mansanares, E. C. da Silva. Theoretical calculation of the dispersion relation for polymetric thin films: Determination of the thermal diffusivity using photothermal microscopy. Review of Scientific Instruments. 2003, 74(1):735-737
    [62] Kimihito Hatod, Naoyuki Taketoshi, Tetsuya Baba, Hiromichi Ohta. Thermoreflectance technique to measure thermal effusivity distribution with high spatial resolution. Review of scientific instruments. 2005, 76 114901-7
    [63] James Christoffersona, Ali Shakouri. Thermoreflectance based thermal microscope. Review of scientific instruments. 2005, 76(2):024903/6
    [64] Stefan Dilhairea, Ste'phane Graubya, Wilfrid Claeysa, Jean-Christophe Batsale Thermal parameters identification of micrometric layers of microelectronic devices by thermoreflectance microscopy. Microelectronics Journal. 2004, 35:811-816
    [65] 池内賢朗,八木贵志,加藤英幸.局所热浸透率测定装置用YBCO热浸透率分布测定.低温工学.2005,40(8):335-339
    [66] Eric P. Visser, Erwin H. Verteegen, Willem J. P. van Enckevort. Measurement of thermal diffusion in thin films using a modulated laser technique: Application to chemical-deposited diamond films. Journal of Applied Physics 1992, 71(1): 3238-3248
    [67] A.A. Maznev, J.Hartmann, M.Reichling. Thermal wave propagation in thin films on substrate. Journal of Applied Physics 1995,78(9):5266-5269
    [68] Bincheng Li, Pottier, J. P. Roger, D. Fournier. Thermal characterization of film-on-substrate systems with modulated thermoreflectance microscopy. Review of Scientific Instruments. 2000, 71(5): 2154-2160
    [69] Bincheng Li, J. P. Roger, L. Pottier, D. Fournier. Complete thermal characterization of film-on-substrate system by modulated thermoreflectance microscopy and multiparameter fitting. Journal of Applied Physics. 1999, 86(9):5314-5316
    [70] G. Tessier, S. Hole, D. Fournier. Quantitative thermal imaging by synchronous thermoreflectance with optimized illumination wavelengths. Applied Physics Letters. 2001, 78(16):2267-2269
    [71] S. Paoloni, D. Fournier. Novel approach for the analysis of infrared photothermal microscopy data. Review of Scientific Instruments. 2003, 74(1):523-525
    [72] S. Paoloni, D. Fournier. Semi-empirical approach for the analysis of infrared photothermal Microscopy. Journal of Applied Physics. 2002, 92(10):5955-5958
    [73] J.F. Bisson, D. Fournier. Influence of diffraction on low thermal diffusivity measurements with infrared photothermal microscopy. Journal of Applied Physics. 1998, 83(2): 1036-1042
    [74] D. Dietzel, B. K. Bein, J. Pelzl. Systematical analysis of laser beam modulated optical reflectance signals. Review of Scientific Instruments. 2003, 74(1):604-607
    [75] D. Dietzel, B. K. Bein, J. Pelzl. Higher harmonic thermal wave detection in thermoreflectance microscopy with combined electrical and optical heating. Superlattics and Microstructures 2004, 35:389-400
    [76] D. Dietzel, B. K. Bein, J. Pelzl. Double modulated thermoreflectance microscopy of semiconductor devices. Journal of Applied Physics. 2003, 93(11):9043-9047
    [77] D. Dietzel, H. Roecken, B. K. Bein, J. Pelzl. Contrast enhancement of modulated optical reflectance microscopy of semiconductor devices. Review of Scientific Instruments. 2003,74(1):559-562
    [78] G. Aguirre-Ramirez, J. T. Oden. Finite element technique applied to heat conduction in solids with temperature dependent thermal conductivity. International Journal for Numerical Methods in Engineering. 2005, 7(3): 345-355
    [79] N. Araki. A.Makino, T.Ishiguro, J.Mihara. An Analytical Solution of Temperature Response in Multilayered Materials for Transient Methods. International journal of thermophysics. 1992,13: 515-538
    [80] K.D.Cole. Analysis of Photothermal Characterization of Layered Materials—Design of Optimal Experiments. International Journal of Thermophysics. 2004, 25(5): 1567-1584
    [81] M. Bertolotti, R.Li Voti, G.L.Likhou, S.Paoloni, C.Sibilia. A new approach to the photothermal depth profiling in frequency domain: theory and experiment. Photoacoustie and Photothermal Phenomena. AIP conference proceedings. 1998, 463:24-26
    [82] Severine Gomes, Francoise Depasse, Phillippe Grossel. 3D thermal wave scatting on buried inhomogeneities in ac thermal microscopy. Journal of Applied Physics. 1988, 31:2377-2387
    [83] George Chen, Ping Hui. Pulsed photothermal modeling of composite samples based transmission-line theory of heat conduction. Thin Solid Films. 1999, 339:58-67
    [84] P.Hui, H.S.Tan. A Transmission line theory for heat conduction in multiplayer thin films. IEEE transaction on component. Packing, and Manufacturing Technology-Part B. 1994, 17(3):426-433
    [85] 王培吉,周忠祥,梁伟,张奉军,张仲,范素华.利用激光光热技术研究钛酸钡材料的导热性能.光学技术.2006,32(4):621-626
    [86] M.H. Xu, J. C. Cheng, S. Y. Zhng. A new method of reconstruction of thermal conductivity-depth profiles from Photoacoustic or photothermal Measurements. Journal of Physics D: Applied Physics. 1998, 31:3154-3159.
    [87] M.H. Xu, J. C. Cheng, S. Y. Zhng. Frequency bandwidth optimization of photothermal technique for thermal conductivity depth profiling. AlP Conference Proceedings. 2000, 509:1905-1910
    [88] M.H. Xu, J. C. Cheng, S. Y. Zhang. Reconstruction theory of thermal conductivity depth profiles by the modulated photoreflectance technique. Journal of Applied Physics. 1998, 84(2):675-682
    [89] S.Orain, Y.Seudeller, S. Garica, T.Brousse. Use of genetic algorithms for the simultaneous estimation of thin films thermal conductivity and contact resistances. International Journal of Heat and Mass Transfer 2001, 44:3973-3984
    [90] H.G. Walther, T. T. N. Lan, P. Kachyna. Retrieval of thermal conductivity depth profiles from surface hardened steel. Photoaeoustic and Photothermal Phenomena. AIP conference proceedings 1998, 463:31-33
    [91] S.A. Thorne, S.B. Ippolito, M.S. Unlu, B.B. Goldberg. High-resolution thermoreflectance microscopy. Mat. Res. Soc. Symp. Proc. 2003, 738:G12.9
    [92] James Christoffersona, Ali Shakouri. Thermoreflectance based thermal microscope. Review of Scientific Instruments. 2005, 76(2):024903/6
    [93] 康立山著.非数值并行算法.第一册,模拟退火算法.北京:科学出版社.1994
    [94] S.Kirkpatrock, C.D.Gelatt, Jr., M.P.Vecchi. Optimization by Simulated Annealing. Science. 1983, 220:671-680
    [95] A.Corana, M.Marhesi.C.Martini,S.Ridella. Minimizing Multimodal Functions of Continuous Variables with the simulated Annealing Algorithm. ACM Transactions on Mathematical Software. 1987, 13: 262-280
    [96] 陈赵江,方健文,王志海.激光光热反射技术对薄膜热物性的表征.中国激光.2006,33(3):385-390
    [97] S.M.lee, David Cahill. Heat transport in thin dielectric films. Journal of Applied Physics. 1997, 81:2590-2595
    [98] 唐祯安,黄正兴,顾毓沁,朱德忠.MEMS中薄膜热物性测试方法研究.仪表技术与传感器.2003,2:6-11
    [99] 宋青林,夏善红,陈绍凤,张建刚.微尺度薄膜热导率测试技术.物理学进展.2002,22(3):283-295
    [100] D T Morelli, C P Beetz, T A Perry. Thermal conductivity of synthetic diamond films. Journal of Applied Physics. 1998, 64:3063-3066
    [101] Anthony T R, Fleischer J L. The thermal conductivity of isotopically enriched polycrystalline diamond films. Journal of Applied Physics. 1991, 69:8122-8125
    [102] H.P.Ho, K.C.Lo, S.C.Tjong, S.T.Lee, Measurement of thermal conductivity in diamond films using a simple scanning thermocouple technique, Diamond and Related Materials. 2000, 9:1312-1319
    [103] D.G. Cahill. Thermal Conductivity Measurement from 30 to 750 K: the 3ω Method. Review of Scientific Instruments. 1990, 61 (2):802-808
    [104] 王学华,薛亦渝.薄膜制备技术及其应用研究.真空电子技术.2003,(5):65-70
    [105] Philip C.D., Hobbs, Ossining, N.Y. Noise cancelling circuitry for optical systems with signal dividing and combining means. US Patent 1990:4975666
    [106] R.Rosei, D.W.Lynch. Thermomodulation spectra of Al, Au and Cu. Physical Review B. 1972, 5910:3883-3894
    [107] 胡诞康.微弱信号的测量.电子质量.2005(5):1-4
    [108] 陈银根,李秀玲,肖东平.微弱信号检测—数字相关技术的研究.2004,22(4):268-271
    [109] Jung Hun Kim, Albert Feldman, Donald Novotny. Application of the three omega thermal conductivity measurement method to a film on a substrate of finite thickness. Journal of Applied Physics. 1999, 86:3959-3963
    [110] Tsuneyuki Yamane, Naoto Nagai, Shin-ichiro Katayama, Minoru Todoki Measurement of thermal conductivity of silicon dioxide thin films using a 3ωmethod. Journal of Applied Physics. 2002, 91:9772-9776
    [111] Taofang Zeng, Gang Chen. Phonon Heat Conduction in thin films: impacts of thermal boundary resistance and internal heat generation Transactions of the ASME. 2001, 123:340-347
    [112] E.T. Swarm, R. O. Pohl. Thermal resistance at interfaces. Applied Physics letter. 1987, 51:2200-2202
    [113] Lambropoulos J. C., Jacobs S. D., Bums S. J., Shaw-Klein L., Hwang S. S., Thermal conductivity of thin films: Measurement and Microstructural Effects. ASME Heat Transfer Division, Thin Film Heat Transfer: Properties and Processing. 1991, 184:21-32
    [114] 李佳運.病毒感染细胞荧光蛋白光谱分布之动能量测.硕士学位论文.2006
    [115] 陆璇辉,陈许敏,张蕾,薛大建.刀口法测量高斯光束光斑尺寸的重新认识.激光与红外.2002.32(3):186-187
    [116] 熊小华.刀口法测量高斯光速腰斑大小实验设计.南昌航空工业学院学报.2000.14(3):73-75
    [117] 杨枫,孔宪生.用刀口法测量氦氖激光基横模.大学物理.1998,17(11):25-26

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700