辐照激发粉煤灰活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
粉煤灰是燃煤电厂排放的一种可再利用固体粉状废弃物,其作为混凝土掺合料能改善混凝土的很多性能,但因其活性低而限制了再利用率,目前有关粉煤灰活性激发的研究已有很多,但均存在不足。而粉煤灰玻璃体为非对称结构,其活性成分和基本体系成分都是极性物质,均具有吸收辐照能量的特性,因此,本文将微波和γ射线两种常用的辐照技术应用于粉煤灰活性激发,并提出了一种粉煤灰活性硅铝快速测定的制样方法。
     变动微波功率和时间两个参数,对粉煤灰活性进行激发,确定最佳激发参数,在激发剂条件下用最佳参数微波对粉煤灰活性进行激发,得出激发剂条件下微波对粉煤灰活性的影响规律。⑴微波能够提高粉煤灰活性,最佳激发参数为350W微波功率处理10min。⑵微波激发对粉煤灰活性率提高明显,三种粉煤灰的活性率分别提高了9.02%、5.28%和3.03%。⑶微波对粉煤灰砂浆的早期强度提高明显,7d和28d的强度分别提高了55.34%和15.08%,接近于纯水泥试样的强度。⑷激发剂条件下微波对粉煤灰的活性有一定的激发效果,早期激发效果最好的是掺NaCl激发剂组。
     调节γ射线辐照剂量和时间两个参数,对粉煤灰活性激发进行初步探索。γ射线对粉煤灰-石灰体系活性的激发效果并不明显,但对粉煤灰-石灰-激发剂体系活性的激发效果非常明显,其中激发效果最好的是掺硫酸钠的体系,13d、23d、37d龄期的强度分别能提高326.99%、253.80%、220.15%。γ射线对粉煤灰体系的早期活性激发效果比后期要好,辐照剂量可控制在100KGRe以内。
     微波加热具有转换效率高、针对性强等优点,将其用于粉煤灰活性硅铝快速测定制样,解决了活性率法采用传统加热方法制样加热时间长、转换效率低、能量损耗大等不足。微波制样方法的最佳参数为210W微波功率处理15min。两种制样方法所测得的粉煤灰活性硅铝的结果相当,误差在试验允许范围内,微波制样快速测定方法可用于粉煤灰活性硅铝的快速测定。
Fly ash is a kind of solid powdery waste, which can be used to improve the properties of concrete as addition. However, the secondary utilization of fly ash is restricted by its low activity. The structure of glass phase is asymmetrical, and the active component and basic system of the ash are polar substance. All of the above can absorb irradiance energy. Therefore, we use microwave andγ-ray to activation the activity of fly ash. What is more, a new sample preparation method was introduced to rapidly determine the content of active SiO_2 and Al_2O_3 in fly ash.
     Research determined the optimal exited parameter with variation of microwave power and time to stimulate fly ash. And the influence law microwave to fly ash was concluded through adding activator and stimulating fly ash with the optimal parameter. The results are described as follows: (1)The activity of fly ash can be improved by microwave, with optimal parameter microwave power and time respectively 350W and 10min. (2)The activation effect to the activity rate of fly ash is obvious by the use of microwave, and the activity rate of three kinds of fly ash have been respectively increased by 9.02%, 5.28% and 3.03%. (3)The compressive strength of fly ash mortar at early age is improved visibly, with strength of 7d and 28d increased by 55.34% and 15.08%, close to that of pure cement specimen. (4)The activation effect to fly ash stimulated by activator is not very good, but the activator of NaCl has some effect to the compressive strength of fly ash at early age.
     Preliminary research has been done to probe the fly ash activity through adjusting the parameter of irradiation dose and time. The activation effect is not very evident ofγ-ray to fly ash-lime system while it is obvious to fly ash-lime-activator system, especially the system mixed with Na2SO4, compressive strength of 13d, 23d and 37d increased by 326.99%, 253.80% and 220.15%. The activation effect ofγ-ray is better to fly ash at early age, with the irradiance dose controlled no more then 100KGRe.
     Heating with microwave has higher conversion efficiency and better direction then traditional heating method, which can be used in sample preparation to assess the content of active SiO_2 and Al_2O_3 rapidly. Results indicated that the optimal parameters of microwave power and time are 210W, 15min. Research also showed that the content of active SiO_2 and Al_2O_3 in fly ash assessed by two methods is almost equivalent, hence the microwave sample preparation can be used to rapidly evaluate content of active SiO_2 and Al_2O_3 existed in fly ash.
引文
[1]钱觉时.粉煤灰特性与粉煤灰混凝土[M].北京:科学出版社,2002.
    [2]中国国家标准GB/T-94.电厂粉煤灰渣排放与综合利用技术通则[s].1994.
    [3]黄世鲜.粉煤灰再生资源综合利用浅谈[J].资源.产业,2005,7(3):65-68.
    [4]王鹏飞.粉煤灰综合利用研究进展[J].电力环境保护,2006,22(2):42-44.
    [5]韩桂泉,李京伟,杜博等.粉煤灰的综合利用现状与展望[J].中国资源综合利用,2006,8:25-27.
    [6]董文辰,康德君,王立久.粉煤灰混凝土中粉煤灰的火山灰效应综述[J].国外建材科技,2004,25(3):35-38.
    [7] Aiqin Wang, Chengzhi Zhang,Wei Sun. Fly ash effectsⅡ.The active effect of fly ash[J]. Cement and Concrete Research, 2004, 34: 2057-2060.
    [8]柯国军,杨晓峰,彭红等.化学激发粉煤灰活性机理进展[J].煤炭学报,2005,30(3):366-370.
    [9]李国栋.粉煤灰的结构、形态与活性特征[J].粉煤灰综合利用,1998(3):35-38.
    [10]钱觉时,王智,吴传明.粉煤灰的矿物组成(上)[J].粉煤灰综合利用,2001(1):26-31.
    [11]钱觉时,王智,吴传明.粉煤灰的矿物组成(下)[J].粉煤灰综合利用,2001(2):37-41.
    [12]钱觉时,王智,张玉其.粉煤灰的矿物组成(中)[J].粉煤灰综合利用,2001(4):24-28.
    [13] Aiqin Wang, Chengzhi Zhang, Wei Sun. Fly ash effectsⅢ. The microaggregate effect of fly ash[J]. Cement and Concrete Research, 2004, 34:2061-2066.
    [14]高天星.粉煤灰的综合利用[J].南昌职业技术师范学院学报,2001,6:6-7.
    [15]钱觉时,施惠生.粉煤灰的分选技术[J].粉煤灰综合利用,2004,2:30-33.
    [16]颜承越,苏学贤,赵毓周.粉煤灰品质优化与激活技术及应用[J].粉煤灰综合利用,2002,3:31-35.
    [17] J.Paya, J.Monzo, M.V.Borrachero, E. Peris and E, Gonzalez-Lopez. Mechanical treatments of fly ash. PartⅢ:Studies on strength development of ground fly ashes(GFA)-Cement mortars[J]. Cement and Concrete Research, 1997, 27(9):1365-1377.
    [18] F.Blanco, M.P.Garcia, J.Ayala. Variation in fly ash properties with milling and acid leaching[J]. Fuel, 2005, 84: 89-96
    [19] A.Femandez-Jimenez A, Palomo A. Characterization of fly ash[J]. Potential reactivity as alkaline cements, Fuel, 2003, 82: 2259-2265.
    [20]杨南如.机械力化学过程及效应(Ⅰ)—机械力化学效应[J].建筑材料学报,2000,3(1):19-26.
    [21]黄明福,张文军,王洪媛.超细粉碎设备的研究进展[J].辽宁工程技术大学学报,2002,21(4):528-530
    [22]杨南如.机械力化学过程及效应(Ⅱ)—机械力化学过程及应用[J].建筑材料学报,2000,3(2):93-97.
    [23] J.Paya, J.Monzo, M.V.Borrachero, E.Peris-Mora. Mechanical treatments of fly ash. PartⅠ:Physico-chemical characterization of ground fly ashes[J]. Cement and Concrete Research. 1995, 25(7):1469-1479.
    [24]孟宏睿,陈丽红,张科强.超声细化粉煤灰性能试验研究[J].工业建筑,2004,34(3):52-53.
    [25]杨林峰,翟建平,郑波等.酸改性粉煤灰去除污水中磷的实验研究[J].粉煤灰综合利用,2006,3:18-20.
    [26]于继寿,李仁福,隋成飞等.酸碱激活粉煤灰的研究[J].粉煤灰综合利用,2000(2):26-27.
    [27]吴林丽,姚广春,刘宜汉等.粉煤灰颗粒HF酸表面改性处理[J].有色矿冶,2004,20(5):37-40.
    [28]方军良,陆文雄,徐彩宣.粉煤灰的活性激发技术及其机理研究进展[J].上海大学学报(自然科学版),2002,8(3):255-260.
    [29] Aiqin Wang, Chengzhi Zhang, Wei Sun. Fly ash effectsⅡ.The active effect of fly ash[J]. Cement and Concrete Research, 2004,34:2057-2060.
    [30]程麟,李东旭,潘志华.粉煤灰活化机制的研究[J].水泥技术, 2005,5:11-15.
    [31] Takeshi Yamamoto, Tsutomu Kanazu, Masateru Nambu, etc. Pozzolanic reactivity of fly ash―API method and K―value[J]. Fuel,2006,85:2345-2351.
    [32]宋远明,钱觉时,王智.燃煤灰渣火山灰反应活性[J].硅酸盐学报,2006,34(8):962-965.
    [33]宋远明,钱觉时,王智,汪宏涛.固硫灰渣的微观结构与火山灰反应特性[J].硅酸盐学报,2006,34(12):1542-1546.
    [34]宋远明,钱觉时,王智.燃煤灰渣火山灰反应活性[J].硅酸盐学报,2006,34(8):962-965.
    [35]宋远明,钱觉时,王智.燃煤灰渣活性差异及来源研究[J].粉煤灰综合利用,2006,6:16-18.
    [36] F. Blanco, M.P. Garcia, J. Ayala, G. Mayoral, M.A. Garcia. The effect of mechanically and chemically activated fly ashes on mortar properties[J]. Department of Materials Science, 2005,76:2432-2436.
    [37]王智,钱觉时,卢浩.石灰对粉煤灰活性激发作用的研究进展[J].粉煤灰综合利用,1999(1):27-30.
    [38]杨南如.C-S-H凝胶及其研究方法[J].硅酸盐学报,2003,2:46-52.
    [39] Douglas E, Brandseter J. Preliminary study on the alkali activation of ground granulated blast-furnace slag [J]. Cement and Concrete Research, 1990, 20(5):746-756.
    [40] Shi C, Day R L. Early strength development and hydration of alkali-activated blast furnace slag/fly ash blends [J]. Advances in Cement Research, 1999, 11(4):189-196.
    [41]黄少文,俞平胜.粉煤灰活化技术及其在水泥材料中的应用研究[J].南昌大学学报(工科版),2001,23(2):91-96.
    [42]李纪青,秘洁芳.劣质粉煤灰的改性激活及高强度粉煤灰砌块的研究[J].粉煤灰综合利用,2000(2):1-5.
    [43] Fraay A, Bijen J M, Vugelaar P. Cement-stabilized fly ash base courses [J]. Cement and Concrete Research, 1990, 12(4):279-291.
    [44] Shi Caijun, Dag Robert L. Acceleration of the reactive of fly ash by chemical activation [J]. Cement and Concrete Research, 1995, 25(1):15-21.
    [45] Huang Shiyuan. Hydration of fly ash cement and microstructure of fly ash cement pastes [J]. CB I Research, 1981(2):81-87.
    [46] Huang Shiyuan. Hydration of lime-fly ash pastes at high temperature [J]. CB I Research, 1979(10):79-83.
    [47] Feldman R F, Carette G G, Malhotra V M. Studies on mechanism of development of physical and mechanical properties of high-volume fly ash-cement pastes [J]. Cement and Concrete Composites, 1990, 12(4):245-251.
    [48]李国栋.结构因素对粉煤灰活性激发的影响[J].粉煤灰综合利用,1998 (4):3-6.
    [49]钟白茜,张少明.粉煤灰的活性和激发措施[J].粉煤灰综合利用, 1995(4):34-37.
    [50]龙世宗,乌燕蓉等.粉煤灰表面或化处理新技术[J].粉煤灰综合利用,1999(3):81-83.
    [51]王福元,吴正严.粉煤灰利用手册[M].北京:中国电力工业出版社,1997.
    [52] Shi C, Day R L. Chemical activation of blended cements made with lime and natural pozzolans [J]. Cement and Concrete Research, 1993, 23(6):1389-1396.
    [53]郭之虞,王宇钢.核技术及其应用的发展[J].北京大学学报(自然科学版)增刊:北大物理90周年专辑.
    [54]向长金等.核辐照技术在宝石学中的应用[J].宝石和宝石学,2001,3(2):6-9.
    [55]李丽华,翟玉春,张金生等.微波技术在催化领域中应用的研究进展[J].材料与冶金报,2005,4(1):40-47.
    [56] Suvorov D, Freer R. Microwave Materials and their applications 2000[J]. European Ceramic Society, 2001, 21(15):1445-1448.
    [57] Shizong Long, Jianmiao Dong, Caixia Yan. Microwave promoted clinkering of sulfoaluminate cement [J]. Cement and Concrete Research, 2002(32):1653-1656.
    [58] Donggy Sohn, D. Lynn Johnson. Microwave curing effects on the 28-day strength of cementations materials [J]. Cement and Concrete Research, 1999(29):241-247.
    [59] Haoxuan Li, Dinesh K. Agrewal, Jiping Cheng, Michael R. Silsbee. Microwave sintering of sulphoaluminate cement with utility wastes [J]. Cement and Concrete Research, 2001(31):1257-1261.
    [60] Qian Jueshi, Shi Caijun, Wang Zhi. ACTIVATION OF BLENDED CEMENTS CONTAININGFLY ASH [J]. C. C. R, 2001, 31(8):2336-2339.
    [61]蔡青,杜懋陆,肖学峰.微波在陶瓷加工中的应用[J].西南民族大学学报,2006,32(6):1236-1237.
    [62] Vincenzo Palma, Paola Russo, Giuseppa Matarazzo, etc. Microwave improvement of catalyst performance in soot oxidation without additives[J]. Applied Catalysis B: Environmental, 2007,70(4):254-260.
    [63] M. Susana Cortizo, Sergio Laurella, Jose Luis Alessandrini. Microwave―assisted radical polymerization of dialkyl fumarates[J]. Radiation Physics and Chemistry, 2007,1(4):1-7.
    [64] Jine Wang, Zhenxin Wang. Rapid synthesis of hexagon―shaped gold nanoplates by microwave assistant method[N]. Materials Letters,2007,1(4):28-32.
    [65]赵志曼,何天淳,程赫明等.微波辐照激发煤矸石活性机理研究[J].矿冶工程,2002,22(3):54-56.
    [66]廉慧珍,张志龄,王英华.火山灰质材料活性的快速评定方法[J].建筑材料报,2001,4(3):290-304.
    [67] GB/T 176―1996,水泥化学分析方法[S].
    [68]陈集,饶小桐.仪器分析[M].重庆:重庆大学出版社,2002.
    [69]朱明华编.仪器分析(第三版)[M].北京:高等教育出版社.2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700