毛白杨未减数花粉发生及相关分子标记研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
毛白杨(Populus tomentosa Carr.)种群中有天然未减数花粉存在,开展毛白杨天然未减数花粉形成机制研究,对未减数花粉高产植株选择和利用具有重要的理论和实际应用价值。本研究主要通过花粉形态和小孢子母细胞减数分裂观察,以及AFLP和cDNA-AFLP分子标记分析,围绕毛白杨未减数花粉发生频率、细胞学机制、相关分子标记等进行了初步研究,取得了一定的进展。
     1.根据未减数花粉相对于正常减数花粉表现为巨大性而易于判别的特点,利用醋酸洋红染色法对224个毛白杨雄性无性系的花粉进行了显微观察和统计,结果显示,除了河南和陕西的6个无性系无未减数花粉发生外,其它无性系均可产生未减数花粉,发生频率介于0.6-21.9%。方差分析表明,毛白杨未减数花粉的发生频率在不同地理种源间呈现显著性差异,而在各无性系之间存在极显著性差异。
     2.利用醋酸洋红压片观察,发现在毛白杨小孢子母细胞减数分裂中期Ⅱ,纺锤体表现为平行,或互为一定的角度;在减数分裂的四分体阶段,还存在一定比率的三分体和二分体。进一步通过间接免疫荧光法观察小孢子母细胞减数分裂,发现在一些细胞中,两个纺锤体在一个方向或两个方向上的微管系统存在共极现象,即存在融合(两极)纺锤体和三极纺锤体。由此可以推断,由于异常纺锤体的存在,纺锤体微管系统定位紊乱,部分细胞的纺锤体极点融合,导致二分体或三分体的形成,最终形成未减数花粉。此外,减数第二次分裂存在胞质分裂提前现象,也可能会导致二分体的形成,从而产生未减数花粉。其中,来源于平行纺锤体的未减数花粉为FDR型,而因胞质分裂提前而形成的未减数花粉则属于SDR型。
     3.利用AFLP和SCAR标记进行了毛白杨未减数花粉发生相关分子标记的研究。从52对AFLP引物组合中筛选出2对引物组合及其与毛白杨产生未减数花粉无性系和正常无性系相关的AFLP标记,其中采用引物组合E31-M50(AAA/CAT)可以从产生未减数花粉的毛白杨无性系中扩增出1条大小为204bp的多态性条带,而采用引物组合E50-M38(CAT/ACT)能够从正常不产生未减数花粉的毛白杨无性系中扩增出1条大小为246bp的多态性条带。并进一步回收由AFLP标记筛选出的2条多态性条带,成功转化为操作简单、方便检测的SCAR标记。
     4.利用EcoRⅠ和MseⅠ双酶切引物组合对毛白杨小孢子母细胞减数分裂各阶段的花芽进行cDNA-AFLP转录分析,用筛选出的12对多态性突出的引物组合共扩增到减数分裂阶段特异性转录来源片段52个,其中只有引物E33-M40(AAG/AGC)扩增得到了未减数花粉无性系在减数分裂Ⅱ差异表达的转录来源序列标签(TDF24#);进一步对TDF24#进行BLASTN和BLASTX分析,发现与已知EST序列、基因或蛋白没有同源匹配,特异TDF24#与未减数花粉发生是否相关有待进一步研究。
The production of unreduced pollen in Chinese white poplar (Populus tomentosa Carr.) has been reported. Studying the mechanisms of unreduced pollen was important for selection and utilization of unreduced pollen in triploid breeding. The objective of this research was to determine the mechanism of unreduced pollen formation in indigenous populations of Chinese white poplar. Occurrence frequency, cytological mechanisms and molecular markers involved in unreduced pollen production were investigated by morphology of pollen grains, cytology of meiosis, AFLP and cDNA-AFLP markers.
     1. Pollen grains of 224 clones were investigated for the production of unreduced pollen based on pollen size difference. It was observed that six clones which from Henan and Shannxi were subsequently determined to only produce normal pollen and the remainder produce unreduced pollen at different frequency range from 0.6% to 21.9%. The analysis of variance on the frequency of unreduced pollen in Chinese white poplar revealed significant differences between indigenous populations and highly significant differences among clones within indigenous populations.
     2. Microscopic examination was used to determine the second meiosis of pollen mother cells in Chinese white poplar. Two types of spindles (parallel spindles and tripolar spindles) were observed as indicated by the orientation of the chromosomes. So did dyads and triads at the tetrad stage. Furthermore, indirect immunofluorescence analysis of meiosis revealed that some of the spindles fused in one or two poles, i.e. fused (bipolar) spindle and tripolar spindle. The results revealed that the abnormal spindles caused irregular operation of microtubules leading to spindle poles fusion. Dyads and triads were induced by the fusion of spindles and induced unreduced pollen formation. In addition, the premature cytokinesis during the second meiotic division also produced dyads. The abnormal spindles produce unreduced pollen is genetically equivalent to first-division restitution (FDR) mechanism, while that from premature cytokinesis is genetically equivalent to second division restitution (SDR).
     3. Molecular markers of amplified fragment length polymorphism (AFLP) and SCAR (sequence-characterized amplified region) were employed to identify related molecular markers of unreduced pollen in Chinese white poplar. Following an initial screening with 55 primer combinations, the E31-M50 (AAA/CAT) primer was identified: it generated a PCR fragment (204 bp) from the unreduced pollen producers, but not from the normal clones. In addition, the E50-M38 (CAT/ACT)-amplified DNA fragment (246 bp) was present in normal clones, and absent in unreduced pollen producers. These two discriminating AFLP markers were developed into easily detectable SCAR markers which can be used in combination with the previously developed AFLP markers to distinguish between normal and unreduced pollen clones.
     4. Differential gene expression profiles of meiosis during unreduced pollen formation were analyzed by cDNA-AFLP technique. From 12 primer combinations, 52 regulated differentially transcription-derived fragments (TDFs) were observed, of which TDF24# was a differential expression profile in unreduced pollen clone. However, the TDF24# that expressed at the second division of unreduced pollen clone was not found similarity to any ESTs, genes or proteins by the BLAST program at the GenBank database.
引文
[1] 陈成彬,齐力旺,张守攻,韩素英,李秀兰,宋文芹,陈瑞阳.三倍体杨树核型分析.武汉植物学研究,2004,22(6):565-567.
    [2] 房桂干,邓拥军,李萍.三倍体毛白杨制浆性能的评价.林业科技管理,2001,(增刊):87-90.
    [3] 谷晓峰,罗正荣.‘禅寺丸’甜柿 2n 花粉形成机制的研究.园艺学报,2003,30(2):135-140.
    [4] 康向阳.毛白杨未减数 2n 花粉发生机制的研究.北京林业大学学报.2002,24(5/6):67-70.
    [5] 康向阳.杨树染色体数目和形态观察.甘肃农业大学学报.1996,31(1):67-70.
    [6] 康向阳,朱之悌,张志毅.毛白杨花粉母细胞减数分裂及其进程的研究.北京林业大学学报,2000a,22(6):5-7.
    [7] 康向阳,朱之悌,林惠斌.白杨不同倍性花粉的辐射敏感性及其应用.遗传学报,2000b,27(1): 78-82.
    [8] 康向阳,朱之悌.白杨 2n 花粉生命力测定方法及萌发特征的研究.云南植物研究,1997, 19(4):402-406.
    [9] 康向阳,朱之悌.论三倍体毛白杨在我国浆纸生产中的地位与作用.北京林业大学学报,2002, 24(增刊):51-56.
    [10] 栗茂腾,蔡得田,黄利民.2n 雄配子的无融合生殖披碱草(Elymus rectisetus)减数分裂行为研究.遗传学报,2001,28(10):939-946.
    [11] 孟金陵.植物生殖遗传学.北京:科学出版社,1995,81-90.
    [12] 屈冬玉,朱德蔚,王登社,高占旺,Ramanna MS,Jacobsen E.马铃薯 2n 配子发生的遗传分析. 园艺学报,1995,22(1):61-66.
    [13] 时翠平,葛会波,张成合,郭振怀.草莓未减数配子形成的细胞学研究.中国农业科学, 2002,35(10):1260-1263.
    [14] 唐仙英,罗正荣.甜柿 2n 花粉形成的细胞学机理研究.中国农业科学,2002,35(5):585-588.
    [15] 汪卫星,郭启高,向素琼,李晓林,梁国鲁.热激处理对枇杷 2n 花粉发生率的影响.果树学报,2003,20(4):284-286.
    [16] 张成合,申书兴,刘学岷,王玉海,王子欣.三分体形成是大白菜 2n 雄配子发生的主要途径.遗传学报,1999,26(1):76-80.
    [17] 姚春丽,蒲俊文.三倍体毛白杨化学组分纤维形态及制浆性能的研究.北京林业大学学报,1998,20(5):18-21.
    [18] 张成合,申书兴,尚爱芹,王子欣,任清.大白菜 2n 配子发生的遗传分析.园艺学报, 2000, 27(4):295-296.
    [19] 张新忠,刘国俭.热激处理对桃、李离体花枝 2n 花粉产生的影响.园艺学报,1998, 25(3):292-293.
    [20] 张正海,康向阳.植物 2n 配子发生及其遗传标记研究进展.遗传,2006,28(1):105-109.
    [21] 张志毅,李凤兰.白杨染色体加倍技术研究及三倍体育种(Ⅰ).北京林业大学学报,1992, 14(增刊 3):52-58.
    [22] 郑国锠,聂秀菀,杨庆兰.细胞融合的光学与电子显微镜观察及其变异和进化关系的探讨.植物学报,1975,17(1):60-69.
    [23] 朱之悌.毛白杨良种选育战略的若干考虑及其八年研究结果总结.林业部科技司主编.阔叶树遗传改良.北京:科学技术文献出版社,1991,59-82.
    [24] 朱之悌.全国毛白杨优树资源收集、保存和利用的研究.北京林业大学学报,1992,14(增 3): 1-25.
    [25] 朱之悌,康向阳,张志毅.毛白杨天然三倍体选种研究.林业科学,1998,34(4):22-31.
    [26] 朱之悌,林惠斌,康向阳.毛白杨异源三倍体 B301 等无性系选育的研究.林业科学,1995, 31(6):499-505.
    [27] Adiwilaga KD, Brown CR. Use of 2n pollen-producing triploid hybrids to introduce tetraploid Mexican wild species germ plasm to cultivted tetraploid potato gene pool. Theor Appl Genet, 1991, 81: 645-652.
    [28] Akutsu M, Kitamura S, Toda R, Miyajima I, Okazaki K. Production of 2n pollen of Asiatic hybrid lilies by nitrous oxide treatment. Euphytica, 2007, 155: 143-152.
    [29] Alexander DE, Beckett JB. Spontaneous triploidy and tetraploidy in maize. J Hered, 1963, 54: 103-106.
    [30] AsanoY. Fertility of a hybrid between distantly related species in Lilium. Cytologia, 1984, 49: 447-456.
    [31] Assaad FF, Mayer U, Wanner G, Jürgens G. The KEULE gene is involved in cytokinesis in Arabidopsis. Mol Gen Genet, 1996, 253: 267-277.
    [32] Bachem CWB, Van Der Hoeven RS, De Bruijn SM, Vreugdenhil D, Zabeau M, Visser RGF. Visualization of differential gene expression using a novel method of RNA fingerprinting based on AFLP: Analysis of gene expression during potato tuber development. Plant J, 1996, 9(5): 745-753.
    [33] Baker BS, Carpenter ATC, Esposito MS, Esposito RE, Sandler L. The genetic control of meiosis. Ann Rev Genet, 1976, 10: 53-134.
    [34] Bani-Aameur F, Lauer Fl, Veilleux RE. Frequency of 2n pollen in diploid hybrids between Solanum phureja Juz. & Buk. and Solanum chacoense Bitt. Potato Res, 1992, 35: 161-172.
    [35] Barba-Gonzalez R, Lim K-B, Ramanna MS, Van Tuyl JM. Use of 2n Gametes for inducing intergenomic recombination in lily hybrids. Acta Hort, 2005a, 673: 161-166.
    [36] Barba-Gonzalez R, Lim K-B, Ramanna MS, Visser RGF, Van Tuyl JM. Occurrence of 2n gametes in the F1 hybrids of Oriental × Asiatic lilies (Lilium): Relevance to intergenomic recombination and backcrossing. Euphytica, 2005b, 143: 67-73.
    [37] Barba-Gonzalez R, Ramanna MS, Visser RGF, Van Tuyl JM. Intergenomic recombination in F1 lily hybrids (Lilium) and its significance for genetic variation in the BC1 progenies as revealed by GISH and FISH. Genome, 2005c, 48: 884-894.
    [38] Barba-Gonzalez R, Lokker AC, Lim K-B, Ramanna MS, Van Tuyl JM. Use of 2n gametes for the production of sexual polyploids from sterile Oriental × Asiatic hybrids of lilies (Lilium). Theor Appl Genet, 2004, 109: 1125-1132.
    [39] Barba-Gonzalez R, Miller CT, Ramanna MS, Van Tuyl JM. Nitrous oxide (N2O) induces 2n gametes in sterile F1 hybrids between Oriental × Asiatic lily (Lilium) hybrids and leads to intergenomic recombination. Euphytica, 2006a, 148: 303-309.
    [40] Barba-Gonzalez R, Miller CT, Ramanna MS, Van Tuyl JM. Induction of 2n gamete overcoming F1-sterility in lily and tulip. Acta Hort, 2006b, 714: 99-106.
    [41] Barcaccia G, Albertini E, Rosellini D, Tavoletti S, Veronesi F. Inheritance and mapping of 2n-egg production in diploid alfalfa. Genome, 2000, 43: 528-537.
    [42] Barcaccia G, Rosellini D, Falcinelli M, Veronesi F. Reproductive behaviour of tetraploid alfalfaplants obtained by unilateral and bilateral sexual polyploidization. Euphytica, 1998, 99: 199-203.
    [43] Barcaccia G, Tavoletti S, Falcinelli M, Veronesi F. Environmental influences on the frequency and viability of meiotic and apomeiotic cells of a diploid mutant of alfalfa. Crop Sci, 1997a, 37: 70-76.
    [44] Barcaccia G, Tavoletti S, Falcinelli M, Veronesi F. Verification of the parthenogenetic capability of unreduced eggs in an alfalfa mutant by a progeny test based on morphological and molecular markers. Plant Breeding, 1997b, 116: 475-479.
    [45] Barcaccia G, Tavoletti S, Mariani A, Veronesi F. Occurrence, inheritance and use of reproductive mutants in alfalfa improvement. Euphytica, 2003, 133: 37-56.
    [46] Barcaccia G, Tavoletti S, Pezzotti M, Falcinelli M, Veronesi F. Fingerprinting of alfalfa meiotic mutants using RAPD markers. Euphytica, 1994, 80: 19-25.
    [47] Barcaccia G, Tosti N, Falistocco E, Veronesi F. Cytological, morphological and molecular analyses of controlled progenies from meiotic mutants of alfalfa producing unreduced gametes. Theor Appl Genet, 1995, 91: 1008-1015.
    [48] Barcaccia G, Varotto S, Meneghetti S, Albertini E, Porceddu A, Parrini P, Lucchin M. Analysis of gene expression during flowering in apomeiotic mutants of Medicago spp.: cloning of ESTs and candidate genes for 2n eggs. Sex Plant Reprod, 2001, 14: 233-238.
    [49] Barone A, Gebhardt C, Frusciante L. Heterozygosity in 2n gametes of potato evaluated by RFLP markers. Theor Appl Genet, 1995, 91: 98-104.
    [50] Bashaw EC, Hignight KW. Gene transfer in apomictic buffelgrass through fertilization of an unreduced egg. Crop Sci, 1990, 30: 571-575.
    [51] Bastiaanssen HJM, Ramanna, MS, Huigen D-J, Jacobsen E. Selection of diploid tuberous Solanum hybrids for 2n-egg formation using 2x·4x-crosses. Euphytica, 1998a, 101: 325-339.
    [52] Bastiaanssen HJM, Van Den Berg PMMM, Lindhout P, Jacobsen E, Ramanna MS. Postmeiotic restitution in 2n egg formation of diploid potato. Heredity, 1998b, 81: 20-27.
    [53] Becerra Lopez-Lavalle LA, Orjeda G. Occurrence and cytological mechanism of 2n pollen formation in a tetraploid accession of Ipomoea batatas (sweet potato). J Hered, 2002, 93(3): 185-192.
    [54] Bellucci M, Roscini C, Mariani A. Cytomixis in pollen mother cells of Medicago sativa L.. J Hered, 2003, 94(6): 512-516.
    [55] Beuselinck PR, Steiner JJ, Rim YW. Morphological comparison of progeny derived from 4x-2x and 4x-4x hybridizations of Lotus glaber Mill. and L. Corniculatus L.. Crop Sci, 2003, 47: 1741-1746.
    [56] Bhat SR, Gill BS. The implications of 2n egg gametes in nobilization and breeding of sugarcane. Euphytica, 1985, 34: 377-384.
    [57] Bicknell RA, koltunow AM. Understanding apomixis: recent advances and remaining conundrums. Plant Cell, 2004, 16: 228-245.
    [58] Bielig LM, Mariani A, Berding N. Cytological studies of 2n male gamete formation in sugarcane, Saccharum L. Euphytica, 2003, 133: 117-124.
    [59] Bingham ET. Backcrossing tetraploidy into diploid Medicago falcata L. using 2n eggs. Crop Sci, 1990, 30: 1353-1354.
    [60] Bingham ET. Maximizing heterozygosity in autopolyploids. In: Lewis WH. [ed.]. Polyploidy biological relevance. Plenum Press, New York, 1980, 471-489.
    [61] Bingham ET. Transfer of diploid Medicago spp. germplasm to tetraploid M. sativa L. in 4x-2x crosses. Crop Sci, 1968, 8: 760-762.
    [62] Bino RJ, Van Tuyl JM, De Vries JN. Flow cytometric determination of relative nuclear DNA contents in bicellulate and tricellulate pollen. Ann Bot, 1990, 65: 3-8.
    [63] Bohac JR, Jones A. Unreduced pollen in hexaploid sweetpotato (Ipomoea batatas). J Hered, 1994, 85(2): 162-166.
    [64] Boldrini KR, Pagliarini MS, Do Valle CB. Abnormal timing of cytokinesis in microsporogenesis in Brachiaria humidicola (Poaceae: Paniceae). J Genetics, 2006, 85(3): 225-228.
    [65] Bradshaw HD, Stettler RF. Molecular genetics of growth and development in Populus. I. Triploidy in hybrid poplars. Theor Appl Genet, 1993, 86:301-307.
    [66] Bretagnolle F. Pollen production and spontaneous polyploidization in diploid populations of Anthoxanthum alpinum. Biol J Linn Soc, 2001, 71: 241-247.
    [67] Bretagnolle F, Lumaret R. Bilateral polyploidization in Dactylis glomerata L. subsp. lusitanica: occurrence, morphological and genetic characteristics of first polyploids. Euphytica, 1995, 84: 197-207.
    [68] Bretagnolle F, Thompson JD. Gametes with the somatic chromosome number: mechanisms of their formation and role in the evolution of autopolyploid plants. New Phytol, 1995, 129: 1-22.
    [69] Bringhurst RS, Gill T. Origin of Fragaria polyploids. II. Unreduced and doubled-unreduced gametes. Am J Bot, 1970, 57(8): 969-976.
    [70] Brown CR. Characteristics of 2n pollen producing triploid hybrids between Solanum stoloniferum and cultivated diploid potatoes. Am Potato J, 1988, 65: 75-84.
    [71] Brown RC, Lemmon BE. Control of division plane in normal and griseofulvin-treated microsporocytes of Magnolia. J Cell Sci, 1992, 103: 1031-1038.
    [72] Brown RC, Lemmon BE. Microtubules associated with simultaneous cytokinesis of coenocytic microsporocytes. Am J Bot, 1988a, 75: 1848-1856.
    [73] Brown RC, Lemmon BE. Cytokinesis occurs at boundaries of domains delimited by nuclear-based microtubules in sporocytes of Conocephalum conicum (Bryophyta). Cell Motil Cytoskel, 1988b, 11: 139-146.
    [74] Brown RC, Lemmon BE. Nuclear cytoplasmic domains, microtubules and organelles in microsporocytes of the slipper orchid Cypripedium californicum A. Gray dividing by simultaneous cytokinesis. Sex Plant Reprod, 1996, 9(3): 145-152.
    [75] Brown RC, Lemmon BE. Pollen development in orchids 2. The cytokinetic appartus in simultaneous cytokinesis. Protoplasma, 1991, 163: 9-18.
    [76] Brown RC, Lemmon BE. The cytoskeleton and polarization during pollen development in Carex blanda (Cyperaceae). Am J Bot, 2000, 87: 1-11.
    [77] Buso JA, Arag?o FAS, Reifschneider FJB, Boiteux LS, Peloquin SJ. Assessment under short-day conditions of genetic materials derived from three potato breeding strategies: 4x-4x (intra-Tuberosum), 4x-2x (FDR 2n-pollen), and 4x-4x (diplandrous tetraploid). Euphytica, 2002, 126: 437-446.
    [78] Buso JA, Boiteux LS, Peloquin SJ. Comparison of haploid Tuberosum-Solanum chacoense versus Solanum phureja-haploid Tuberosum hybrids as staminate parents of 4x-2x progenies evaluated under distinct crop management systems. Euphytica, 1999a, 109: 191-199.
    [79] Buso JA, Reifschneider FJB, Boiteux LS, Peloquin SJ. Effects of 2n-pollen formation by first meiotic division restitution with and without crossover on eight quantitative traits in 4x-2x potato progenies. Theor Appl Genet, 1999b, 98: 1311-1319.
    [80] Buso JA, Boiteux LS, Peloquin SJ. Tuber yield and quality of 4x-2x (FDR) potato progenies derived from the wild diploid species Solanum berthaultii and Solanum tarijense. Plant Breeding,2003, 122: 229-232.
    [81] Buso JA, Boiteux LS, Tai GCC, Peloquin SJ. Direct estimation of the effects of meiotic recombination on potato traits via analysis of 4x-2x progenies from synaptic mutants with 2n-pollen formation by FDR without crossing-over. Theor Appl Genet, 2000, 101: 139-145.
    [82] Calderini O, Mariani A. Increasing 2n gamete production in diploid alfalfa by cycles of phenotypic recurrent selection. Euphytica, 1997, 93: 113-118.
    [83] Calderini O, Mariani A. Megagametophyte organization in diploid alfalfa meiotic mutants producing 4n pollen and 2n eggs. Theor Appl Genet, 1995, 90: 135-141.
    [84] Camadro EL. Cytological mechanism of 2n microspore formation in garden Asparagus. HortScience, 1992, 27(7): 831-832.
    [85] Camadro EL. Second meiotic division restitution (SDR) 2n pollen formation in diploid and hexaploid species of Asparagus. Genet Resour Crop Evol, 1994, 41: 1-7.
    [86] Camadro EL, Espinillo JC. Germplasm transfer from the wild tetraploid species Solanum acaule Bitt. to the cultivated potato, S. tuberosum L. using 2n eggs. Am Potato J, 1990, 67: 737-749.
    [87] Camadro EL, Peloquin SJ. The occurrence and frequency of 2n pollen in three diploid Solanums from northwestern Argentina. Theor Appl Genet, 1980, 56: 11-15.
    [88] Camadro EL. Saffarano SK, Espinillo JC, Castro M, Simon PW. Cytological mechanisms of 2n pollen formation in the wild potato Solanum okadae and pollen-pistil relations with the cultivated potato, Solanum tuberosum. Genet Resour Crop Evol, 2008, 55: 471-477.
    [89] Cao JS, Yu XL, Ye WZ, Lu G, Xiang X. Functional analysis of a novel male fertility CYP86MF gene in Chinese cabbage (Brassica campestris L. ssp. chinensis makino). Plant Cell Rep, 2006, 24: 715–723.
    [90] Carputo D. Cytological and breeding behavior of pentaploids derived from 3x × 4x crosses in potato. Theor Appl Genet, 2003, 106: 883-888.
    [91] Carputo D, Barone A. Ploidy level manipulations in potato through sexual hybridisation. Ann Appl Biol, 2005, 146: 71-79.
    [92] Carputo D, Barone A, Frusciante L. 2n gametes in potato: essential ingredients for breeding and germplasm transfer. Theor Appl Genet, 2000, 101: 805-813.
    [93] Carputo D, Braone A, Cardi T, Sebastiano A, Frusciante L, Peloquin SJ. Endosperm balance number manipulation for direct in vivo germplasm introgression to potato from a sexually isolated relative (Solanum commersonii Dun). Proc Natl Acad Sci USA, 1997, 94: 12013-12017.
    [94] Carputo D, Frusciante L, Peloquin SJ. The role of 2n gametes and endosperm balance number in the origin and evolution of polyploids in the tuber-bearing Solanums. Genetics, 2003, 163: 287-294.
    [95] Carroll CP, Borrill M. Tetraploid hybrids from crosses between diploid and tetraploid Dactylis and their significance. Genetica, 1965, 36: 65-82.
    [96] Carroll CP, De Maine MJ. The agronomic value of tetraploid F1 hybrids between potatoes of Group Tuberosum and Group Phureja / Stenotomum. Potato Res, 1989, 32: 447-456.
    [97] Cavalcante HC, Schifino-Wittmann MT, Dornelles ALC. Meiotic behaviour and pollen fertility in an open-pollinated population of ‘Lee’ mandarin [Citrus clementina × (C. paradisi × C. tangerina)]. Scientia Horticult, 2000, 86: 103-114.
    [98] Chen C, Lyon MT, O’Malley D, Federici CT, Gmitter J, Grosser JW, Chaparro JX, Roose ML, Gmitter FG Jr. Origin and frequency of 2n gametes in Citrus sinensis × Poncirus trifoliata and their reciprocal crosses. Plant Sci, 2008, 174: 1-8.
    [99] Chen C, Marcus A, Li W, Hu Y, Calzada JP, Grossniklaus U, Cyr RJ, Ma H. The ArabidopsisATK1 gene is required for spindle morphogenesis in male meiosis. Development, 2002, 129: 2401-2409.
    [100] Chen C, Sleper DA, Chao S, Johal GS, West CP. RFLP detection of 2n pollen formation by first and second division restitution in perennial ryegrass. Crop Sci, 1997, 37: 76-80.
    [101] Chyi YS, Weeden NF. Relative isoenzyme band intensities permit the identification of the 2n gamete parent of triploid apple cultivars. HortScience, 1984, 19(6): 818-819.
    [102] Clement WM Jr, Stanford EH. A mechanism for the production of tetraploid and pentaploid progeny from diploid × tetraploid crosses of alfalfa. Crop Sci, 1961, 1: 11-14.
    [103] Cnudde F, Hedatale V, De Jong H, Pierson ES, Rainey DY, Zabeau M, Weterings K, Gerats T, Peters JL. Changes in gene expression during male meiosis in Petunia hybrida. Chromosome Res, 2006, 14: 919-932.
    [104] Cnudde F, Moretti C, Porceddu A, Pezzotti M, Gerats T. Transcript profiling on developing Petunia hybrida floral organs. Sex Plant Reprod, 2003, 16: 77-85.
    [105] Conicella C, Barone A, Del Giudice A, Frusciante L, Monti LM. Cytologigical evidences of SDR-FDR mixture in the formation of 2n eggs in a potato diploid clone. Theor Appl Genet, 1991, 81: 59-63.
    [106] Conicella C, Capo A, Cammareri M, Errico A, Shamina N, Monti LM. Elucidation of meiotic nuclear restitution mechanisms in potato through analysis of microtubular cytoskeleton. Euphytica, 2003, 133: 107-115.
    [107] Conicella C, Genualdo G, Errico A, Frusciante L, Monti LM. Meiotic restitution mechanisms and 2n pollen formation in a Solanum tuberosum dihaploid and in dihaploid × wild species hybrids. Plant Breeding, 1996, 115: 157-161.
    [108] Crespel L, Gudin S, Meynet J, Zhang D. AFLP-based estimation of 2n gametophytic heterozygosity in two parthenogenetically derived dihaploids of Rosa hybrida L. Theor Appl Genet, 2002, 104: 451-456.
    [109] Crespel L, Gudin S. Evidence for the production of unreduced gametes by tetraploid Rosa hybrida L.. Euphytica, 2003, 133: 65-69.
    [110] Crespel L, Ricci S, Gudin S. The production of 2n pollen in rose. Euphytica, 2006, 151: 155-164.
    [111] Darmo E, Peloquin SJ. Performance and stability of nine 4x clones from 4x-2x crosses and four commercial cultivars. Potato Res, 1990, 33: 357-364.
    [112] De Haan A, Maceira NO, Lumaret R, Delay J. Production of 2n gametes in diploid subspecies of Dactylis glomerata L. 2. Occurrence and frequency of 2n eggs. Ann Bot, 1992, 69: 345-350.
    [113] De Jong H, Tai GCC. Analysis of tetraploid-diploid hybrids in cultivated potatoes. Potato Res, 1977, 20:111-121.
    [114] De Mol WE. The originating of diploid and tetraploid pollen grains in Duc van Thol tulips (Tulipa suaveolens) dependent on the method of culture applied. Genetica, 1929, 11: 119-212.
    [115] De Wet JMJ. Origins of polyploids. In: Lewis WH. [ed.]. Polyploidy biological relevance. Plenum Press, New York, 1980, 3-15.
    [116] Den Nijs TPM, Peloquin SJ. Polyploid evolution via 2n gametes. Am Potato J, 1977a, 54: 377-386.
    [117] Den Nijs TPM, Peloquin SJ. 2n gametes in potato species and their function in sexual polyploidization. Euphytica, 1977b, 26: 585-600.
    [118] Dermen H. Inducing polyploidy in peach varieties. J Hered, 1947, 38(3): 77-82.
    [119] Dewitte A, Eeckhaut T, Van Huylenbroeck J, Van Bockstaele E. Flow cytometric detection of unreduced pollen in Begonia. Acta Hort, 2006, 714: 107-112.
    [120] Douches DS, Maas DL. Comparison of FDR- and SDR-derived tetraploid progeny from 2x × 4x crosses using haploids of Solanum tuberosum L. that produce mixed modes of 2n eggs. Theor Appl Genet, 1998, 97: 1307-1313.
    [121] Douches DS, Quiros CF. Genetic strategies to determine the mode of 2n egg formation in diploid potatoes. Euphytica, 1988, 38: 247-260.
    [122] Doyle MJ, Grant JE, Brown AHD. Reproductive isolation between isozyme groups of Glycine tomentella (Leguminosae) and spontaneous doubling in their hybrids. Aust J Bot, 1986, 34: 523-535.
    [123] Dujardin M, Hanna WW. Production of 27-, 28-, and 56-chromosome apomictic hybrid derivatives between pearl millet (2n = 14) and Pennisetum squamulatum (2n = 54). Euphytica, 1988, 38: 229-235.
    [124] Dweikat IM, Lyrene PM. Production and viability of unreduced gametes in triploid interspecific blueberry hybrids. Theor Appl Genet, 1988, 76: 555-559.
    [125] Dwivedi NK, Suryanarayana N, Sikdar AK, Susheelamma BN, Jolly MS. Cytomorphological studies in triploid mulberry evolved by diploidization of female gamete cells. Cytologia, 1989, 54: 13-19.
    [126] Eenink AH. Matromorphy in Brassica oleracea L. VII. Research on products of microsporogenesis and gametogenesis from prickle pollinated plants. Euphytica, 1975, 24: 45-52.
    [127] Ehlenfeldt MK, Hanneman RE Jr. The use of Endosperm Balance Number and 2n gametes to transfer exotic germplasm in potato. Theor Appl Genet, 1984, 68: 155-161.
    [128] Eijlander R. Manipulation of the 2n-gametes frequencies in Solanum pollen. Euphytica, 1988, 39: 45-50.
    [129] Einset J. The occurrence of a tetraploid and two triploid apple seedlings in progenies of diploid parents. Science, 1944, 99(2574): 345.
    [130] El Maataoui M, Pichot C. Microsporogenesis in the endangered species Cupressus dupreziana A. Camus: evidence for meiotic defects yielding unreduced and abortive pollen. Planta, 2001, 213: 543-549.
    [131] El Mokadem H, Crespel L, Meynet J, Gudin S. The occurrence of 2n-pollen and the origin of sexual polyploids in dihaploid roses (Rosa hybrida L.). Euphytica, 2002a, 125: 169-177.
    [132] El Mokadem H, Meynet J, Crespel L. The occurrence of 2n eggs in the dihaploids derived from Rosa hybrida L. Euphytica, 2002b, 124: 327-332.
    [133] Erazzú LE, Camadro EL. Direct and indirect detection of 2n eggs in hybrid diploid families derived from haploid tbr × wild species crosses. Euphytica, 2007, 155: 57-62.
    [134] Esen A, Soost RK. Tetraploid progenies from 2x × 4x crosses of Citrus and their origin. J Am Sot Hort Sci, 1972, 97(3): 410-414.
    [135] Esen A, Soost RK. Unexpected triploids in Citrus: their origin, identification, and possible use. J Hered, 1971, 62: 329-333.
    [136] Espinoza F, Quarin CL. 2n + n hybridization of apomictic Paspalum dilatatum with diploid Paspalum species. Int J Plant Sci, 2000, 161(2): 221-225.
    [137] Every AD, Wiens D. Triploidy in Utah aspen. Madro?o, 1971, 21: 138-147.
    [138] Falistocco E, Tosti N, Falcinelli M. Cytomixis in pollen mother cells of diploid Dactylis, one of the origins of 2n gametes. J Hered, 1995, 86: 448-453.
    [139] Felber F. Establishment of a tetraploid cytotype in a diploid population: effect of relative fitness of the cytotypes. J Evol Biol, 1991, 4: 195-207.
    [140] Ferris C, Callow RS, Gray AJ. Mixed first and second division restitution in male meiosis ofHierochlo? odorata Beauv (Holy Grass). Heredity, 1992, 69: 21-31.
    [141] Finch RA, Bennett MD. Action of triploid inducer (tri) on meiosis in barley (Hordeum vulgare L.). Heredity, 1979, 43: 87–93.
    [142] Fukuda K, Sakamoto S. Studies on unreduced gamete formation in hybrids between tetraploid wheats and Aegilops squarrosa L.. Hereditas, 1992, 116: 253–255.
    [143] Fukushima E. Formation of diploid and tetraploid gametes in Brassica. Jap J Bot, 1930, 5: 274-283.
    [144] Gallo PH, Micheletti PL, Boldrini KR, Risso-Pascotto C, Pagliarini MS, Do Valle CB. 2n gamete formation in the genus Brachiaria (Poaceae: Paniceae). Euphytica, 2007, 154: 255-260.
    [145] Gatt MK, Hammett KRW, Markham KR, Murray BG. Yellow pinks: interspecific hybridization between Dianthus plumarius and related species with yellow flowers. Scientia Horticult, 1998, 77: 207-218.
    [146] Genualdo G, Errico A, Tiezzi A, Conicella C. α-Tubulin and F-action distribution during microsporogenesis in a 2n pollen producer of Solanum. Genome, 1998, 41: 636-641.
    [147] Geraci G, Esen A, Soost RK. Triploid progenies from 2x × 2x crosses of citrus cultivars. J Hered, 1975, 66: 177-178.
    [148] Giles N. The effect of dehydration on microsporogenesis in Tradescantia. Amer J Bot, 1939, 26: 334-338
    [149] Gottschalk W. Chromosome and nuclear migration during microsporogenesis of Pisum sativum. Nucleus, 1970, 13: 1-9.
    [150] Hahn SK, Bai KV, Asiedu R. Tetraploids, triploids, and 2n pollen from diploid interspecific crosses with cassava. Theor Appl Genet, 1990, 79: 443-439.
    [151] Hanneman RE Jr. The reproductive biology of the potato and its implications for breeding. Potato Res, 1999, 42: 283-312.
    [152] Harder M, Verhagen S, Winton L, Einspahr DW. Tetraploid aspen production using unreduced pollen from triploid males. For Sci, 1976, 22(3): 329-330.
    [153] Harlan JR, De Wet JMJ. On ?. Winge and a prayer: the origins of polyploidy. Bot Rev, 1975, 41: 361-390.
    [154] Havey MJ, Maxwell DP. Transfer of disease resistance from diploid to tetraploid alfalfa using unreduced female gametes. Plant Disease, 1988, 72: 603-604.
    [155] Hayashi M, Kato J, Ichikawa Y, Matsubara N, Ohashi H, Mii M. Inter-sectional hybrids with various ploidy levels between Primula denticulata and three varieties of P. modesta. Breeding Science, 2007a, 57: 165-173.
    [156] Hayashi M, Kato J, Ohashi H, Mii M. Variation of ploidy level in inter-section hybrids obtained by reciprocal crosses between tetraploid Primula denticulata (2n = 4x = 44) and diploid P. rosea (2n = 2x =22). J Hort Sci and Biotech, 2007b, 82(1): 5-10.
    [157] Hermsen JG Th. Nature, evolution, and breeding of polyploids. Iowa State J Res, 1984a, 58: 411-420.
    [158] Hermsen JG Th. Mechanisms and genetic implications of 2n-gamete formation. Iowa State J Res, 1984b, 58: 421-434.
    [159] Hermsen JG Th. The potential of meiotic polyploidization in breeding allogamous crops. Iowa State J Res, 1984c, 58: 435-448.
    [160] Heyn FW. Analysis of unreduced gametes in the Brassiceae by crosses between species and ploidy levels. Z. Pflanzenzuchtg, 1977, 78: 13-30.
    [161] Hülskamp M, Parekh NS, Grini P, Schneitz K, Zimmermann I, Lolle SJ, Pruitt RE. The STUDgene is required for male-specific cytokinesis after telophase II of meiosis in Arabidopsis thaliana. Dev Bio, 1997, 187: 114-124.
    [162] Hussain SW, Williams WM. Evidence of functional unreduced gametes in Trifolium repens L.. Euphytica, 1997, 97: 21-24.
    [163] Hutten RCB, Schippers MGM, Hermsen JG Th, Ramanna MS. Comparative performance of FDR and SDR progenies from reciprocal 4x-2x crosses in potato. Theor Appl Genet, 1994, 89:545-550.
    [164] Hutten RCB, Schippers MGM, Hermsen JG Th, Ramanna MS. Comparative performance of diploid and tetraploid progenies from 2x·2x crosses in potato. Euphytica, 1995, 81: 187-192.
    [165] Islam AKMR, Shepherd KW. Meiotic restitution in wheat-barley hybrids. Chromosoma, 1980, 79: 363-372.
    [166] Iwanaga M. Discovery of a synaptic mutant in potato haploids and its usefulness for potato breeding. Theor Appl Genet, 1984, 68: 87-93.
    [167] Iwanaga M, Jatala P, Ortiz R, Guevara E. Use of FDR 2n pollen to transfer resistance to root-knot nematodes into cultivated 4x potatoes. J Amer Soc Hort Sci, 1989, 114(6): 1008-1013.
    [168] Iwanaga M, Peloquin SJ. Origin and evolution of cultivated tetraploid potatoes via 2n gametes. Theor Appl Genet, 1982, 61: 161-169.
    [169] Iwanaga M, Peloquin SJ. Synaptic mutant affecting only megasporogenesis in potatoes. J Hered, 1979, 70: 385-389.
    [170] Jackson SA, Hanneman RE. Crossability between cultivated and wild tuber-and non-tuber-bearing solanums. Euphytica, 1999, 109: 51-67.
    [171] Jacob Y, Pierret V. Pollen size and ploidy level in the genus Rosa. Acta Hort, 2000, 508: 289-292.
    [172] Jacobsen E. Cytological studies on diplandroid production in a dihaploid potato clone and its correlation with seed set in 4x × 2x crosses. Z. Pflanzenzuchtg, 1976, 77: 10-15.
    [173] Jacobsen E. Diplandroid formation and its importance for the seed set in 4x × 2x crosses in the potato. Z. Pflanzenzuchtg, 1980a, 84: 240-249.
    [174] Jacobsen E. Increase of diplandroid formation and seed set in 4x × 2x crosses in potato by genetical manipulation of dihaploids and some theoretical consequences. Z. Pflanzenzuchtg, 1980b, 85: 110-121.
    [175] Jansen RC, Den Nijs APM. A statistical mixture model for estimating the proportion of unreduced pollen grains in perennial ryegrass (Lolium perenne L.) via the size of pollen grains. Euphytica, 1993, 70: 205-215.
    [176] Jansky S. Overcoming hybridization barriers in potato. Plant Breeding, 2006, 125: 1-12.
    [177] Jauhar PP. Formation of 2n gametes in durum wheat haploids: Sexual polyploidization. Euphytica, 2003, 133: 81-94.
    [178] Jauhar PP. Meiotic restitution in wheat polyhaploids (Amphihaploids): a potent evolutionary force. J Hered, 2007, 98(2): 188-193.
    [179] Jauhar PP, Peterson TS. Cytological analyses of hybrids and derivatives of hybrids between durum wheat and Thinopyrum bessarabicum, using multicolour fluorescent GISH. Plant Breeding, 2006, 125: 19-26.
    [180] Jauhar PP, Peterson TS. Hybrids between durum wheat and Thinopyrum junceiforme: Prospects for breeding for scab resistance. Euphytica, 2001, 118: 127-136.
    [181] Johnson AAT, Nault BA, Veilleux RE. Transmission of a Bacillus thuringiensis cry3Aa transgene from diploid to tetraploid potato using 4x-2x hybridization: effect of ploidy increase on transgene expression and implications for TPS hybrid production. Plant Breeding, 2003, 122: 223-228.
    [182] Johnson AAT, Veilleux RE. Integration of transgenes into sexual polyploidization schemes forpotato (Solanum tuberosum L.). Euphytica, 2003, 133: 125-138.
    [183] Johnston SA, Ruhde RW, Ehlenfeldt MK, Hanneman RE. Inheritance and microsporogenesis of a synaptic mutant (sy-2) from Solanum commersonii Dun. Can J Genet Cytol, 1986, 28: 520-524.
    [184] Jones A. Unreduced pollen in a wild tetraploid relative of sweetpotato. J Am Soc Hortic Sci, 1990, 115: 512–516.
    [185] Jones KD, Reed SM, Rinehart TA. Analysis of ploidy level and its effects on guard cell length, pollen diameter and fertility in Hydrangea macrophylla. HortScience, 2007, 42(3): 483-488.
    [186] Jongedijk E. The pattern of megasporogenesis and megagametogenesis in diploid Solanum species hybrids; Its relevance to the origin of 2n-eggs and the induction of apomixis. Euphytica, 1985, 34: 599-611.
    [187] Jongedijk E, Hutten RCB, Van Der Wolk JMASA, Schuurmans Stekhoven SIJ. Effect of the Ds-1/ds-1 locus (desynapsis) on genetic recombination in male and female meiosis. Genome, 1991a, 34: 121-130.
    [188] Jongedijk E, Ramanna MS, Sawor Z, Hermsen JG Th. Formation of first division restitution (FDR) 2n-megaspores through pseudohomotypic division in ds-1 (desynapsis) mutants of diploid potato: routine production of tetraploid progeny from 2xFDR × 2xFDR crosses. Theor Appl Genet, 1991b, 82: 645-656.
    [189] Jongedijk E, Ramanna MS. Synaptic mutants in potato, Solanum tuberosum L. II. Concurrent reduction of chiasma frequencies in male and female meiosis of ds-1 desynapsis mutants. Genome, 1989, 32: 1054-1062.
    [190] Karlov GI, Khrustaleva LI, Lim K-B, Van Tuyl JM. Homoeologous recombination in. 2n-gamete producing interspecific hybrids of Lilium (Liliaceae) studied by genomic in situ hybridization (GISH). Genome, 1999, 42(4): 681-686.
    [191] Kato A. Induction of bicellular pollen by trifluralin treatment and occurrence of triploids and aneuploids after fertilization in maize. Genome, 1999, 42: 154-157.
    [192] Katsiotis A, Forsberg RA. Discovery of 2n gametes in tetraploid oat Avena vaviloviana. Euphytica, 1995, 81: 1-6.
    [193] Katsiotis A, Forsberg RA. Pollen grain size in four ploidy levels of genus Avena. Euphytica, 1995, 83: 103-108.
    [194] Kaul MLH, Murthy TGK. Mutant genes affecting higher plant meiosis. Theor Appl Genet, 1985, 70: 449-466.
    [195] Kessel R, Rowe PR. Production of intraspecific aneuploids in the genus Solanum 2. Triploids produced from tetraploid-diploid crosses in potato. Euphytica, 1975, 24: 379-386.
    [196] Klindworth DL, Williams ND. Characterization of a mitotic mutant of durum wheat. Chromosome Res, 2001, 9: 377-386.
    [197] Koltunow AM. Apomixis: embryo sacs and embryos formed without meiosis or fertilization in ovules. Plant Cell, 1993, 5: 1425-1437.
    [198] Kroon GH, Van Eijk JP. Polyploidy in tulips (Tulipa L.). The occurrence of diploid gametes. Euphytica, 1977, 26: 63-66.
    [199] Lam S-L. Origin and formation of unreduced gametes in the potato. J Hered, 1974, 65: 175-178.
    [200] Lamote V, Baert J, Roldán-Ruiz I, Loose MD, Van Bockstaele E. Trancing of 2n egg occurrence in perennial ryegrass (Lolium perenne L.) using interploidy crosses. Euphytica, 2002, 123: 159-164.
    [201] Lapidot M, Bar-Zvi D, Kagan-Zur V, Mizrahi Y. Identification of the double genome donor in spontaneous triploid tomato plants by RFLP analysis. Theor Appl Genet, 1994, 88: 914-916.
    [202] Lelley T, Mahmoud AA, Lein V. Genetics and cytology of unreduced gametes in cultivated rye (Secale cereale L.). Genome, 1987, 29: 635-638.
    [203] Leue EF, Peloquin SJ. Selection for 2n gametes and tuberization in Solanum chacoense. Am Potato J, 1980, 57: 189-195.
    [204] Lim K-B, Ramanna MS, De Jong JH, Jacobsen E, Van Tuly JM. Indeterminate meiotic restitution (IMR): a novel type of meiotic nuclear restitution mechanism detected in interspecific lily hybrids by GISH. Theor Appl Genet, 2001a, 103: 219-203.
    [205] Lim K-B, Ramanna MS, Van Tuyl JM. Comparison of homoeologous recombination frequency between mitotic and meiotic polyploidzation in BC1 progeny of interspecific lily hybrids. Acta Hort, 2001b, 552: 65-72.
    [206] Lim K-B, Ramanna MS, Van Tuyl JM. Homoeologous recombination in interspecific hybrids of Lilium. Korean J Breed, 2003, 35(1): 8-12.
    [207] Lim K-B, Shen T-M, Barba-Gonzalez R, Ramanna MS, Van Tuyl JM. Occurrence of SDR 2N-gametes in Lilium Hybrids. Breeding Sci, 2004, 54: 13-18.
    [208] Lokker AC, Barba-Gonzalez R, Lim K-B, Ramanna MS, Van Tuyl JM. Genotypic and environmental variation in production of 2n-gametes of Oriental × Asiatic lily hybrids. Acta Hort, 2005, 673: 453-456.
    [209] Lou P, Kang J, Zhang G, Bonnema G, Fang Z, Wang X. Transcript profiling of a dominant male sterile mutant (Ms-cd1) in cabbage during flower bud development. Plant Sci, 2007, 172: 111-119.
    [210] Lyrene PM, Sherman WB. Mitotic instability and 2n gamete production in Vaccinium corymbosum × V. elliottii hybrids. J Am Soc Hortic Sci, 1983, 108: 339-342.
    [211] Lyrene PM, Vorsa N, Ballington JR. Polyploidy and sexual polyploidization in the genus Vaccinium. Euphytica, 2003, 133: 27-36.
    [212] Mable BK. ‘Why polyploidy is rarer in animals than in plants revisited’: myths and mechanisms. Biol J Linn Soc, 2004, 82: 453-466.
    [213] Maceira NO, De Haan AA, Lumaret R, Billon M, Delay J. Production of 2n gametes in diploid subspecies of Dactylis glomerata L. 1. Occurrence and frequency of 2n Pollen. Ann Bot, 1992, 69: 335-343.
    [214] Magnard J-L, Yang M, Chen Y-C S, Leary M, McCormick S. The Arabidopsis gene Tardy Asynchronous Meiosis is required for the normal pace and synchrony of cell division during male meiosis. Plant Physiol, 2001, 127: 1157-1166.
    [215] Mallikarjuna N, Tandra SK. Use of 2n pollen in generating interspecific derivatives of groundnut. International Arachis Newsletter, 2006, 26: 8-10.
    [216] Mariani A, Campanoni P, Gianì S, Breviario D. Meiotic mutants of Medicago sativa show altered levels of α- and β-tubulin. Genome, 2000, 43: 166-171.
    [217] Mashkina OS, Bardaeva LM, Belozerova MM, V’ Yunova LN. A method of inducing diploid pollen in woody species. Lesovedenie, 1989, 1: 19-25.
    [218] Masuelli RW, Camadro EL, Mendiburu AO. 2n gametes in Solanum commersonii and cytological mechanisms of triplandroid formation in triploid of Solanum commersonii × Solanum gourlayi. Genome, 1992, 35: 864-869.
    [219] McCoy TJ. The inheritance of 2n pollen formation in diploid alfalfa, Medicago sativa. Can J Genet Cytol, 1982, 24:315-323.
    [220] McCoy TJ, Rowe DE. Single cross alfalfa (Medicago sativa L.) hybrid produced via 2n gametes and somatic chromosome doubling: experimental and theoretical comparisons. Theor Appl Genet, 1986, 72: 80-83.
    [221] McCoy TJ, Smith LY. Genetics, cytology and crossing behavior of an alfalfa (Medicago sativa) mutant resulting in failure of the postmeiotic cytokinesis. Can J Genet Cytol, 1983, 25: 390-397.
    [222] McHale NA. Environmental induction of high frequency 2n pollen formation in diploid Solanum. Can J Genet Cytol, 1983, 25: 609-615.
    [223] Megalos BS, Ballington JR. Unreduced pollen frequencies versus hybrid production in diploid - tetraploid Vaccinium crosses. Euphytica, 1988, 39: 271-278.
    [224] Melander Y. A new giant Populus tremula in Norrbotten. Hereditas, 1938, 24: 187-194.
    [225] Mendiburu AO, Peloquin SJ. Sexual polyploidization and depolyploidization: some terminology and definitions. Theor Appl Genet, 1976, 48: 137-143.
    [226] Mendiburu AO, Peloquin SJ. The significance of 2n gamete in potato breeding. Theor Appl Genet, 1977a, 49: 53-61.
    [227] Mendiburu AO, Peloquin SJ. Bilateral sexual polyploidization in potatoes. Euphytica, 1977b, 26: 573-583.
    [228] Mendiburu AO, Peloquin SJ. The significance of 2n gametes in potato breeding. Theor Appl Genet, 1977c, 49: 53-61.
    [229] Mendiburu, AO, Peloquin, SJ, Mok DWS. Potato breeding with haploids and 2n gametes. In: Kasha K. [ed.]. Haploids in higher plants. University of Guelph, Guelph, 1974, 249-258.
    [230] Mok DWS, Peloquin SJ, Mendiburu AO. Genetic evidence for mode of 2n pollen formation and S-locus mapping in potatoes. Potato Res, 1976, 19: 157-164.
    [231] Mok DWS, Peloquin SJ, Tam TR. Cytology of potato triploids producing 2n pollen. Am Potato J, 1975, 52: 171-174.
    [232] Mok DWS, Peloquin SJ. Breeding value of 2n pollen (diplandroids) in tetraploid × diploid crosses in potatoes. Theor Appl Genet, 1975a, 72: 307-314.
    [233] Mok DWS, Peloquin SJ. Three mechanisms of 2n pollen formation in diploid potatoes. Can J Genet Cytol, 1975b, 17: 217-225.
    [234] Mok DWS, Peloquin SJ. The inheritance of three mechanisms of diplandroid (2n pollen) formation in diploid potatos. Heredity, 1975c, 35: 295-302.
    [235] Mok DWS, Peloquin SJ. Genetic evidence of FDR and SDR diplandrogenesis in diploid potatoes and the maping of S locus. Am Potato J, 1974, 51: 279-280.
    [236] Morgan WG, Thomas H, Humphreys MW. Unreduced gametes in interspecific hybrids in the Festuca/Lolium complex. Plant Breeding, 1995, 114: 267-268.
    [237] Muntzing A. The chromosomes of a giant Populus tremula. Hereditas, 1936, 21: 383-393.
    [238] Murphy AM, De Jong H, Tai GCC. Transmission of resistance to common scab from the diploid to the tetraploid level via 4x × 2x crosses in potatoes. Euphytica, 1995, 82: 227-233.
    [239] Murthy TGK, Tiwari SP. Second division restitution in a fertile interspecific triploid hybrid of groundnut. Cytologia, 1987, 52: 667-670.
    [240] Myers JR, Gritton ET, Struckmeyer BE. Production of 2n pollen and further characterization of the Calyx carpellaris (cc) triat in the pea. Crop Sci, 1984, 24: 1063-1069.
    [241] Nassar NMA. Cassava, Manihot esculenta Crantz and wild relatives: Their relationships and evolution. Genet Resour Crop Evol, 2001, 48: 429-436.
    [242] Nassar NMA. Production of triploid cassava, Manihot esculenta Crantz, by hybrid diploid gametes. Field Crops Res, 1992, 30: 173-182.
    [243] Nassar NMA, Freitas M. Prospects of polyploidizing cassava, Manihot esculenta Crantz, by unreduced microspores. Plant Breeding, 1997, 116: 195-197.
    [244] Negri V, Lemmi G. Effect of selection and temperature stress on the production of 2n gametes inLotus tenuis. Plant Breeding, 1998, 117: 345-349.
    [245] Negri V, Lorenzetti S, Lemmi G. Identification and cytological analysis of 2n-pollen producers in Lotus tenuis. Wald. et Kit.. Plant Breeding, 1995, 114: 86-88.
    [246] Negri V, Veronesi F. Evidence for the existence of 2n gametes in Lotus tenuis Wald. et Kit. (2n = 2x = 12): their relevance in evolution and breeding of Lotus corniculatus L. (2n = 4x = 24). Theor Appl Genet, 1989, 78: 400-404.
    [247] Nel PM. Crossing over and diploid egg formation in the elongate mutant of maize. Genetics, 1975, 79(3): 435-450.
    [248] Noyes RD, Rieseberg LH. Two independent loci control agamospermy (apomixis) in the triploid flowering plant Erigeron annuus. Genetics, 2000, 155: 379-390.
    [249] Ogburia MN, Yabuya T, Adachi T. A cytogenetic study of bilateral sexual polyploidization in cassava (Manihot esculenta Crantz). Plant Breeding, 2002, 121: 278-280.
    [250] Okazaki K. New aspects of tulip breeding: embryo culture and polyploid. Acta Hort, 2005, 673: 127-140.
    [251] Okazaki K, Kurimoto K, Miyajima I, Enami A, Mizuochi H, Matsumoto Y, Ohya H. Induction of 2n pollen by arresting the meiotic process in tulips with nitrous oxide gas. Euphytica, 2005, 143: 101-114.
    [252] Omara MK. Cytomixis in Lolium perenne. Chromosoma, 1976, 55: 267-271.
    [253] Orjeda G, Freyre R, Iwanaga M. Production of 2n pollen in diploid Ipomoea trifida, a putative wild ancestor of sweet potato. J Hered, 1990, 81, 462-467.
    [254] Ortiz R. Occurrence and inheritance of 2n pollen in Musa. Ann Bot, 1997, 79: 449-453.
    [255] Oritiz R, Bruederle LP, Laverty T, Vorsa N. The origin of polyploids via 2n gametes in Vaccinium section Cyanococcus. Euphytica, 1992a, 61: 241-246.
    [256] Ortiz R, Vorsa N, Bruederle LP, Laverty T. Occurrence of unreduced pollen in diploid blueberry species, Vaccinium sect. Cyanococcus. Theor Appl Genet, 1992b, 85: 55-60.
    [257] Ortiz R, Franco J, Iwanaga M. Transfer of resistance to potato cyst nematode (Globodera pallida) into cultivated potato Solanum tuberosom through first division restitution 2n pollen. Euphytica, 1997a, 96: 339-344.
    [258] Ortiz R, Iwanaga M, Peloquin SJ. Evaluation of FDR diploid and tetraploid parents in potato under two different day-length environments. Plant Breeding, 1997b, 116: 353-358.
    [259] Ortiz R, Iwanaga M, Mendoza HA. Combining ability and parental effects in 4x-2x crosses for potato breeding. Potato Res, 1988, 31: 643-650.
    [260] Ortiz R, Iwanaga M, Peloquin SJ. Male sterility and 2n pollen in 4x progenies derived from 4x × 2x and 4x × 4x crosses in potatoes. Potato Res, 1993, 36: 227-236.
    [261] Ortiz R, Peloquin SJ, Freyre R, Iwanaga M. Efficiency of potato breeding using FDR 2n gametes for multitrait selection and progeny testing. Theor Appl Genet, 1991, 82: 602-608.
    [262] Ortiz R, Peloquin SJ. A new method of producing 4x hybrid true potato seed. Euphytica, 1994a, 57: 103-107.
    [263] Ortiz R, Peloquin SJ. Effect of sporophytic heterozygosity on the male gametophyte of the tetraploid potato (Solanum tuberosum L.). Ann Bot, 1994b, 73: 61-64.
    [264] Ortiz R, Ulburghs F, Okoro JU. Seasonal variation of apparent male fertility and 2n pollen production in plantain and banana. HortScience, 1998, 33(1): 146-148.
    [265] Ouyang G, Tian X, Lu W, Wang F, Chen Y. Estimation of genetic effect for 2n pollen producing diploid hybrids. J NE Agr Univ, 1999, 6: 19-14.
    [266] Owen HR, Veilleux RE, Haynes FL, Haynes KG. Photoperiod effects on 2n pollen productionresponse to anther culture, and net photosynthesis of a diplandrous clone of Solanum phureja. Am Potato J, 1988, 65: 131-139.
    [267] Pagliarini MS, Takayama SY, Freitas PM, Carraro LR, Adamowski EV, Silva N, Batista LAR. Failure of cytokinesis and 2n gamete formation in Brazilian accessions of Paspalum. Euphytica, 1999, 108: 129-135.
    [268] Pan G, Zhou Y, Fowke LC, Wang H. An efficient method for flow cytometric analysis of pollen and detection of 2n nuclei in Brassica napus pollen. Plant Cell Rep, 2004, 23: 196-202.
    [269] Park SM, Wakana A, Hiramatsu M, Ureshino K. A tetraploid hybrid plant from 4x × 2x crosses in Vitis and its origin. Euphytica, 2002, 126: 345-353.
    [270] Park T-H, Kim J-B, Hutten RCB, Van Eck HJ, Jacobsen E, Visser RGF. Genetic positioning of centromeres using half-tetrad analysis in a 4x-2x cross population of potato. Genetics, 2007, 176: 85-94.
    [271] Parrott WA, Smith RR. Production of 2n pollen in red clover. Crop Sci, 1984, 24: 469-472.
    [272] Parrott WA, Smith RR. Recurrent selection for 2n pollen formation in red clover. Crop Sci, 1986, 26: 1132-1135.
    [273] Peckert T, Chrtek J jun. Mating interactions between coexisting diploid, triploid and tetraploid cytotypes of Hieracium echioides (Asteraceae). Folia Geobotanica, 2006, 41: 323-334.
    [274] Parrott WA, Smith RR, Smith MM. Bilateral sexual tetraploidization in red clover. Can J Genet Cytol, 1985, 27: 64-68.
    [275] Peloquin SJ. Genetic engineering with meiotic mutants. In: Mulcahy DL, Ottaviano E [eds.]. Pollen: biology and implications for plant breeding. Elsevier, New York, 1983, 311-316.
    [276] Peloquin SJ, Boiteux LS, Simon PW, Jansky SH. A chromosome-specific estimate of transmission of heterozygosity by 2n gametes in potato. J Hered, 2008, 99: 177-181.
    [277] Pfeiffer TW, Bingham ET. Abnormal meiosis in alfalfa, Medicago sativa: cytology of 2n eggs and 4n pollen formation. Can J Genet Cytol, 1983, 25: 107-112.
    [278] Pichot C, El Maataoui M. Unreduced diploid nuclei in Cupressus dupreziana A. Camus pollen. Theor Appl Genet, 2000, 101: 574-579.
    [279] Prassinos C, Ko J-H, Yang J, Han K-H. Transcriptome profiling of vertical stem segments provides insights into the genetic regulation of secondary growth in hybrid aspen trees. Plant Cell Physiol, 2005, 46(8): 1213-1225.
    [280] Pring DR, Tang HV, Chase CD, Siripant MN. Microspore gene expression associated with cytoplasmic male sterility and fertility restoration in sorghum. Sex Plant Reprod, 2006, 19: 25-35.
    [281] Qu D, Gao ZW. Selection of 2n gametes and improvement of germplasm in potato. Acta Hort, 1995, 402: 103-108.
    [282] Qu D, Zhu D, Ramanna MS, Jacobsen E. A comparison of progeny from diallel crosses of diploid potato with regard to the frequencies of 2n-pollen grains. Euphytica, 1996, 92: 313-320.
    [283] Qu L, Hancock JF, Whallon JH. Evolution in an autopolyploid group displaying predominantly bivalent pairing at meiosis: genomic similarity of diploid Vaccinium darrowi and autotetraploid V. corymbosum (Ericaceae). Am J Bot, 1998, 85(5): 698-703.
    [284] Qu L, Hancock JF. Nature of 2n gamete formation and mode of inheritance in interspecific hybrids of diploid Vaccinium darrrowi and tetraploid V. corymbosum. Theor Appl Genet, 1995, 91: 1309-1315.
    [285] Qu L, Vorsa N. Desynapsis and spindle abnormalities leading to 2n pollen formation in Vaccinium darrowi. Geonome, 1999, 42: 35-40.
    [286] Quinn AA, Mok DWS, Peloquin SJ. Distribution and significance of diplandroids among thediploid Solanum. Am Potato J, 1974, 51: 16-21.
    [287] Raboin L-M, Carreel F, Noyer JL, Baurens FC, Horry JP, Bakry F, Tezenas Du Montcel H, Ganry J, Lanaud C, Lagoda PJL. Diploid ancestors of triploid export banana cultivars: molecular indentification of 2n restitution gamete donors and n gamete donors. Mol Breeding, 2005, 16: 333-341.
    [288] Ramanna MS. A re-examination of the mechanisms of 2n gamete formation in potato and its implications for breeding. Euphytica, 1979, 28: 537-561.
    [289] Ramanna MS. First division restitution gametes through fertile desynaptic mutants of potato. Euphytica, 1983, 32: 337-350.
    [290] Ramanna MS. The origin of unreduced microspores due to aberrant cytokinesis in the meiocytes of potato and its genetic significance. Euphytica, 1974, 23: 20-30.
    [291] Ramanna MS, Jacobsen E. Relevance of sexual polyploidization for crop improvement - A review. Euphytica, 2003, 133: 3-18.
    [292] Ramanna MS, Kuipers AGJ, Jacobsen E. Occurrence of numerically unreduced (2n) gametes in Alstroemeria interspecific hybrids and their significance for sexual polyploidization. Euphytica, 2003, 133: 95-106.
    [293] Ramsey J. Unreduced gametes and neopolyploids in natural populations of Achillea borealis (Asteraceae). Heredity, 2007, 98: 143-150.
    [294] Ramsey J, Schemske DW. Pathway, mechanisms, and rates on polyploid formation in flowering plant. Annu Rew Ecol Syst, 1998, 29: 467-501.
    [295] Ravi M, Marimuthu MP, Siddiqi I. Gamete formation without meiosis in Arabidopsis. Nature, 2008, 451, 1121-1124.
    [296] Ray IM, Tokach MK. Cytology of 2n pollen formation in diploid crested wheatgrass, Agropyron cristatum. Crop Sci, 1992, 32: 1361-1365.
    [297] Rhoades MM, Dempsey E. Induction of chromosome doubling at meiosis by the elongate gene in maize. Genetics, 1966, 54: 502-522.
    [298] Rieseberg LH, Willis JH. Plant speciation, Science. 2007, 317: 910-914.
    [299] Rim YW, Beuselinck PR. Cytology of 2n pollen formation and pollen morphology in diploid Lotus tenuis (Fabaceae). Am J Bot, 1996, 83(8): 1057-1062.
    [300] Risso-Pascotto C, Pagliarini MS, Valle CB, Mendes-Bonato AB. Chromosome number and microsporogenesis in a pentaploid accession of Brachiaria brizantha (Gramineae). Plant Breeding, 2003, 122: 136-140.
    [301] Romagosa I, Cistue L, Lasa JM, Hecker RJ. Restitution gametes in sugar beet primary trisomics. J Hered, 1988, 79: 306-308.
    [302] Ross H, Langton FA. Origin of unreduced embryo sacs in diploid potatoes. Nature, 1974, 247: 378-379.
    [303] Sala CA, Camadro EL, Salaberry MT, Mendiburu AO. Cytological mechanism of 2n pollen formation and unilateral sexual polyploidization in Lolium. Euphytica, 1989, 43: 1-6.
    [304] Sanders PM, Bui AQ, Weterings K, McIntire KN, Hsu Y-C, Lee PY, Truong MT, Beals TP, Goldberg RB. Anther developmental defects in Arabidopsis thaliana male-sterile mutants. Sex Plant Reprod, 1999, 11: 297-322.
    [305] Satina S, Blakeslee AF. Cytological effects of a gene in Datura which cause dyad formation in sporogenesis. Bot Gaz, 1935, 96: 521-532.
    [306] Sato T, Maceira N, Lumaret R, Jacquard P. Flowering characteristics and fertility of interploidy progeny from normal and 2n gametes in Dactylis glomerata L. New Phytol, 1993, 124: 309-319.
    [307] Schroeder SH, Peloquin SJ. Seed set in 4x × 2x crosses as related to 2n pollen frequency. Am Potato J, 1983, 60: 527-536.
    [308] Seitz FW. The occurrence of triploids after self-pollination of anomalous androgynous floueers of a grey poplar. Z. Forstgenet, 1954, 3(1): 1-6.
    [309] Shamina NV. A catalogue of abnormalities in the division spindles of higher plants. Cell Biol Int, 2005, 29: 384-391.
    [310] Shamina NV. Formation of division spindles in higher plant meiosis. Cell Biol Int, 2005, 29: 307-318.
    [311] Shamina NV, Gordeeva EI, Kovaleva NM, Seriukova EG, Dorogova NV. Formation and function of phragmoplast during successive cytokinesis stages in higher plant meiosis. Cell Biol Int, 2007, 31(6): 626-635.
    [312] Sheidai M, Attaei S, Khosravi-Reineh M. Cytology of some Iranian Stipa (Poaceae) species and populations. Acta Bot Croat, 2006, 65: 1-11.
    [313] Sheidai M, Noormohammadi Z. Chromosome pairing and unreduced gamete formation in nineteen pomegranate (Punica granatum L.) cultivars. Cytologia, 2005, 70(3): 257-265.
    [314] Simioni C, Schifino-Wittmann MT, Dall’Agnol M. Sexual polyploidization in red clover. Sci Agric, 2006, 63: 26-31.
    [315] Simon PW, Peloquin SJ. Pollen vigor as a function of mode of 2n gamete formation in potatoes. J Hered, 1976, 67: 204-208.
    [316] Snyder LA. Asyndesis and meiotic Non-reduction in microsporogenesis of apomictic Paspalum secans. Cytologia, 1961, 26: 50-61.
    [317] Souter EW, Dawe JC, Peloquin SJ. 2n pollen formation via parallel spindles in the potato cultivar Sebago. Am Potato J, 1980, 57: 449-455.
    [318] Spielman M, Preuss D, Li F-L, Browne WE, Scott RJ, Dickinson HG. TETRASPORE is required for male meiotic cytokinesis in Arabidopsis thaliana. Development, 1997, 124: 2645-2657.
    [319] Ssebuliba RN, Tenkouano A, Pillay M. Male fertility and occurrence of 2n gametes in East African Highland bananas (Musa spp.). Euphytica, doi:10.1007/s10681-007-9637-6.
    [320] Stelly DM, Peloquin SJ. Diploid female gametophyte formation in 24-chromosome potatoes: genetic evidence for the prevalence of the second meiotic division restitution mode. Can J Genet Cytol, 1986a, 28: 101-108.
    [321] Stelly DM, Petoquin SJ. Formation of 2n megagametophytes in diploid tuber-bearing Solanums. Am J Bot, 1986b, 73(9): 1351-1363.
    [322] Stelly DM, Peloquin SJ. Screening for 2n female gametophytes, female fertility, and 2x × 4x. crossability in potatoes (Solanum spp). Am Potato J, 1985, 62: 519-529.
    [323] Stephens LC. Formation of unreduced pollen by an Impatiens hawkeri × platypetala interspecific hybrid. Hereditas, 1998, 128: 251-255.
    [324] Storey WB. Diploid and polyploid gamete formation in orchids. J Am Soc Hort Sci, 1956, 68: 491-502.
    [325] Sudharshan MR, Jagadischchandra KS. Unusual meiotic behaviour and the formation of 2n-pollen in tetraploid Cymbopogon Caesius (Nees) Stapf (Poaceae). Cytologia, 1981, 46: 117-123.
    [326] Sugiura A, Ohkuma T, Choi YA, Tao R, Tamura M. Production of nonaploid (2n = 9x) Japanese persimmons (Diospyros kaki) by pollination with unreduced (2n = 6x) pollen and embryo rescue culture. J Amer Soc Hort Sci, 2000, 125(5): 609-614.
    [327] Szakács é, Barnabás B. Development of diploid pollen in spikelet cultures of barley (Hordeum vulgare L.) and rye (Secale cereale L.). Acta Agron Hung, 2004, 52(1): 1-8.
    [328] Tai GCC, De Jong H. A comparison of performance of tetraploid progenies produced by diploid and their vegetatively doubled (tetraploid) counterpart parents. Theor Appl Genet, 1997, 94: 303-308.
    [329] Taschetto OM, Pagliarini MS. Occurrence of 2n and jumbo pollen in the brazilian ginseng (Pfaffia glomerata and P. tuberosa ). Euphytica, 2003, 133: 139-145.
    [330] Tavoletti S. Cytological mechanisms of 2n egg formation in a diploid genotype of Medicago sativa subsp. falcate. Euphytica, 1994, 75: 1-8.
    [331] Tavoletti S, Bingham ET, Yandell BS, Veronesi F, Osborn TC. Half tetrad analysis in alfalfa using multiple restriction fragment length polymorphism markers. Proc Natl Acad Sci USA, 1996, 93: 10918-10922.
    [332] Tavoletti S, Mariani A, Veronesi F. Cytological analysis of macro- and microsporogenesis of a diploid alfalfa clone producing male and female 2n gamete. Crop Sci, 1991, 31: 1258-1263.
    [333] Tavoletti S, Pesaresi P, Barcaccia G, Albertini E, Veronesi F. Mapping the jp (jumbo pollen) gene and QTLs involved in multinucleate microspore formation in diploid alfalfa. Theor Appl Genet, 2000, 101: 372-378.
    [334] Taylor LM. Variation patterns of parthenogenetic plants derived from “unreduced” embryo-sacs of Solanum tuberosum subspecies andigena (Juz. et Buk.) Hawkes. Theor Appl Genet, 1978, 52: 241-249.
    [335] Taylor NL, Wiseman EO. Triploids and tetraploids from 4x-2x crosses in red clover. Crop Sci, 1987, 27: 14-18.
    [336] Tel-Zur N, Abbo S, Bar-Zvi D, Mizrahi Y. Chromosome doubling in vine cacti hybrids. J Hered, 2003, 94(4), 329-333.
    [337] Tondini F, Tavoletti S, Mariani A, Veronesi F. A statistical approach to estimate the frequency of n, 2n and 4n pollen grains in diploid alfalfa. Euphytica, 1993, 69: 109-114.
    [338] Traas JA, Burgain S, De Vaulx RD. The organization of the cytoskeleton during meiosis in eggplant (Solanum Melongena (L.)): microtubules and F-actin are both necessary for coordinated meiotic division. J Cell Sci, 1989, 92: 541-550.
    [339] Tucci M, Carputo D, Bile G, Frusciante L. Male fertility and freezing tolerance of hybrids involving Solanum tuberosum haploids and diploid Solanum species. Potato Res, 1996, 39: 345-353.
    [340] Tyagi BR. The mechanism of 2n pollen formation in diploids of Costus speciosus (Koenig) J. E. Smith and role of sexual polyploidization in the origin of intraspecific chromosomal races. Cytologia, 1988, 53: 763-770.
    [341] ünal M, Alp O. Cytological mechanisms of unreduced pollen formation in Solanum tuberosum L. cv. Morfana. J Cell and Mol Bio, 2002, 1: 15-18.
    [342] Van Dijk PJ, Bakx-Schotman JMT. Formation of unreduced megaspores (diplospory) in apomictic dandelions (Taraxacum officinale, s.l.) is controlled by a sex-specific dominant locus. Genetics, 2004, 166: 483-492.
    [343] Van Raemdonck D, Pesquet E, Cloquet S, Beeckman H, Boerjan W, Goffner D, El Jaziri M, Baucher M. Molecular changes associated with the setting up of secondary growth in aspen, J Exp Bot. 2005, 56(418): 2211-2227.
    [344] Van Tuyl JM, Barba-Gonzalez R, Van Silfhout AA, Lim K-B, Ramanna MS. Meiotic polyploidization in five different interspecific Lilium hybrids. Acta Hort, 2005, 673: 99-105.
    [345] Van Tuyl JM, De Vries JN, Bino RJ. Identification of 2n-pollen producing interspecific hybrids of Lilium using flow cytometry. Cytologia, 1989, 54: 737-745.
    [346] Van Tuyl JM, Lim K-B. Interspecific hybridization and polyploidisation as tools in ornamental plant breeding. Acta Hort, 2003, 612: 13-22.
    [347] Van Tuyl JM, Maas IWGM, Lim K-B. Introgression in interspecific hybrids of lily. Acta Hort, 2002, 570: 213-218.
    [348] Veilleux R. Diploid and polyploid gametes in crop plants: mechanisms of formation and utilization in plant breeding. Plant Breed Rev, 1985, 3: 253-288.
    [349] Veilleux R, McHale NA, Lauer FI. 2n gametes in diploid Solanum: frequency and type of spindle abnormalities. Can J Genet Cytol, 1982, 24: 301-314.
    [350] Veilleux RE, Lauer FI. Variation for 2n pollen production in clones of Solanum phureja Juz. and Buk.. Theor Appl Genet, 1981, 59: 95-100.
    [351] Veilleux RE, Paz MM, Levy D. Potato germplasm development for warm climates: genetic enhancement of tolerance to heat stress. Euphytica, 1997, 98: 83-92.
    [352] Veronesi F, Mariani A, Bingham ET. Unreduced gametes in diploid Medicago and their importance in alfalfa breeding. Theor Appl Genet, 1986, 72: 37-41.
    [353] Vielle Calzada, J-P, Crane CF, Stelly DM. Apomixis: the asexual revolution. Science, 1996, 274(22): 1322-1323.
    [354] Vorsa N. On a wing: the genetics and taxonomy of Vaccinium species from pollination respective. Acta Hort, 1997, 446: 59-66.
    [355] Vorsa N, Bingham ET. Cytology of 2n pollen formation in diploid alfalfa, Medicago sativa. Can J Genet Cytol, 1979, 21: 525-530.
    [356] Vorsa N, Ortiz R. Cytology of 2n pollen formation in a blueberry aneuploid (2n = 4x + 9 = 57). J Hered, 1992, 83: 346-349.
    [357] Vorsa N, Rowland LJ. Estimation of 2n megagametophyte heterozygosity in a diploid blueberry (Vaccinium darrowi Camp) clone using RAPDs. J Hered, 1997, 88: 423-426.
    [358] Vos P, Hogers R, Bleeker M, Reijans M, Van De Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res, 1995, 3: 4407-4414.
    [359] Vuylsteke M, Peleman JD, Van Eijk MJT. AFLP-based transcript profiling (cDNA-AFLP) for genome-wide expression analysis. Nature Protocols, 2007, 2: 1399-1413.
    [360] Wagenaar EB. Meiotic restitution and the origin of polyploidy. I. Influence of genotype on polyploid seed set in a Triticum crassum × T. turgidum hybrid. Can J Genet Cytol, 1968a, 10: 836-843.
    [361] Wagenaar EB. Meiotic restitution and the origin of polyploidy. Ⅱ. Prolonged duration of metaphase I as casual factor of restitution induction. Can J Genet Cytol, 1968b, 10: 844-852.
    [362] Wagenvoort M, Zimnoch-Guzowska E. Gene-centromere mapping in potato by half-tetrad analysis: map distances of H1, Rx, and Ry and their possible use for ascertaining the mode of 2n-pollen formation. Genome, 1992, 35: 1-7.
    [363] Wang D, Ran Y. Improving main agronomic characters of dihaploids with 2n gametes by means of sexual hybridisation and anther culture of potato (Solanum tuberosum). New Zealand J Crop and Hort Sci, 2000, 28: 1-8.
    [364] Wang Z, Liu X, Liu Z, Qi X, Chu Y. Two new tetraploid Chinese cabbage obtained by crossing diploid with tetraploid. Acta Hort, 1995, 402: 168-172.
    [365] Watanabe K, El-Nashaar HM, Iwanaga M. Transmission of bacterial wilt resistance by First Division Restitution (FDR) 2n pollen via 4x × 2x crosses in potatoes. Euphytica, 1992, 60: 21-26.
    [366] Watanabe K, Peloquin J, Endo M. Genetic significance of mode of polyploidization: somaticdoubling or 2n gametes? Genome, 1991, 34: 28-34.
    [367] Watanabe K, Peloquin SJ. Cytological basis of 2n pollen formation in a wide range of 2x, 4x, and 6x taxa from tuber-bearing Solanum species. Genome, 1993, 36: 8-13.
    [368] Watanabe K, Peloquin SJ. Occurrence of 2n pollen and ps gene frequencies in cultivated groups and their related wild species in tuber-bearing Solanums. Theor Appl Genet, 1989, 78: 329-336.
    [369] Werner JE, Douches DS, Freyre R. Use half-tetrad analysis to discriminate between two type of 2n egg formation in a potato haploid. Genome, 1992, 35: 741-745.
    [370] Werner JE, Peloquin SJ. Frequency and mechanisms of 2n egg formation in haploid Tuberosum-wild species F1 hybrids. Am Potato J, 1987, 64: 641-654.
    [371] Werner JE, Peloquin SJ. Inheritance and two mechanisms of 2n egg formation in 2x potatoes. J Hered, 1990, 81: 371-374.
    [372] Werner JE, Peloquin SJ. Occurrence and mechanisms of 2n-egg formation in 2x potato. Genome, 1991, 34: 975-982.
    [373] Werner JE, Peloquin SJ. Significance of allelic diversity and 2n gametes for approaching maximum heterozygosity in 4x potatoes. Euphytica, 1991, 58: 21-29.
    [374] Werner JE, Peloquin SJ. Yield and tuber characteristics of 4x progeny from 2x × 2x crosses. Potato Res, 1991, 34: 261-267.
    [375] Winton L, Einspahr DW. Tetraploid aspen production using unreduced triploid pollen. Forest Sci, 1970, 16: 180-182.
    [376] Wu H, Zheng S, He Y, Yan G, Bi Y, Zhu Y. Diploid female gametes induced by colchicine in Oriental lilies. Scientia Horticult, 2007, 114: 50-53.
    [377] Xu SJ, Joppa LR. First-division restitution in hybrids of Langdon durum disomic substitution lines with rye and Aegilops squarrosa. Plant Breeding, 2000, 119: 233-241.
    [378] Yamada A, Tao R, Sugiura A. Influence of low temperature before flowering on the occurrence of unreduced pollen in Japanese persimmon (Diospyros kaki Thunb.). HortScience, 2005, 40(1): 24-28.
    [379] Yamada A, Tao R. Controlled pollination with sorted reduced and unreduced pollen grains reveals unreduced embryo sac formation in Diospyros kaki Thunb. ‘Fujiwaragosho’. J Japan Soc Hort Sci, 2007a, 76(2): 133-138.
    [380] Yamada A, Tao R. Sexual Polyploidization of Japanese persimmon by utilizing unreduced egg. Acta Hort, 2007b, 738: 409-414.
    [381] Yan G, Ferguson AR, McNeilage MA, Murray BG. Numerically unreduced (2n) gametes and sexual polyploidization in Actinidia. Euphytica, 1997, 96: 267-272.
    [382] Yan LY, Zhang XZ, Liu GJ. Occurrence of unreduced gametes and ploidy restoration in haploid Capsicum annum L. J Hort Sci Biotech, 2000, 75(2): 195-197.
    [383] Yang CY, Spielman M, Coles JP, Li Y, Ghelani S, Bourdon V, Brown RC, Lemmon BE, Scott RJ, Dickinson HG. TETRASPORE encodes a kinesin required for male meiotic cytokinesis in Arabidopsis. Plant J, 2003, 34: 229-240.
    [384] Yang M, Ma H. Male meiotic spindle lengths in normal and mutant Arabidopsis cells. Plant Physiol, 2001, 126: 622-630.
    [385] Yerk GL, Peloquin SJ. 2n pollen in eleven 2x, 2EBN wild species and their haploid × wild species hybrids. Potato Res, 1988, 31: 581-589.
    [386] Yerk GL, Peloquin SJ. Comparison of 2n and Non-2n pollen-producing haploid × wild species hybrids in potato. J Hered, 1989, 80: 468-471.
    [387] Zhang L-Q, Yen Y, Zheng Y-L, Liu D-C. Meiotic restriction in emmer wheat is controlled by oneor more nuclear genes that continue to function in derived lines. Sex Plant Reprod, 2007, 20: 159-166.
    [388] Zhang S, Qi L, Chen C, Li X, Song W, Chen R, Han S. A report of triploid Populus of the Section Aigeiros. Silvae Genetica, 2004, 53: 69-75.
    [389] Zhang XZ, Liu GJ, Yan LY, Zhao YB, Chang RF, Wu LP. Creating triploid germplasm via induced 2n pollen in Capsicum annuum L. J Hort Sci and Biotech, 2002, 78(1): 84-88.
    [390] Zhou S, Ramanna MS, Visser RGF, Van Tuyl JM. Genome composition of triploid lily cultivars derived from sexual polyploidization of Longiflorum × Asiatic hybrids (Lilium). Euphytica, 2008, 160: 207-215.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700