二价元素A位掺杂对钙钛矿气敏性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钙钛矿稀土氧化物ABO3可以应用在磁阻抗材料、催化材料、高温超导材料,也可以应用于气敏材料。作为气敏材料,它具有高度的稳定性、良好的选择性和优秀的灵敏度。其气敏性质可以通过对A位,B位进行部分替代或者同时进行部分替代而改变,甚至提高。近年来这种极具重要理论意义和使用价值的材料引起了广大科研工作者的强烈兴趣。
     人们通常会通过用低价阳离子元素比如Ca、Sr、Ba、Pb等来部分替代LaFeO3中La的位置或用Cu、Co、Ni、Mn等来替代Fe的位置来改善他们的气敏性。La1-xCaxFeO3是一种重要的催化材料,但是对于其对CO这种重要的污染性气体的催化性几乎没有被研究过,本文用溶胶凝胶法合成了La1-xCaxFeO3纳米粉体,并对其气敏特性,稳定性及其导电性质进行了研究。
     为了进一步深入探讨,我们基于第一性原理的计算模拟了La7CaFe8O24(0 1 0)表面的氧吸附情况,发现Fe离子对氧吸附起着主导作用。并且无论初始吸附状态如何,最终都吸附在Fe离子上,也印证了B位在化学吸附中的主导作用。同时在其基础上研究了La7CaFe7CoO24的表面O2吸附,观察到了解离吸附的过程。
     本文主要结论如下:
     1.XRD图谱表明获得的粉体均为单一的钙钛矿结构,并无杂相出现,说明Ca确实替代了La的位置而没有替代Fe的位置。随着Ca含量的提高样品La1-xCaxFeO3的晶胞参数逐渐减小,导致晶胞容量减小,晶粒大小也逐渐减小,这是因为Ca离子(100pm)比La离子(103pm)稍微小一点,当Ca替代La后晶胞参数就减小,晶胞收缩。
     2.通过对气敏元件的电阻测量我们发现La1-xCaxFeO3(x=0.1,0.2,0.4)在CO中的电阻在相同温度下都大于空气中的电阻,属于P型半导体,x=0.3时气敏元件在CO中导电特性出现了从p型到n型的转化,p-n转化温度为380℃。我们还发现随着x的增加,空气中的元件电阻先减小,后增大。这是由于气敏元件中电价补偿和空位补偿同时并存相互竞争的结果:电价补偿占主导时,空穴增加,电阻变小;空位补偿增大后,自由电子增加,电阻增大。
     3.当x=0.1,0.2,0.3时,La1-xCaxFeO3对于CO具有较好的灵敏度,其中x=0.2时,温度为100℃,灵敏度达到最高。我们又测量了x=0.2时气敏元件的稳定性及其反应时间,得到了较好的气敏元件特性参数。La0.8Ca0.2FeO3可以考虑用来做为测量CO的气敏材料。
     4.用基于密度泛函的第一性原理计算方法研究了La7CaFe8O24(0 10)表面和氧在其表面上的吸附。La7CaFe8O24(0 1 0)表面的表面态出现在费米能级的附近,主要由Fe 3d的轨道组成。表面Fe离子对氧吸附起到主导作用。在Fe离子上的吸附比在La和O离子上的吸附要稳定的多,吸附氧在表面Fe离子上的成键机制是O 2p和Fe 3d轨道之间的强相互作用。此外,我们的计算表面氧分子在La7CaFesO24(0 1 0)表面上的吸附属于分子化学吸附和物理吸附。具体公式如下
     5.LaTCaFe7CoO24(0 1 0)表面和氧气分子在其表面上的吸附用Dmol3模拟。Co原子的掺杂并没有改变钙钛矿结构。表面发生了驰豫现象而没有重构,计算预示了Fe和Co原子在吸附过程中的作用。七种吸附模型中发现了物理吸附,化学吸附,解离吸附3种吸附,在5种分子化学吸附模型中Co原子的吸附能力最小,在Fe-O-Co上初始位置的O2发生了解离吸附(O-O键长达到了4.0474A),都吸附在Fe上,这些都说明Fe原子在La7CaFe7CoO24(010)表面上比Co原子吸附能力要强,依然起主导作用。
     总之,我们用实验和计算两种方法研究了La1-xCaxFeO3纳米气敏材料,得到了稳定性高、响应快、灵敏度良好的气敏材料,深入了解了La1-xCaxFeO3的气敏机理,为探索新的气敏材料做了铺垫。
ABO3 perovskite rare-earth oxides can be used in magneto-impedance materials, catalytic materials, high-temperature superconducting materials, but also can be served as gas-sensing meterials. As a gas sensor, it has sound stability, good selectivity and excellent sensitivity. Another excellence is that its characteristic can be controlled to get even better by electing suitable A and B atoms or chemical doping in ABO3. ABO3 material which has great theorical significance and utility value has aroused interest among the researchers.
     Generally, gas-sensing properties of LaFeO3 can be improved by substituting lower valance-cations, such as Ca, Sr, Ba, Pb for La, or substituting Fe by Cu, Co, Ni, Mn and so on. La1-xCaxFeO3 is a kind of very important photo catalysis material. Its gas sensing property of CO has not being studied yet. Since CO is a kind of very important toxic gas, in this article La1-xCaxFeO3 powders were prepared by the sol-gel method, and were characterized for the gas sensing property, stability and conductivity.
     For the further understanding of the ABO3 materials, we calculated the oxygen adsorption on LaFeO3 surface based on first-principle calculation. We found that Fe ions dominated the oxygen adsorption. Wherever intial position was placed, the optimized position all focused on the surface Fe ion, which illustrated B ion dominated chemisorption.
     The abstract of our results as follows:
     1. X-ray diffraction patterns (XRD) of La1-xCaxFeO3 show that La1-xCaxFeO3 nanocrystalline is perovskite phases with the orthorhombic structure, no obvious other phases are observed. It also illustrates that La ion is replaced by Ca ion. With an increase of x, the mean crystallite size decreases, cell volume decreases and also the lattice parameter. That is because calcium ion (100pm) is slightly smaller than lanthanum ion (103pm). When lanthanum ion is substitutd by calcium ion, the lattice parameter decreaces leading to a shrink of unit cell.
     2. After measuring the conductivity of the gas-sensing device, we find that resistance of La1-xCaxFeO3 (x=0.1,0.2,0.4) in CO is bigger than resistance in air under the same temperature, which illustrates that La1-xCaxFeO3(x=0.1,0.2,0.4) is a kind of P-type semiconductor. La1-xCaxFeO3 (x=0.3) is found a transformation through p-type semiconductor to n-type semiconductor. The turnover temperature is 380℃. It is found that with an increase of x, the device resistance decreases at first then increases. That is because electrical valence compensation and vacancy compensation. Two kinds of mechanism both exist in La1-xCaxFeO3, and combat with each other. When the electrical valence compensation dominates, holes increase and resistance increases. On the other hand, the domination of oxygen vacancy compensation leads just opposite consequence.
     3. La1-xCaxFeO3 (x=0.1,0.2,0.3) have good sensitivity. La1-xCaxFeO3 (x=0.2) reachs the peak of sensitivity at 100 degrees Centigrade. The stability and respond time are detectived. The gas sensing device property parameters are pretty good. Lao.8Cao.2Fe03 could be used as a CO gas sensor in the future.
     4. Clean La7CaFegO24 (010) surface and adorption on it have been investigated at the level of density functional theory based on first-principle calculation. The surface states of LaFeO3 (010) surface appear near Fermi energy level mainly caused by Fe 3d orbital. The surface Fe ions dominate the oxygen adsorption process. The adsorbed O2 on Fe ion is much more stable than that on La and O ions, and the bonding mechanism of adsorbed O2 on surface Fe ions is the strong interaction between O 2p and Fe 3d orbital. In addition, our calculations indicate that O2 dissociation on LaFeO3 surface belongs to chemisorbed-precursor mechanism. The following equilibria show the adsorption process
     5. La7CaFe7CoO24(010)surface and O2 adsorption on La7CaFe7CoO24(010)surface have been studied at the level of density functional theory based on first principles calculation using Dmol3. After doping Co into La7CaFegO24, La7CaFe7CoO24 maintained perovskite phase. In the La7CaFe7CoO24(01 0)surface, surface relaxation was found and surface reconstruction was not. Surface partial density of states suggested Fe and Co atom play an important role in O2 adsorption process.7 modes was built to simulate the different adsorption site of O2. Physisorption, molecular chemisorption and dissociative chemisorption were found in 7 modes. Co adsorption energy was smaller than other 4 kinds of molecular chempisorption. Dissociative chemisorption was found in O-site (O atom in Fe-O-Co) mode (O-O bonds length was 4.0474A.) and dissociative O atoms were both adsorbed on Fe atom. The result shows that Fe atom adsorption ability is stronger than Co in La7CaFe7CoO24(010)surface.
     Above all, perovskite nano-crystalline La1-xCaxFeO3 is studied using calculation and experimental method. The gas-sensing material has good stability and sensitivity. We gain further insight into the gas-sensing mechanism of La1-xCaxFeO3 material. The study foreshadows the seeking for new gas-sensing materials.
引文
[1]朱静等,纳米材料和器件,第一章2003.
    [2]克莱邦德,纳米材料化学,第一章2004.
    [3]G. Ghiotti, S. Morandi, A. Chiorino, F. Prinetto, A. Gervasini, M.C. Carotta, Preparation and characterization of MoOx-SnO2 nano-sized materials for catalytic and gas sensing applications, Studies in Surface Science and Catalysis 155 (2005) 291-309.
    [4]N. N. Toan, S. Saukko, V. Lantto, Gas sensing with semiconducting perovskite oxide LaFeO3, Physica B,327 (2003) 279-282.
    [5]Z. Y. Peng, X. Li, M. Y. Zhao, H. Cai, S. Q. Zhao, G. D. Hu, Fabrication of La1-xSrxFe1-yCoyO3 sensitive ceramics, nanocrystalline thin films and the manufacture of the NCTF-OSFET gas sensing device, Thin Solid Films 286 (1996) 270-273.
    [6]王振军,基于Sn02气体传感器阵列电子鼻系统设计,中国水运(下半月)112009.
    [7]杨建华,侯宏,王磊等.基于集成气体传感器阵列的电子鼻系统[J].传感器技术,8(2003)21-26.
    [8]M. Tomoda, S. Okano, Y. Itagaki, H. Aono, Y. Sadaoka, Air quality prediction by using semi-conducting gas sensor with newly fabricated SmFeO3 film, Sensor and Actuators, B 97 (2004) 190-197.
    [9]A.V. Kadu, S.V. Jagtap, G.N. Chaudhari, Studies on the preparation and ethanol gas sensing properties of spinel Zn0.6Mno.4Fe204 nanomaterials, Current Applied Physics,9 (2009) 1246-1251.
    [10]庄哲民,基于神经网络的气体传感器故障诊断,工业仪表与自动化装置4(2002).
    [11]A Julian W. Gardner, Hyun Woo Shin, Evor L. Hines, An electronic nose system to diagnose illness, Sensors and Actuators B 70 (2000) 19-24.
    [12]Qun Xiang, Guifang Meng, Yuan Zhang, Jiaqiang Xu, Pengcheng Xu, Qingyi Pan, Weijun Yu, Ag nanoparticle embedded-ZnO nanorods synthesized via a photochemical method and its gas-sensing properties Sensors and Actuators B 143 (2010)635-640.
    [13]Jihua Wen, Xiutao Ge, Xingqin Liu,Preparation of spinel-type Cd1-xMgxGa2O4 gas-sensing material by sol-gel method, Sensors and Actuators B 115 (2006) 622-625
    [14]Yang Zhang, Xiuli He, Jianping Li, Zhenjiang Miao, Feng Huang, Fabrication and ethanol-sensing properties of micro gas. sensor based on electrospun SnO2 nanofibers, Sensors and Actuators B 132 (2008) 67-73.
    [15]Hui Dong, Zhaohui Li, Zhengxin Ding, Haibo Pan, Xuxu Wang, Xianzhi Fu, Nanoplates of a-SnWO4 and SnW3O9 prepared via a facile hydrothermal method and their gas-sensing property Sensors and Actuators B 140 (2009) 623-628.
    [16]Jinsoo Park, Xiaoping Shen, Guoxiu Wang, Solvothermal synthesis and gas-sensing performance of CO3O4 hollow nanospheres Sensors and Actuators B 136 (2009) 494-498.
    [17]Aifan Chen, Xiaodong Huang, Zhangfa Tong, Shouli Bai, Ruixian Luo, Chung Chiun Liu, Preparation, characterization and gas-sensing properties of SnO2-In2O3 nanocomposite oxides, Sensors and Actuators B 115 (2006) 316-321.
    [18]Ming Yang, Lihua Huo, Hui Zhao, Shan Gao, Zimei Rong, Electrical properties and acetone-sensing characteristics of LaNi1-xTixO3 perovskite system prepared by amorphous citrate decomposition, Sensors and Actuators B 143 (2009) 111-118.
    [19]Shriram B. Patil, P.P. Patil, Mahendra A. More, Acetone vapour sensing characteristics of cobalt-doped SnO2 thin films, Sensors and Actuators B:Chemical, 125 (2007) 126-130.
    [20]Ma Zhao, Hui Peng, Shaoming Fang, Jifan Hu, Microstructure, electrical and ethanol-sensing properties of perovskite-type SmFeo.7Co0.3O3, Sensors and Actuators B 130(2008)609-613.
    [21]邹志刚,仪表材料,2(1987)91-96.
    [22]P. Brauer, Annal Physics,25 (1936) 609.
    [23]T.Seiyama, etc. Anel. Chem.34 (1962) 1502-1508.
    [24]Dewei Chu, Yu-Ping Zeng, Dongliang Jiang, Yoshitake Masuda, In2O3-SnO2 nano-toasts and nanorods:Precipitation preparation, formation mechanism, and gas sensitive properties, Sensors and Actuators B 137 (2009) 630-636.
    [25]N.Taguchi,特许公报200(1962)37-38.
    [26]P.J. Shaver, Activated tungsten oxide gas detectors, Apply Physics Letter 11 (1967)255-257.
    [27]C. Pijolat, C. Pupier, M. Sauvan, G. Tournier, R. Lalauze, Gas detection for automotive pollution control Sensors and Actuators B 59 (1999) 195-202.
    [28]鲁圣国,刘鸿凌,张良莹,姚熹,CdS,ZnS掺杂纳米复合材料的量子尺寸效应,传感技术学,1995年03期.
    [29]张立德,牟季美,纳米材料与纳米结构,科学出版社,2001.
    [30]徐旸,纳米SnO2/萘酞菁铜及其杂化薄膜的制备与气敏性质研究,黑龙江大学硕士论文2003.
    [31]Ji Haeng Yu, Gyeong Man Choi, Selective CO gas detection of CuO-and ZnO-doped SnO2 gas sensor, Sensors and Actuators B 75 (2001) 56-61.
    [32]In-Sung Hwang, Joong-Ki Choi, Sun-Jung Kim, Ki-Young Dong, Jae-Hong Kwon, Byeong-Kwon Ju, Jong-Heun Lee, Enhanced H2S sensing characteristics of SnO2 nanowires functionalized with CuO, Sensors and Actuators B 142 (2009) 105-110.
    [33]Xiaohua Zhou, Quanxi Cao, Hui Huang, Peng Yang, Ying Hu, Study on sensing mechanism of CuO-SnO2 gas sensors, Materials Science and Engineering B 99 (2003) 44-47.
    [34]Rui Lin, Meng-Fei Luo, Yi-Jun Zhong, Zong-Lan Yan, Guang-Yu Liu, Wei-Ping Liu, Comparative study of CuO/Ce0.7Sn0.3O2, CuO/CeO2 and CuO/SnO2 catalysts for low-temperature CO oxidation, Applied Catalysis A 255 (2003) 331-336.
    [35]Won Jae Moon, Ji Haeng Yu, Gyeong Man Choi, Selective CO gas detection of SnO2-Zn2SnO4 composite gas sensor, Sensors and Actuators B 80 (2001) 21-27.
    [36]Jerome Lalande, Rolande Ollitrault-Fichet, Philippe Boch, Sintering behaviour of CuO-doped SnO2 Journal of the European Ceramic Society 20 (2000) 2415-2420.
    [37]Jeong Duk Choi, Gyeong Man Choi, Electrical and CO gas sensing properties of layered ZnO-CuO sensor, Sensors and Actuators B 69 (2000) 120-126.
    [38]G A. El-Shobaky, G A. Fagal, M. Mokhtar, Effect of ZnO on surface and catalytic properties of CuO/A12O3 system, Applied Catalysis A 155 (1997) 167-178.
    [39]Xiaoming Guo, Dongsen Mao, Guanzhong Lu, Song Wang, Guisheng Wu, Glycine-nitrate combustion synthesis of CuO-ZnO-ZrO2 catalysts for methanol synthesis from CO2 hydrogenation. Journal of Catalysis, In Press,2010.
    [40]Taihei Nitadori, Makoto Misono, Catalytic properties of La1-xA'xFeO3 (A'= Sr,Ce) and La1-xCexCoO3, Journal of Catalysis 93 (1985) 459-466.
    [41]J.F. Hu, C.J. Ji, H.W. Qin, J.Chen, Y. M Hao, Y. X.Li, Enhancement of room temperature magnetoresistance in Lao.65Sr0.35Mn1-xTx03(T=Fe,Ni) magnanites, J. Magn. Magn. Mater 241 (2002) 271-275.
    [42]H.W. Qin, J.F. Hu, C.J. Ji, J.Chen, H. D. Niu, L. M.Zhu, Room temperature magnetoresistance in La0.65Sr0.35Mn1-xAlxO3 magnanites, J. Magn. Magn. Mater 263 (2003)249-252.
    [43]秦宏伟,胡季帆,Ca缺位型稀土金属氧化物La0.65CaxMnO3的进特性分析,稀有金属材料与工程33(2004)193-195.
    [44]Jong Won Yoon, Maria Luisa Grilli, Elisabetta Di Bartolomeo, Riccardo Polini and Enrico Traversa The NO2 response of solid electrolyte sensors made using nano-sized LaFeO3 electrodes, Sensors and Actuators B:Chemical 76 (2001) 483-488.
    [45]J. Mizusaki, M. Yoshihiro, S. Yamauchi, K. Fueki, Nonstoichimetry and defect structure of the perovskite-type oxides La1-xSrxFeO3. d, Journal of Solid State Chemistry 58 (1985) 257-266.
    [46]M.A. Ahmed, R. Seoudi, S.I. El-dek Spectroscopic and structural analysis of Ca substituted La orthoferrite, Journal of Molecular Structure 754 (2005) 41-44.
    [47]Atsushi Ueda, Yusuke Yamada, Masatoshi Katsuki, Tetsu Kiyobayashi, Qiang Xu, Nobuhiro Kuriyama Perovskite catalyst (La, Ba)(Fe, Nb, Pd)O3 applicable to NOX storage and reduction system, Catalysis Communications,11 (2009) 34-37.
    [48]Xing Liu, Bin Cheng, Jifan Hu, Hongwei Qin, Minhua Jiang Semiconducting gas sensor for ethanol based on LaMgxFel-xO3 nanocrystals, Sensors and Actuators B 129(2008)53-58.
    [49]Goldschmidt, V. M. Skr. Nor. Viedenk.-Akad., K1. I:Mater.-Naturvidensk. K1. 1926, No.8.
    [50]康昌鹤,唐省吾等,气、湿敏感器件及其应用,北京科学出版社,1988。
    [51]Tamak i J, Hang Z. Graint size effects in tungsten oxided based sensor for nitrogen oxide, Sensor and Actuators 8 (1994) 2207~2210.
    [52]S.R.Morrison, Selectivity in semiconductor gas sensors, Sensors and Actuators B 12(1987)425-440.
    [53]Y. Ozaki, S. Suzuki, M. Morimitsu, M. Matsunaga, Enhanced long-term stability of SnO2-based CO gas sensors modified by sulfuric acid treatment, Sensors and Actuators B 62 (2000) 220-225.
    [54]J. Cerda Belmonte, J. Manzano, J. Arbiol, A. Cirera, J. Puigcorbe, A. Vila, N. Sabate, I. Gracia, C. Cane, J.R. Morante, Micromachined twin gas sensor for CO and O2 quantification based on catalytically modified nano-SnO2, Sensors and Actuators B 114(2006)881-892.
    [55]Bon Won Koo, Chung Kun Song, Chungkyun Kim, CO gas sensor based on a conducting dendrimer, Sensors and Actuators B 77 (2001) 432-436.
    [56]Alireza Salehi, Dara Jamshidi Kalantari, Characteristics of highly sensitive Au/porous-GaAs Schottky junctions as selective CO and NO gas sensors, Sensors and Actuators B 122 (2007) 69-74.
    [57]Zhifu Liu, Toshinari Yamazaki, Yanbai Shen, Toshio Kikuta, Noriyuki Nakatani, Yongxiang Li, O2 and CO sensing of Ga2O3 multiple nanowire gas sensors, Sensors and Actuators B 129 (2008) 666-670.
    [58]A. Marsal, A. Cornet, J. R. Morante, Study of the CO and humidity interference in La doped tin oxide CO2 gas sensor, Sensors and Actuators B 94 (2003) 324-329.
    [59]B. Bahrami, A. Khodadadi, M. Kazemeiini, Y. Mortazavi, Sensors and Actuators B 133(2008)352-356.
    [60]L. Kong, Y Shen., Gas-sensing property and mechanism of CaxLa1-xFeO3 ceramics, Sensors and Actuators B 30 (1996) 217-221.
    [61]Peng Song, Qi Wang, Zhongxi Yang, The effects of annealing temperature on the CO-sensing property of perovskite La0.8Pb0.2Fe0.8Cu0.2O3 nanoparticles Sensors and Actuators B 141 (2009) 109-115.
    [62]Xing Liu, Bin Cheng, Jifan Hu, Hongwei Qin, Minhua Jiang, Preparation, structure, resistance and methane-gas sensing properties of nominal La1-xMgxFeO3, Sensors and Actuators B 133 (2008) 340-344.
    [63]W. Zhu, O. K. Tan, Q. Yan, J. T. Oh, Microstructure and hydrogen gas sensitivity of amorphous (Ba, Sr)TiO3 thin film sensors, Sensors and Actuators B 65 (2000) 366-370.
    [64]Yoshiteru Itagaki, Masami Mori, Yuuki Hosoya, Hiromichi Aono, Yoshihiko Sadaoka, O3 and NO2 sensing properties of SmFe1-xCoxO3 perovskite oxides Sensors and Actuators B 122 (2007) 315-320.
    [65]C. M. Chiu, Y. H. Chang, The influence of microstructure and deposition methods on CO gas sensing properties of La0.8Sr0.2Co1-xNix03-δ perovskite films Sensors and Actuators B 54 (1999) 236-242.
    [66]G.N. Chaudhari, S.V. Jagtap, N.N. Gedam, M.J. Pawar, V.S. Sangawar Sol-gel synthesized semiconducting LaCo0.8Fe0.2O3-based powder for thick film NH3 gas sensor, Talanta,78 (2009) 1136-1140.
    [67]Maria Cristina Carotta, Maria Angela Butturi, Giuliano Martinelli, Yoshihiko Sadaoka, Patrizia Nunziante, Enrico Traversa, Microstructural evolution of nanosized LaFeO3 powders from the thermal decomposition of a cyano-complex for thick film gas sensors, Sensors and Actuators B 44 (1997) 590-594.
    [68]Ling-bing Kong, Yu-sheng Shen, Gas-sensing property and mechanism of CaxLa1-xFeO3 ceramics, Sensors and Actuators B 30 (1996) 217-221.
    [69]Peng Song, Hongwei Qin, Ling Zhang, Kang An, Zhaojun Lin, Jifan Hu, Minhua Jiang, The structure, electrical and ethanol-sensing properties of La1-xPbxFeO3 perovskite ceramics with x≤ 0.3, Sensors and Actuators B 104 (2005) 312-316.
    [70]Xing Liu, Bin Cheng, Hongwei Qin, Peng Song, Shanxing Huang, Rui Zhang, Jifan Hu, Minhua Jiang, Preparation, electrical and gas-sensing properties of perovskite-type La1-xMgxFeO3 semiconductor materials, Journal of Physics and Chemistry of Solids 68 (2007) 511-515.
    [71]Xing Liu, Bin Cheng, Jifan Hu, Hongwei Qin, Minhua Jiang, Semiconducting gas sensor for ethanol based on LaMgxFe1-xO3nanocrystals, Sensors and Actuators B 129(2008)53-58.
    [1]Shiyong Zhao, Peihai Wei, Shenhao Chen, Enhancement of trimethylamine sensitivity of MOCVD-SnO2 thin film gas sensor by thorium, Sensors and Actuators B 62 (2000) 117-120.
    [2]Sang Woo Lee, Ping Ping Tsai, Haydn Chen, Comparison study of SnO2 thin-and thick-film gas sensors, Sensors and Actuators B 67 (2000) 122-127.
    [3]Takeo Hyodo, Tomonori Mori, Akihiko Kawahara, Hiroaki Katsuki, Yasuhiro Shimizu, Makoto Egashira, Gas sensing properties of semiconductor heterolayer sensors fabricated by slide-off transfer printing, Sensors and Actuators B 77 (2001) 41-47.
    [4]何可群,刘艳丽,沈国励,俞汝勤,室温固相化学反应法合成CdSnO3纳米粉及其铂、钯掺杂物气敏特性研究,传感技术学报17(2004)273-276.
    [5]Liangrong Li,Wenzhong Wang, Synthesis and characterization of monoclinic ZrO2 nanorods by a novel and simple precursor thermal decomposition approach, Solid State Communication 127 (2003) 639-643.
    [6]Congkang Xu,Xiaolin Zhao,Sheng Liu,Guanghou Wang, Large-scale synthesis of rutile SnO2 nanorods, Solid State Communication 125 (2003) 301-304.
    [7]Yue Li, Yanqun Guo, Ruiqin Tan, Ping Cui, Yong Li, Weijie Song, Synthesis of SnO2 nano-sheets by a template-free hydrothermal method, Materials Letters 63 (2009) 2085-2088.
    [8]王中长,刘天模,余龙,利佳,李家鸣,高纯纳米ZnSn03气敏材料的制备及气敏性能,硅酸盐学报,32(2004)1555-1559.
    [9]J. R. Huang, Z. X. Xiong, C. Fang, B. L. Feng, Hydrothermal synthesis of Ba2Ti9O20 nano-powder for microwave ceramics, Materials Science and Engineering B 99 (2003) 226-229.
    [10]Jihua Wen, Xiutao Ge, Xingqin Liu, Preparation of spinel-type Cd1-xMgxGa2O4 gas-sensing material by sol-gel method, Sensors and Actuators B 115 (2006) 622-625.
    [11]牛新书,杜卫民,杜卫平,蒋凯,纳米晶HoFeO3的合成及其气敏性能研究,化学物理学报,17(2004)80-82.
    [12]K. Galatsis, Y. X. Li, W. Wlodarski, K. Kalantar-zadeh, Sol-gel prepared MoO3-WO3 thin-films for O2 gas sensing, Sensors and Actuators B 77 (2001) 478-483.
    [13]Cornel Cobianu, Cristian Savaniu, Pietro Siciliano, Simonetta Capone, Mikko Utriainen, Lauri Niinisto, SnO2 sol-gel derived thin films for integrated gas sensors, Sensors and Actuators B 77 (2001) 496-502.
    [14]Yongxiang Li, Wojtek Wlodarski, Kosmas Galatsis, Sayed Hassib Moslih, Jared Cole, Salvy Russo, Natasha Rockelmann, Gas sensing properties of p-type semiconducting Cr-doped TiO2 thin films, Sensors and Actuators B 83 (2002) 160-163.
    [15]Xinshu Niu, Haoxiang Zhong, Xinjun Wang, Kai Jiang, Sensing properties of rare earth oxide doped In2O3 by a sol-gel method, Sensors and Actuators B 115 (2006) 434-438.
    [16]丁子上,溶胶-凝胶技术制备材料的进展,硅酸盐学报,21(1993)443-446.
    [17]徐莉,刘琴,祁欣,周志萍,溶胶-凝胶技术制备纳米材料的研究进展,南京林业大学学报(自然科学版)2002第26卷第4期
    [18]张立德,牟季美,纳米材料和纳米结构,科学出版社,2001.
    [1]Liwei Deng, Zizheng Gong, Yingwei Fei, Direct shock wave loading of perovskite to lower mantle conditions and its equation of state, Physics of the Earth and Planetary Interiors, Volume 170, Issues 3-4, November 2008, Pages 210-214.
    [2]Masaki Akaogi, Akira Tanaka, Eiji Ito, Garnet-ilmenite—perovskite transitions in the system Mg4Si4O12-Mg3Al2Si3O12 at high pressures and high temperatures:phase equilibria, calorimetry and implications for mantle structure, Physics of The Earth and Planetary Interiors 132 (2002) 303-324.
    [3]Zongping Shao, Guoxing Xiong, You Cong, Weishen Yang, Synthesis and oxygen permeation study of novel perovskite-type BaBixCoo.2Feo.8-x03-δ ceramic membranes, Journal of Membrane Science 164 (2000) 167-176.
    [4]Dam T. V. Anh, W. Olthuis, P. Bergveld, Sensing properties of perovskite oxide La0.5Sr0.5CoO3-δobtained by using pulsed laser deposition, Sensors and Actuators B 103(2004)165-168.
    [5]E. L. Brosha, R. Mukundan, D. R. Brown, F. H. Garzon, J. H. Visser, M. Zanini, Z. Zhou, E. M. Logothetis, CO/HC sensors based on thin films of LaCo3-δ and Lao.8Sro.2CoO3-δ metal oxides, Sens. Actuators B.69 (2000),171-182.
    [6]H. J. Hwang, M. Awano, Preparation of LaCoO3 catalytic thin film by the sol-gel process and its NO decomposition characteristics, J. Eur. Ceram. Soc.21 (2001), 2103-2107.
    [7]Emilio Delgado, Carlos R. Michel, CO2 and O2 sensing behavior of nanostructured barium-doped SmCoO3, Mater. Lett.60 (2006),1613-1616.
    [8]Julia Martynczuk, Mirko Arnold, Armin Feldhoff, Influence of grain size on the oxygen permeation performance of perovskite-type (Bao.5Sro.5)(Feo.8Zn0.2)03-δ membranes, Journal of Membrane Science 322 (2008) 375-382.
    [9]N. N. Toan, S. Saukko, V. Lantto, Gas sensing with semiconducting perovskite oxide LaFeO3, Physica B 327 (2003) 279-282.
    [10]Chu Xiangfeng, Pietro Siciliano, CH3SH-sensing characteristics of LaFeO3 thick-film prepared by co-precipitation method, Sensors and Actuators B 94 (2003) 197-200.
    [11]Gina Pecchi, Patricio Reyes, Raul Zamora, Claudia Campos, Luis E. Cadus, Bibiana P. Barbero, Effect of the preparation method on the catalytic activity of La1-xCaxFeO3 perovskite-type oxides, Catalysis Today 133-135 (2008) 420-427.
    [12]Youichi Shimizu and Nami Yamashita, Solid electrolyte CO2 sensor using NASICON and perovskite-type oxide electrode, Sensors and Actuators B 64 (2000) 102-106.
    [13]S.Roy Morrison, Selectivity in semiconductor gas sensors, Sensors and Actuators 12 (1987) 425-440.
    [14]Ling Zhang, Jifan Hu, Peng Song, Hongwei Qin, Minhua Jiang, Electrical properties and ethanol-sensing characteristics of perovskite La1-xPbxFe03, Sensors and Actuators B 114 (2006) 836-840.
    [15]L. kong, Y. Shen., Gas-sensing property and mechanism of CaxLa1-xFeO3 ceramics, Sens. Actuators B.30 (1996),217-221.
    [16]S.Roy Morrison, Measurement of surface state energy levels of one-equivalent absorbates on ZnO, Surface Science,27 (1971) 586-604.
    [17]Xing Liu, Bin Cheng, Hongwei Qin, Peng Song, Shanxing Huang, Rui Zhang, Jifan Hu, Minhua Jiang, Preparation, electrical and gas-sensing properties of perovskite-type, La1-xMgxFeO3 semiconductor materials, Journal of Physics and Chemistry of Solids 68 (2007) 511-515.
    [18]Peng Song, Jifan Hu, Hongwei Qin, Ling Zhang, Kang An, Preparation and ethanol sensitivity of nanocrystalline La0.7Pb0.3FeO3-based gas sensor Materials Letters 58 (2004) 2610-2613.
    [19]Ling Zhang, Jifan Hu, Peng Song, Hongwei Qin, Kang An, Xingdong Wang, Minhua Jiang, CO-sensing properties of perovskite Lao.68Pbo.32FeO3 nano-materials, Sensors and Actuators B 119 (2006) 315-318.
    [20]Y. Ozaki, S. Suzuki, M. Morimitsu, M. Matsunaga, Enhanced long-term stability of SnO2-based CO gas sensors modified by sulfuric acid treatment. Sensors and Actuators B 62 (2000) 220-225.
    [21]J. Cerda Belmonte, J. Manzano, J. Arbiol, A. Cirera, J. Puigcorbe, A. Vila, N. Sabate, I. Gracia, C. Cane, J.R. Morante, Micromachined twin gas sensor for CO and O2 quantification based on catalytically modified nano-SnO2, Sensors and Actuators B 114(2006)881-892.
    [22]Zhifu Liu, Toshinari Yamazaki, Yanbai Shen, Toshio Kikuta, Noriyuki Nakatani, Yongxiang Li, O2 and CO sensing of Ga2O3 multiple nanowire gas sensors, Sensors and Actuators B 129 (2008) 666-670.
    [23]H. Gong, J.Q. Hu, J.H. Wang, C.H. Ong, F.R. Zhu, Nano-crystalline Cu-doped ZnO thin film gas sensor for CO, Sensors and Actuators B 115 (2006) 247-251.
    [24]P. Menini, F. Parret, M. Guerrero, K. Soulantica, L. Erades, A. Maisonnat, B. Chaudret, CO response of a nanostructured SnO2 gas sensor doped with palladium and platinum, Sensors and Actuators B 103 (2004) 111-114.
    [25]Changlun Chen, Jianbo He, Di Xu, Xiaoli Tan, Xiang Zhou, Xiangke Wang, Study of nano-Au-assembled amperometric CO gas sensor, Sensors and Actuators B: Chemical, Volume 107, Issue 2,29 June 2005, Pages 866-871.
    [26]J. F. Chang, H. H. Kuo, I. C. Leu, M. H. Hon, The effects of thickness and operation temperature on ZnO:Al thin film CO gas sensor, Sensors and Actuators B 84 (2002) 258-264.
    [27]M. J. Akhtar, Z. N. Akhtar, J. P. Dragun, C. R. A. Catlow, Electrical conductivity and extended X-ray absorption fine structure studies of SrFel-xNbxO3 and BaFe1-xNbxO3 systems, Solid State Ionics 104 (1997) 147-158.
    [1]Kohn W, Nobel Lecture:Electronic structure of maaer-wave functions and density Functionals, Rev. Mod. Phys.71 (1999) 1253-1266.
    [2]C.M. Ceperley, B.J. Alder, Ground State of the Electron Gas by a Stochastic Method, Phys. Rev. Lett.45 (1980) 566-569.
    [3]J.P. Perdew, A. Zunger, Self-interaction correction to density-functional approximations for many-electron systems, Phys. Rev. B 23 (1981) 5048-5079.
    [4]Siater J C, Koster G F. Phys. Rev.94 (1954) 1498-1524.
    [5]Herring C, Hill A G Phys. Rev.58(1940) 132-162.
    [6]Ihm J, Zunger A, Cohen M L, J. Phys. C,12 (1979) 4409-4422.
    [7]Payne M C,Jeter M P, Ahan D C, Rev. Mod. Phys.64 (1992) 1045-1097.
    [8]KohnW,RostokerN. Phys. Rev.91 (1954) 1111-1120.
    [9]Anderson O K, Phys. Rev. B 12 (1975) 3060-3083.
    [10]Segall, M. D., Lindan, P. J. D., Probert, M. J., Pickard, C. J., Hasnip, P. J., Clark, S. J., Payne, M. C. First-principles simulation:ideas, illustrations and the CASTEP code, J. Phys. Condens. Matter 14 (2002) 2717-2744.
    [11]马淑红,S原子和CO分子在过渡金属表面吸附的第一性原理研究,电子科技大学博士学位论文2009.
    [12]J. Oviedo, M.J. Gillan, First-principles study of the interaction of oxygen with the SnO2 (110) surface, Surface Science 490 (2001) 221-236.
    [13]Soon-Kil Joung, Takahashi Amemiya, Masayuki Murabayashi, R. Cai, Kiminori Itoh, Chemical adsorption of phosgene on TiO2 and its effect on the photocatalytic oxidation of trichloroethylene, Surface Science 598 (2005) 174-184.
    [14]N. Akuzawa, T. Sakamoto, H. Fujimoto, T. Kasuu, Y. Takahashi, Hydrogen physisorption by potassium-graphite intercalation compounds prepared from mesocarbon microbeads. Synthetic Metals 73 (1995) 41-44.
    [15]Sergio R. Calvo, Perla B. Balbuena, Density functional theory analysis of reactivity of PtxPdy alloy clusters, Surface Science 601 (2007) 165-171.
    [16]K.C. Prince, G. Paolucci, A.M. Bradshaw, Oxygen adsorption on silver (110): dispersion, bonding and precursor state, Surf. Sci.175 (1986) 101—122.
    [17]R.J. Guest, B. Hernnas, P. Bennich, O. Bjorneholm, A. Nilsson, R.E. Palmer, N.Martensson, Orientation of a molecular precursor:a NEXAFS study of 2/Ag(110), Surf. Sci.278 (1992) 239-245.
    [18]L. Vattunone, M.Rocca, U. Valbusa, Anharmonic shift in the stretching frequency of O2 chemisorbed on Ag (110), Surf. Sci.314 (1994) 904-908.
    [19]Alexander Gurlo, Interplay between O2 and SnO2:Oxygen Ionosorption and Spectroscopic Evidence for Adsorbed Oxygen, J. Chem. Phys. Chem.7 (2006) 2041-2052
    [20]Alexander Gurlo and Ralf Riedel, In Situ and Operando Spectroscopy for Assessing Mechanisms of Gas Sensing Angew. Chem. Int. Ed.46 (2007) 3826-3848.
    [21]Ling Zhang, Jifan Hu, Peng Song, Hongwei Qin and Minhua Jiang, Electric properties and acetone-sensing characteristics of La1-xPbxFeO3 perovskite system, Sens. Actuators B.114(2006),836-840.
    [22]X. Liu, J. Hu, B. Cheng, H. Qin, M. Jiang, Acetone gas sensing properties of SmFe1-xMgxO3 perovskite oxides, Sens. Actuators, B, Chem 134 (2008) 483-487.
    [23]K. Li, D. Wang, F. Wu, T. Xie, T. Li, Studies on photoelectric gas-sensitive characters of nanocrystalline LaFeO3. Mater. Chem. Phys.60 (1999) 226-230.
    [24]X. Liu, B. Cheng, H. Qin, P. Song, S.Huang, R. Zhang, J. Hu, M. Jiang, Preparation, electrical and gas-sensing properties of perovskite-type La1-xMgxFeO3 semiconductor materials, J. Phys. Chem. Solids 68 (2007) 511-515.
    [25]X. Liu, B. Cheng, J. Hu, H.Qin, M. Jiang, Semiconducting gas sensor for ethanol based on LaMgxFe1-xO3 nanocrystals, Sens. Actuators, B, Chem 129 (2008) 53-58.
    [26]Zuoyan Peng, Xi Li, Muyu Zhao, Hong Cai, Shanqi Zhao, Guangda Hu, Baokun Xu, Fabrication of La1-xSrxFe1-yCoyO3 sensitive ceramics, nanocrystalline thin films and the manufacture of the NCTF-OSFET gas sensing device, Thin Solid Films,286 (1996) 270-273
    [27]Peng Song, Hongwei Qin, Shanxing Huang, Xing Liu, Rui Zhang, Jifan Hu, Minhua Jiang, Characteristics and sensing properties of La0.8Pb0.2Fel-xNixO3 system for CO gas sensors, Materials Science and Engineering B 138 (2007) 193-197.
    [28]Peng Song, Jifan Hu, Hongwei Qin, Ling Zhang, Kang An, Preparation and ethanol sensitivity of nanocrystalline La0.7Pb0.3FeO3-based gas sensor Materials Letters 58 (2004) 2610-2613.
    [29]Peng Song, Hongwei Qin, Ling Zhang, Kang An, Zhaojun Lin, Jifan Hu, Minhua Jiang, The structure, electrical and ethanol-sensing properties of Lal-xPbxFeO3 perovskite ceramics with x≤ 0.3, Sensors and Actuators B 104 (2005) 312-316.
    [30]Peng Song, Hongwei Qin, Ling Zhang, Xing Liu, Shanxing Huang,Jifan Hu, Minhua Jiang Electrical and CO gas-sensing properties of perovskite-type La0.8Pb0.2Fe0.8Co0.203 semiconductive materials, Physica B 368 (2005) 204-208
    [31]Ling Zhang, Jifan Hu, Peng Song, Hongwei Qin, Minhua Jiang, Electrical properties and ethanol-sensing characteristics of perovskite Lal-xPbxFeO3, Sensors and Actuators B 114 (2006) 836-840.
    [32]Peng Song, Jifan Hu, Hongwei Qin, Ling Zhang, Kang An, Preparation and ethanol sensitivity of nanocrystalline La0.7Pb0.3FeO3-based gas sensor, Materials Letters 58 (2004) 2610-2613.
    [33]H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B 13(1976)5188-5192.
    [34]M.J. Madou, S.R. Morrison, Chemical Sensing with Solid State Devices, Academic Press, Boston MA,1989, Chapters 1-3, p.5.
    [35]Bibiana P. Barbero, Julio Andrade Gamboa, Luis E. Cadus, Synthesis and characterisation of La1-xCaxFeO3 perovskite-type oxide catalysts for total oxidation of volatile organic compounds, Applied Catalysis B:Environmental 65 (2006)21-30.
    [36]M.A. Pena, J.L.G. Fierro, Chemical structures and performance of perovskite oxides, Chem. Rev.101 (2001) 1981-2017.
    [37]A. Izanlou, M.K. Aydinol, An ab initio study of dissociative adsorption of H2 on FeTi surfaces, International Journal of Hydrogen Energy,35 (2010) 1681-1692.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700