镁合金(AZ60)Ca-P涂层的生物相容性初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     以镁为基质的生物材料近几年以来一直是生物材料研究领域极为活跃的内容。以不锈钢及钛合金为主的传统生物材料对现代骨科内固定植入材料的发展发挥了极大的作用。但传统骨科植入材料植入体内后产生应力遮挡阻碍骨折愈合;骨折愈合后需二次手术取出;材料取出后易发生再骨折等问题促使人们寻找可能的替代品。以镁为基质的生物材料由于具有良好的金属特性、力学性能及可降解性成为现在研究的热点,并极有可能成为新的骨科植入材料。
     镁基质材料耐腐蚀性低,腐蚀过程中会有大量的H2产生,这些都限制了镁基质材料作为生物材料的应用。如何在提高以镁基质材料的耐腐蚀性的同时又能保证镁基质材料的生物力学特性和生物相容性,这是现阶段研究的热点。其主要研究内容有:(1)镁与其他一种或多种金属形成合金。常见的金属元素有锰、锌、铝、钙和稀土元素等。合成后的镁合金材料抗腐蚀性能较纯镁材料有了很大的提高,但作为生物可植入材料,其生物相容性表现并不理想。(2)另一种常用方法为在镁合金材料表面进行表面改性、增加表面涂层或表面保护膜。Ca和P都是骨基质的主要组成成分,研究结果显示Ca-P涂层具有良好的生物相容性,并有很好的骨传导性和诱骨活性。Ca-P涂层尤其是HA涂层在钛合金假体中已广泛应用于临床。为此,我们设计了一种简单有效地化学方法,对镁铝合金(AZ60)进行表面修饰,制得Ca-P涂层覆于镁合金材料表面,然后对制得的含有Ca-P涂层的镁合金材料进行初步的生物相容性实验研究:评价含有Ca-P涂层的镁合金在SBF溶液中的耐腐蚀性;评价含有Ca-P涂层的镁合金的细胞毒性;评价含有Ca-P涂层的镁合金植入动物体内的生物相容性。
     方法
     SBF溶液中的抗腐蚀实验
     将有Ca-P涂层与无涂层的两种镁合金材料浸入配置好的SBF溶液中,温度维持在37±1°C,材料表面积与SBF溶液的体积比为1cm2/20mL。分别在反应后1d、3d、7d、14d与21d检测溶液中pH和Mg、Ca离子浓度的变化。体外细胞毒性实验
     实验设为3组:A组,无Ca-P涂层材料组;B组,含有Ca-P涂层材料组;C组,阴性对照组
     材料浸提液的制备
     按照国际标准化组织的的标准(EN ISO10993-2009)进行。将A、B两组不同的材料放置于DMEM细胞培养液中,其材料面积与细胞培养液比例为1cm~2/ml。将其置于(37±1)°C的环境下24h后制得材料浸提液。
     利用96孔板将MC3T3-E1成骨细胞与两组材料的DMEM浸提液培养,阴性对照组为DMEM细胞培养液。培养1d、3d、5d、7d后观察细胞生长状况,CCK-8法测定细胞增殖活性,用酶标仪在450nm处记录各孔吸光度值(OD),计算材料浸提液对细胞的毒性。
     利用24孔板将MC3T3-E1成骨细胞与两组材料的DMEM浸提液培养,阴性对照组为DMEM培养液。培养5d后将事先放置于孔底的载玻片取出,酒精固定,HE染色,光镜下观察细胞在不同培养液里的生长情况,观察有无细胞形态和胞核、胞质的改变。
     利用24孔板将MC3T3-E1成骨细胞与两组材料的DMEM浸提液培养,阴性对照组为DMEM培养液。培养五天后应用p-NPP法测定细胞碱性磷酸酶量,记录酶标仪在410nm处各孔吸光度值(OD),计算ALP活性,从而评价细胞分化增殖活性。
     利用6孔板将MC3T3-E1成骨细胞与两组材料直接接触培养,阴性对照组为DMEM细胞培养液。培养5d后将在A、B两组材料取出,收集各孔中细胞,利用细胞凋亡检测试剂盒进行双染,应用流式细胞仪记录细胞凋亡情况。体内材料植入生物相容性实验
     实验分为3组,A组,无涂层镁合金材料组;B组,Ca-P涂层镁合金材料组;C组,不锈钢材料组。
     选取36只成年新西兰大白兔,体重在2.5-3.0Kg之间,雌雄不限。随机分为3组,每组12只。在其两侧股骨髁外侧植入直径3mm,长8mm的圆柱形内置物。术后观察动物的精神状态、活动、进食、创口愈合及皮下气肿等情况。分别于术后1mon、2mon和3mon空气栓塞处死12只兔子,每组4只,获得含有内置物的标本每组8个。将每组2个标本中的内置物取出,测重,剩余骨组织进行脱钙、固定后染色、观察内置物周围骨组织的细胞结构变化;3个含有内置物的标本行Micro-CT检查;3个含有内植物的标本行硬组织切片检查,立春红染色,观察内置物周围骨组织结构的变化。
     结果
     SBF溶液内材料耐腐蚀性实验
     无Ca-P涂层的镁合金材料放入SBF溶液后降解速度很快,材料周围可见大量气泡产生,其溶液内Mg离子浓度从初始浓度1.5mmol/L,24小时后攀升到3.5mmol/L,48小时后Mg离子浓度上升到4.8mmol/L。相对于无涂层镁合金材料的较快的腐蚀速率,含有Ca-P涂层的镁合金材料置于SBF溶液中24小时后Mg离子浓度仅仅上升了0.2mol/L为1.7mol/L,最高浓度变化为72小时2.1mmol/L。Mg离子浓度的变化基本与溶液内pH值变化相对应。两组材料在SBF溶液中的抗腐蚀性能有显著差异(p<0.05),说明Ca-P涂层的存在对增加镁合金材料的抗腐蚀性起了很大的作用。
     阴性对照组与含有Ca-P涂层镁合金材料组OD值无明显差别,但与无涂层镁合金材料组间有明显差异。(p<0.05)说明含有Ca-P涂层镁合金材料对MC3T3-E1成骨细胞生长没有明显的细胞毒性。
     光镜下观察到含有Ca-P涂层的镁合金材料组MC3T3-E1成骨细胞生长状态与形态结构与阴性对照组内细胞生长状态与形态结构无明显差异,细胞生长状态及分化增殖情况正常,未见明显的细胞形态结构变化。反观无涂层镁合金材料组MC3T3-E1成骨细胞生长情况,细胞生长抑制明显,分化和增值差,细胞形态与结构变化较大。
     应用p-NPP法对三组培养细胞的ALP活性进行检测结果显示:含有Ca-P涂层镁合金材料组与阴性对照组内细胞ALP活性表达较高,分别达到了10.4和10.7nol/min/mg prote,而无涂层镁合金材料组细胞ALP活性仅为6.4nol/min/mg prote.Ca-P涂层镁合金材料与无涂层镁合金材料组之间差异明显。
     利用AnnexinV-FITC/PI细胞双染法经流式细胞仪计数后可以明显的观察的A组即无涂层的镁合金材料组细胞数量较另外两组细胞数量减少明显。测得3组细胞凋亡率分别为A组(无涂层组),30.8%;B组(含有涂层组),17.82%;C组(阴性对照组),19.33%。其中含有Ca-P涂层镁合金材料组的细胞凋亡率与无涂层组细胞凋亡率差异明显,甚至其细胞凋亡率低于正常对照组,说明Ca-P涂层在一定程度上有利于成骨细胞的增殖与分化。体内生物相容性实验
     术后所有大白兔麻醉清醒后活动良好,进食正常,术后创口愈合良,未见明显的皮下气肿。术后两周无涂层材料组一只大白兔出现了厌食,活动减少,消瘦等症状,术后1个月处死后发现其右侧手术肢体创口位置有一巨大的软组织肿物,肿物内为乳白色干酪样物质。
     将标本内取出的内置物经室温干燥后称重,并与术前质量相比较。结果发现术后1个月与2个月内有涂层组与无涂层组的质量变化不明显。术后3个月时两组材料前后虽有质量变化,但两组间相比较,并没有明显的差异。
     将植入后1个月和3个月的兔股骨髁部标本进行了Micro-CT检查,结果发现植入一个月后,不锈钢组与Ca-P涂层镁合金材料组中内置物材料与周围骨组织间接触紧密,未见明显的空隙,边缘较规则平滑。无涂层镁合金组内可见内置物与周围骨组织间有空隙,边缘亦见点状的腐蚀部位。术后3个月的标本Micro-CT扫描可见不锈钢材料组较1个月时无明显变化,材料周围有少量新骨形成但周围骨小梁结构排列紊乱;含有Ca-P涂层镁合金材料组内材料未见明显降解迹象,材料周围见有较多的新骨形成,并与材料结合紧密,骨小梁结构排列均匀有序;无涂层镁合金材料组可见材料降解明显,材料与周围骨组织间有较大空隙,内为无定形物质和少量的纤维组织,周围未见明显的新骨形成。
     利用3D重建技术对内置物及其周围的骨组织进行重建,计算材料周围骨组织的BMD值,含有Ca-P涂层的镁合金材料周围与不锈钢材料周围的骨组织BMD值明显高于无涂层镁合金材料周围骨组织的BMD值,BMD值越大说明成骨能力越好,骨组织细胞代谢旺盛。通过系统软件计算内置物材料的腐蚀速度。A组材料术后1个月时腐蚀率为0.079mm/a,术后3个月时为0.197mm/a;B组材料术后1个月时腐蚀率为0.024mm/a术后3个月时为0.058mm/a;C组材料腐蚀率为0。A、B两组间腐蚀率比较有明显的差异性(P<0.05)。
     含有内置物的标本切片后行利春红染色,观察材料表面的骨小梁结构生长和变化情况。光镜下观察B、C两组材料周围有清晰的新的骨小梁结构产生,骨小梁结构致密、粗大,B组材料周围骨小梁结构与材料表面结合紧密,骨小梁排列整齐有序。A组材料周围骨小梁结构稀疏,周围空隙较大,并含有大量的无定形物质,偶有骨组织与材料接触。
     结论
     含有Ca-P涂层镁合金材料可以明显的提高材料的抗腐蚀性。
     含有Ca-P涂层镁合金材料无明显细胞毒性,且能促进成骨细胞的增殖分化。
     体内植入后,含有Ca-P涂层镁合金材料具有很好的抗腐蚀性能,并表现出较好的生物相容性和骨诱导活性。
     本研究为Mg合金Ca-P涂层作为骨科内置物应用提供了生物安全性实验依据,为进一步研究提供了理论支持。
     含有Ca-P涂层的镁合金材料(AZ60)具有成为新一代骨科可降解植入材料的可能。
Object
     Magnesium alloys have been recently proven as effectivebiodegradable orthopedic implants. However, the in vivo corrosion ofmagnesium alloys critically hinders the use of these materials asbiodegradable implant materials. During corrosion, the rapid degradationof magnesium alloys leads to subcutaneous bubbles from hydrogenevolution and an increase in the pH of body fluids and blood by localalkalization. Therefore, controlling the degradation rate and mechanicalintegrity of these alloys in the physiological environment is the key totheir applications.
     Several strategies have been reported to overcome the low corrosionresistance and regulate the biocorrosion rate of magnesium alloys. Onestrategy is the addition of other elements such as Mn, Zn, and Al asalloying elements to develop different alloys in the past decades. Inrecent years, Ca and rare-earth elements have been used to producebinary magnesium alloys that show good corrosion resistance but limitedbone response. Another strategy for effectively reducing the corrosion ofmagnesium alloys is surface modification. Calcium phosphate (Ca-P)coating is recognized as one of the most biocompatible materials for bone replacement and regeneration and is widely used as a bioactivecoating in clinical orthopedic implants such as titanium alloys.
     Recently, Ca-P coatings have been used to protect magnesium alloysfrom fast corrosion. For example, Ca-P coating on AZ30Mg andMg-Mn-Zn alloys reportedly improves corrosion resistance [10,11].
     In the present study, Ca-P coating was prepared on an Mg-Al alloy(AZ60) by a two-step chemical process without pretreatment. Then, thecytotoxicity in vitro was evaluated by CCK-8test, ALP activity test, andapoptosis test. The samples were implanted into the femoral shaft ofrabbits. Analysis and evaluation of the degradation in vivo wereconducted based on corrosion measurements and micro-computedtomography (CT) technology.
     3. Method
     The test of corrosion resistance in SBF solution
     Immerse the samples of magnesium alloys in SBF solution,the ratio ofsample surface area and SBF solution volume is1cm2/20mL,thetemperature is at37±1°C. Then observe the changes of pH value and Mgion concentration.
     The cytotoxicity test in vitro
     The experiment is divided into3groups:A group is uncoatedmagnesium alloy; B gruoup is Ca-P coated magnesium alloy; C group isnormal control group.
     MC3T3-E1osteoblast cells are cultured in96pores plate withsample soaked solution,A group is the solution which the sample ofuncoated magnesium alloy soaked in DMEM; B group is the solutionwhich the sample of Ca-P coated magnesium alloy soaked in DMEM;Cgroup is the solution of DMEM. Observe cell growth after cultured in1d,3d,5d and7d. CCK-8test the OD value in450nm and calculate thecytotoxicity in sample soaked solution.
     MC3T3-E1osteoblast cells are cultured in24pores plate with samplesoaked solution,A group is the solution which the sample of uncoatedmagnesium alloy soaked in DMEM; B group is the solution which thesample of Ca-P coated magnesium alloy soaked in DMEM;C group isthe solution of DMEM. After the cells cultured5d, the cell culture slideis removed out the plate.The cells are fixed with75%alcohol, stainedwith HE, and observed the cell’ growth with microscope.
     MC3T3-E1osteoblast cells are cultured in24pores plate with samplesoaked solution,A group is the solution which the sample of uncoatedmagnesium alloy soaked in DMEM; B group is the solution which thesample of Ca-P coated magnesium alloy soaked in DMEM;C group isthe solution of DMEM. After the cells cultured5d,p-NPP test the ODvalue in410nm, observe the cells’ ALP activity and evaluate theirproliferation and differentiation.
     MC3T3-E1osteoblast cells are cultured in6pores plate with samples directly.A group is the sample of uncoated magnesium alloy;B group isthe sample of Ca-P coated magnesium alloy;C group is only DMEM.After the cells cultured5d, the samples are removed from the plate.Collecting cells and double staining with Annexin V/PI, then observe thecell apoptosis with flow cytomytry.
     The experiment of samples biocompatibility in vivo
     The experiment is divided into3groups, A group is the group ofuncoated magnesium alloy; B group is the group of Ca-P coatedmagnesium alloy; C group is the group of stainless steel.
     All animal experiments were conducted based on the animal welfarerequirements of ISO10993-2:2006. A total of36adult New Zealandrabbits with a body weight of2.5kg to3.0kg were used. The rabbits wererandomly divided into three groups. All rabbits were anesthetized with0.5pentobarbital sodium solution for surgery. After predrilling with a2.8mm hand operated drill, the samples were implanted into bothfemoral shafts of rabbits in the experimental groups. After surgery, therabbits’behavior, eating, activity, healing and body weight change wereobserved.
     After1month、2month、3month,each time12rabbits were sacrificed.The sacrificed rabbit’s femoral shaft were removed. Then the specimenswere observed the sample degradation and the new bone around thesample by Micro-CT scanning. After that, the specimens were conducted with hard tissue section, stained with Ponceau S staining solution, andobserved the changes in bone tissue.
     Result
     The corrosion resistance in SBF solution
     The corrosion degree of the coated and uncoated samples wasevaluated based on the changes in magnesium ion concentration and pHvalue in SBF. The result shows the change in magnesium ionconcentration. Uncoated magnesium alloy in SBF degraded faster, andthe magnesium ion concentration in SBF increased more quickly thancoated magnesium alloy (p<0.05).
     The test result shows the variation of pH value in SBF after differentimmersion period. In the uncoated magnesium group, the pH valueincreased greatly and reached10.7after one day’s immersion.Subsequently, the pH value kept on increasing slowly. While in thecoated magnesium alloy group, the pH value reached the peak of about9.7after3days and then descended.
     The tests of cytotoxicity
     Cell proliferation is analyzed by viability observation of osteoblastMC3T3-E1cells using CCK-8assay for different culture periods. Asshown in Fig.3, the cell viability was no significant difference betweenthe coated magnesium alloy group and the negative control group. Butthe cell viability of uncoated magnesium alloy group was lower as compared with negative control group (p<0.05). The difference in thecell proliferation between different extract mediums was shown in Fig.4.The cells morphology in uncoated magnesium alloy group had obviousdifference with the negative control group and coated magnesium alloygroup, which showed significant reduction in both the number and thedensity of cells in uncoated magnesium alloy group and abnormal shapeand nucleus of the cells
     The ALP activities of osteoblast MC3T3-E1cells in extract mediumwere measured by using aBCA Protein Assay Kit (Sigma, USA). Asexhibited in Fig5, compared with the negative control group, the ALPactivity of the cells in uncoated magnesium alloy group was observeddecreasing much evidently (p<0.05), while the ALP activity of the cellsin coated magnesium alloy group was the same as the control group.
     The apoptosis and death of osteoblast MC3T3-E1cells were detectedusing flow cytometry with Annexin V-FITC/propidium iodide doublestaining of cells. Typical figures for the flow cytometric analysis areshowed in Fig.6. The cell apoptosis rate shows that after culturingdirectly with samples5days, the number of cells in uncoatedmagnesium alloy group reduced rapidly and the apoptosis rate reachedto30.8%. While in coated magnesium alloy group, the cells apoptosisrate was about17.82%, which was lower than the negative control19.33%. Biocompatibility tests in vivo
     All rabbits awoke2h after surgery. All rabbits healed well, and nodifference was observed between the two groups. No obvioussubcutaneous emphysema was observed in the operated sites for allrabbits. Two weeks later, a rabbit in the uncoated Mg alloy groupappeared weakness and low activity. After the rabbit was sacrificed, ahuge mass was observed in the soft tissue of the executed site. Anoyster-white caseous substance was contained in the capsule (Fig.3).The rabbits’ weights were recorded in different periods. We observedthat the mean weight increased in the Ca-P-coated Mg alloy group,whereas the mean weight decreased in the uncoated Mg alloy group
     The corrosion mass loss of the samples is shown in Fig.5. The meanmass loss after1month was0.12and0.21g for the Ca-P-coated anduncoated groups, respectively. No significant difference was observedbetween the two groups. One month after surgery, the mass lossgradually increased in the uncoated Mg alloy group; Three months aftersurgery, the mean mass loss in the uncoated Mg alloy group increased to1.42g. By contrast, the mean mass loss was0.23g in the Ca-P-coatedgroup. The difference in corrosion weight loss between the two groupswas not obvious.
     The result illustrates the micro-CT reconstruction images of the rabbitfemora containing Mg implants1and3months after surgery. We observed that the surface morphologies of the samples in both groupsslightly degraded1month after surgery. Although the surface wassmooth in the uncoated magnesium alloy group, a few corrosion pitswere observed (red arrow in Fig.6). With increased implantation time,the uncoated samples exhibited more serious corrosion than theCa-P-coated samples after3months.
     The3D micro-CT reconstruction images showed more obviousdegradation in the two groups of the samples than the2D reconstructionimages. Fig.8shows that the calculated corrosion rate of the uncoatedsamples was approximately three times as high as that of theCa-P-coated samples.
     The spicemens were conducted hard tissue section, and stained inPonceau staining solution. Then the bone trabecula was observed. In Band C groups, the trabecula was arranged orderly、compactly and thick,while in A group, the trabecula was messy、few and scattered, Abundantamorphous mess was also observed in the gap between sample and bonetissue.
     Conclution
     The Ca-P coating prevent the degradation of magnesium alloy.There is not obviously cytotoxicity of Ca-P coated magnesium alloy invitro.
     In vivo, the Ca-P coating has a good corrosion resistance and biocompatibility.
     The experiments provide the theoretical and practical basis forbiocompatibility of Ca-P coating.
     Ca-P coated magnesium alloy(AZ60) is possible for a biodegradatedmaterial in orthopedics.
引文
[1] Allen MJ, Myer BJ, Millet PJ, et al. The effects ofparticulate cobalt, chromium and cobalt-chromium alloyon human osteoblast-like cells in vitro[J]. J Bone JointSurg,1997,79:475-82.
    [2] Wang JY, Wicklund BH, Gustilo RB, et al. Titanium chromiumand cobalt ions modulate the release of bone associatedcytokines by human monocytes macrophages in vitro[J].Biomaterials,1996,17:2233-40.
    [3] Haynes DR, Boyle SJ, Rogers SD. Variation in cytokinesinduced by particles from different prostheticmaterials[J]. Clin Orthop Res,1998,352:223-30.
    [4] Granchi D, Ciapetti G, Stea S. Cytokine release inmononuclear cells of patients with Co-Cr hipprosthesis[J]. Biomaterials,1999,20:1079-86.
    [5] Jacobs JJ, H.N, Skipor AK. Metal degradation products: acause for concern in metal–metal bearings[J]. ClinOrthop Relat Res,2003,417:139-47.
    [6] Lhotka C, Szekeres T, Steffan I. Four-year study of cobaltand chromium blood levels in patients managed with twodifferent metal-on-metal total hip replacements[J]. JOrthop Res,2003,21:189-95.
    [7] Niki Y, Matsumoto H, Suda Y. Metal ions induce boneresorption cytokine production through the redox pathwayin synoviocytes and bone marrow macrophages[J].Biomaterials,2003,24:1447-57.
    [8] Puleo DA, Huh WW. Acute toxicity of metal ions in culturesof osteogenic cells derived from bone marrow stromalcells[J]. J Appl Biomater,1995,6:109-16.
    [9] Wang JY, Wicklund BH. Titanium chromium and cobalt ionsmodulate the release of bone associated cytokines byhuman monocytes macrophages in vitro [J]. Biomaterials,1996,17:2233-40.
    [10] Jacobs JJ, Hallab NJ. Metal release in patients who havehad a primary total hip arthroplasty [J]. J Bone JointSurg,1998,80:1447-58.
    [11] Wang ML, Nesti LJ, Tuli R. Titanium particles suppressexpression of osteoblastic phenotype in humanmessenchymal stem cells [J]. J Orthop Res,2002,20:1175-84.
    [12] Nagels J, Stokdijk M, Rozing PM. Stress shielding and boneresorption in shoulder arthroplasty [J]. J Shoulder ElbowSurg,2003,12:35-9.
    [13] Park JB, Kim YK.Park JB, Bronzino JD, editors Biomaterialsprinciples and application[M]. Boca Raton: CRC Press,2003.
    [14] Cho K et al. Magnesium technology and manufacturing forultra lightweight armored ground vehicles, ARL-RP-236[M].Aberdeen Proving Ground, MD: Army Research Laboratory;2009.
    [15] Eliezer D, Aghion E, Froes FH. Magnesium science,technology and applications [J]. Adv Perform Mater,1998,5:201–12.
    [16] James DW. Review paper. High damping metals for engineeringapplications [J].Mater Sci Eng,1969,4(1):1–8.
    [17] Lin B, Kuo C. Application of an integrated RE/RP/CAD/CAE/CAM system for magnesium alloy shell of mobile phone [J].J Mater Process Technol,2009,209:2818–30.
    [18] Gray JE, Luan B. Protective coatings on magnesium and itsalloys–a critical review [J]. J Alloys Compd,2002,336:88–113.
    [19] Guo KW. A review of magnesium/magnesium alloys corrosionand its protection [J]. Recent Patents Corros Sci,2010,2:13–21.
    [20] Jung JY, Kwon SJ, Han HS. In vivo corrosion mechanism byelemental interdiffusion of biodegradable Mg-Ca alloy[J]. J Biomed Mater Res B Appl Biomater,2012,100(8):2251-60
    [21] Takaishi Y. Significance of the Magnesium in the hardtissues such as Bone and Teeth [J]. Clin Calcium,2012,22(8):1189-96.
    [22] Patel UD, Suresh S.Dechlorination of chlorophenols usingmagnesium-palladium bimetallic system [J].J HazardMater,2007,17:431-8.
    [23] Heublein B, Rohde R, Kaese V. Bioccorion of magnesiumalloys: a new principle in cardiovascular in planttechnology[J] Heart,2003,89:651-656.
    [24] Hoog OC, Birbilis N, Zhang MZ, Estrin Y. Surface grainsize effects on the corrosion of magnesium [J]. Key EngMater,2008,384:229–40.
    [25] Wang H, Estrin Y, Zúberová Z. Bio-corrosion of a magnesiumalloy with different processing histories [J]. Mater Lett,2008,62:2476–9.
    [26] Xin R, Wang M, Gao J, Liu P, Liu Q. Effect of microstructureand texture on corrosion resistance of magnesiumalloys[J]. Mater Sci Forum,2009,610:1160–3.
    [33]Jin J, Liu C.M, Fu S.L. Electroless Ni-P plating onMg-10Gd-4.8Y-0.6Zr magnesium alloy with a newpretreatment process[J]. Surf Coat Technol,2011,206:348-353.
    [34] Zhao H, Cui J. Z. Electroless plating of silver on AZ31magnesium alloy substrate [J]. Surf Coat Technol,2007,201:4512-17.
    [35] Guillermo Bozzolo, Jorge E. Atomistic modeling of Agdeposition on the low-index faces of Al and Al depositionon Ag [J]. Surf Sci,2005,581:229-252.
    [36] C. Bla wert, V. Heitmann, W. Dietzel, H.M. Nykyforchyn.Influence of process parameters on the corrosionproperties of electrolytic conversion plasma coatedmagnesium alloys[J]. Surf. Coat.Technol,2005,200:68-72.
    [37] J. Liang, L. Hu, J. Hao. Characterization of microarcoxidation coatings formed on AM60B magnesium alloy insilicate and phosphate electrolytes[J]. Appl. Surf. Sci,2007,253:4490-4496.
    [38] Y.L. Song, Y.H. Liu, S.R. Yu, X.Y. Zhu, Q. Wang. Plasmaelectrolytic oxidation coating on AZ91magnesium alloymodified by neodymium and its corrosion resistance [J].Appl. Surf. Sci,2008,257:3014-3020.
    [39] G.S. Wu, X. Q. Zeng, W.B.Ding. Characterization of ceramicPVD thin films on AZ31magnesium alloys [J]. Appl. Surf.Sci,2006,252:7422-7429.
    [40] Wu G.S, Ding K.J, Zeng X.Q, Wang X.M. Improving corrosionresistance of titanium coated magnesium alloy bymodifying surface characteristics of magnesium alloyprior to titanium coating deposition [J]. Scr ipta Mater,2009,61:269-272.
    [41] Guosong Wu, Xuemin Wang, Kejian Ding, Yuanyuan Zhou,Xiaoqin Zeng.Corrosion behavior of Ti-Al-N/Ti-Al duplexcoating on AZ31magnesium alloy in NaCl aqueoussolution[J].Mater Chara,2009,60:803-807.
    [42] Guosong Wu, Wei Dai, He Zheng, Aiying Wang.Improving wearresistance and corrosion of AZ31magnesium alloy byDLC/AIN/AL coating[J].Appl SurfSci,2010,205:2067-2073.
    [43] Holger Hoche, Juergen Schmidt, Stefan Gro, TorstenTro mann, Christina Berger. PVD coating and substratepretreatment concepts for corrosion and wear protectionof magnesium alloy[J]. Surf Coat Technol,2011,205:s145-s150.
    [44] Wang X.M, Zeng X.Q, Wu G.S, Yao S.S. Yttrium ionimplantation on the surface properties of magnesium[J].Appl. Surf. Sci,2006,253:2437-2442.
    [45] Xuemin Wang, Xiaoqin Zeng, Guosong Wu, Shoushan Yao,Yijian Lai. Effects of tantalum ion implantation on thecorrosion behavior of AZ31magnesium alloys[J]. J Alloyscompd,2007,437:87-92.
    [46] X.M. Wang, X.Q. Zeng, G.S. Wu, S.S. Yao, Y.J. Lai. Theeffects of cerium implantation on the oxidation behaviorof AZ31magnesium alloys[J]. J Alloys compd,2008,456:384-389.
    [47] Y.Z. Wan, G.Y. Xiong, H.L. Luo, F. He, Y. Huang, Y.L. Wang.Influence of zinc ion implantation on surfacenanomechanical performance and corrosion resistance ofbiomedical magnesium calcium alloys[J]. Appl. Surf. Sci,2008,254:5514-5516.
    [48] Daniel H che, Carsten Blawert, Matthieu Cavellier, DenisBusardo, Thierry Gloriant. Magnesium nitride phaseformation by means of ion beam implantation technique[J].Appl Surf Sci,2011,257:5626-5633.
    [49] S.R. Paital, A. Bhattacharya, M. Moncayo, Y.H. Ho, K.Mahdak, S. Nag, R. Banerjee. Improved corrosion and wearresistance of Mg alloys via laser surface modificationof Al on AZ31B[J]. Surf. Coat. Technol,2012,206:2308-2315.
    [50] Ruf J. Organischer Metallschutz[M]. Hannover, Germany:Vincentz: Entwicklung und Anwendung vonBeschichtungsstoffen;1993;641–5.
    [51] Song G. Corrosion behavior of magnesium (Mg) alloys. In:Dong H, editor.Surface engineering of light alloys,aluminium, magnesium, titanium alloys[M]. Cambridge, UK:Woodhead Publishing Ltd.2010:123-124.
    [52] Liu Z, Gao W. Electroless nickel plating on AZ91Mg alloysubstrate[J]. Surf Coat Technol,2006,200:5087–93.
    [53] Walsh FC, Low CTJ, Wood RJK, Stevens KT, Archer J, PoetonAR, et al. Review.Plasma electrolytic oxidation (PEO)for production of anodised coatings on lightweight metal(Al, Mg, Ti) alloys[J]. Transac Inst Met Finish,2009,87(3):122–35.
    [54] Gnedenkov SV et al. PEO coatings obtained on an Mg–Mntype alloy under unipolar and bipolar modes insilicate-containing electrolytes[J]. Surf Coat Technol,2010,204:2316–22.
    [55] Gu XN, Li N, Zhou WR, Zheng YF, Zhao X, Cai QZ, et al.Corrosion resistance and surface biocompatibility of amicroarc oxidation coating on a Mg–Ca alloy[J]. ActaBiomater,2011,7:1880–9.
    [56] Miley HA. Fundamentals of oxidation and tarnish. In: UhligHH, editor. The corrosion handbook[M]. New York: JohnWiley,1948:11–20.
    [57] Ng WF, Wong MH, Cheng FT. Stearic acid coating on magnesiumfor enhancing corrosion resistance in Hanks’solution[J]. Surf Coat Technol,2010,204:1823–30.
    [58] Song G, Atrens A, Wu X, Zhang B. Corrosion behavior ofAZ21, AZ501and AZ91in sodium chloride[J]. Corros Sci,1998,40(10):1769–91.
    [59] Pourbaix M. Atlas of electrochemical equilibrium inaqueous solutions[M]. Oxford: Pergamon Press,1966.
    [60] Ishizaki T, Shigematsu I, Saito N. Anticorrosivemagnesium phosphate coating on AZ31magnesium alloy[J].Surf Coat Technol,2009,203:2288–91.
    [61] Zhou W, Shan D, Han E, Ke W. Structure and formationmechanism of phosphate conversion coating on die-castAZ91D magnesium alloy[J]. Corros Sci,2008,50:329–37.
    [62] Cheng Y, Wu H, Chen Z, Wang H, Zhang Z, Wu Y. Corrosionproperties of AZ31magnesium alloy and protectiveeffects of chemical conversion layers and anodizedcoatings[J]. Transac Nonferrous Met Soc China,2007,17:502–8.
    [63] Li Q, Xu S, Hu J, Zhang S, Zhong X, Yang X. The effectsto the structure and electrochemical behavior of zincphosphate conversion coatings with ethanolamine onmagnesium alloy AZ91D[J]. Electrochim Acta,2010,55:887–94.
    [64] Niu LY, Jiang ZH, Li GY, Gu CD, Lian JS. A study andapplication of zinc phosphate coating on AZ91D magnesiumalloy[J]. Surf Coat Technol,2006,200:3021–6.
    [65] Rocca E, Juers C, Steinmetz J. Corrosion behaviour ofchemical conversion treatments on as-cast Mg–Al alloys:electrochemical and non-electrochemical methods[J].Corros Sci,2010,52:2172–8.
    [66] Lan W, Sun J, Zhou A, Zhang D. Structures ofzinc–manganese phosphate film and organic coating onmagnesium alloys [J]. Mater Sci Forum,2009,610–613:880–3.
    [67] Aal AA. Protective coating for magnesium alloy[J]. J MaterSci,2008,43:2947–54.
    [68] Zhao M, Wu S, Luo J, Fukuda Y, Nakae H. A chromium-freeconversion coating of magnesium alloy by aphosphate–permanganate solution [J]. Surf Coat Technol,2006,200:5407–12.
    [69] Wang J, Li D, Yu X, Jing X, Zhang M, Jiang Z. Hydrotalciteconversion coating on Mg alloy and its corrosionresistance[J]. J Alloy Compd,2010,494:271–4.
    [70] Yu BL, Pan XL, Uan JY. Enhancement of corrosion resistanceof Mg–9wt.%Al–1wt.%Zn alloy by a calcite (CaCO3)conversion hard coating[J]. Corros Sci,2010,52:1874–8.
    [71] Lin JK, Uan JY. Formation of Mg, Al-hydrotalciteconversion coating on Mg alloy in aqueous HCO3–/CO32–and corresponding protection against corrosion by thecoating[J]. Corros Sci,2009,51:1181–8.
    [72] Hamdy AS, Farahat M. Chrome-free zirconia-basedprotective coatings for magnesium alloys[J]. Surf CoatTechnol,2010,204:2834–40.
    [73] Blawert C, Dietzel W, Ghali E, Song G. Anodizingtreatments for magnesium alloys and their effect oncorrosion resistance in various environments[J]. Adv EngMater,2006,8(6):511–33.
    [74]. Fukumoto S, Sugahara K, Yamamoto A, Tsubakino H.Improvement of corrosion resistance and adhesion ofcoating layer for magnesium alloy coated with high puritymagnesium[J]. Mater Transac,2003,44(4):518–23.
    [75] Choi J, Nakao S, Kim J, Ikeyama M, Kato T. Corrosionprotection of DLC coatings on magnesium alloy[J]. DiamondRelat Mater,2007,16:1361–4.
    [76] Wu G, Sun L, Dai W, Song L, Wang A. Influence of interlayerson corrosion resistance of diamond-like carbon coatingon magnesium alloy[J]. Surf Coat Technol,2010,204:2193–6.
    [77] Orlowski M, Rübben A. Bioresorbable metal stents withcontrolled resorption[M]. World Intellectual propertyorganization patent WO092436A2,2008:1–26.
    [78] Bertsch T, Borck A. Biocorrodible metallic implant havinga coating or cavity filling made of gelatin[M]. US patent0058923A1,2008:1–3.
    [79] Borck A. Biocorrodible metallic implant having coatingor cavity filling made of a PEG/PLGA copolymer[M]. USpatent0051872A1,2008:1–3.
    [80] Adden N. Implant of a biocorrodable magnesium alloy andhaving a coating of a biocorrodable polyphosphazene[M].US patent0048660A1,2009. p.1–3.
    [81] Sha Cheng, Shougang Chen, Tao Liu, Xueting Chang, YanshengYin. Carboxymenthylchitosan as an ecofriendly inhibitorfor mild steel in1M HCl[J]. Mater Lett,2008,62:3276-3280.
    [82] Cuilian Wen, Shaokang Guan, Li Peng, Chenxing Ren, XiangWang, Zhonghua Hu. Characterization and degradationbehavior of AZ31alloy surface modified by bone likehydroxyapatite for implant applications [J]. Appl. Surf.Sci,2009,255:6433-6438.
    [83] H.X. Wang, S.K. Guan, X. Wang, C.X. Ren, L.G. Wang. Invitro degradation and mechanical integrity of Mg-Zn-Caalloy coated with Ca deficient hydroxyapatite by thepulse electrodeposition process [J]. Acta Biomater,2010,6:1743-1748.
    [84] Ren-Guo Guan, Ian Johnson, Tong Cui, Tong Zhao, Zhan-YongZhao, Xue Li and Huinan Liu. Eletrodeposition ofhydroxyapatite coating on Mg-Zn-Ca-Zr alloy and in vitroevaluation of degradation hemolysis and cytotoxicity [J]J Biomed Mater Res A,2012,100:999-1015.
    [85] Yang JX, Cui FZ, Lee IS, Zhang Y, Yin QS, Xia H, Yang SX.In vivo biocompatibility and degradation behavior of Mgalloy coated by calcium phosphate in a rabbit model[J].J Biomater Appl,2012,27(2):153-64.
    [86] H.M. Wong, K.W.K. Yeung, K.O. Lam, V. Tam, P.K. Chu, K.D.K.Luk, K.M.C. Cheung. A biodegradable polymer basedcoating to control the performance of magnesium alloyorthopaedic implants [J]. Biomaterials,2010,31:2084-2096.
    [87] J.N. Li, P. Cao, X.N. Zhang, S.X. Zhang, Y.H. He. In vitrodegradation and cell attachment of a PLGA coatedbiodegradable Mg-6Zn based alloy [J]. J Mater Sci,2010,45:6038-6045.
    [88] L. Xu, A. Yamamoto. Characteristics and cytocompatibilityof biodegradable polmer film on magnesium by spin
    coating[J]. Colloids Surf. B: Biointerfaces,2012,
    93:67-74.
    [89] B. Hahn, D. Park, J. Choi, J. Ryu, W. Yoon, J. Choi, H.
    Kim, S. Kim. Aerosol deposition of hydroxyapatite
    chitosan composite coating on biodegradable magnesium
    alloy[J]. Surf Coat Technol,2011,205:3112-3118.
    [90] H. Du, Z. Wei, H. Wang, E. Zhang, L. Zuo, L. Du. Surface
    microstructure and cell compatibility of calcium
    silicate and calcium phosphate composite coatings on
    Mg-Zn-Mn-Ca alloys for biomedical
    application[J].Colloids Surf B: Biointerfaces,2011,83:
    96-102.
    [91] H. Wang, C. Zhao, Y. Chen, J. Li, X. Zhang. Electrochemical
    property and in vitro degradation of DCPD PCL composite
    coating on the biodegradable Mg-Zn alloy[J]. Mater Lett,
    2012,68:435-438.
    [92] J.H. Gao, S.K. Guan, J. Chen, L.G. Wang, S.J. Zhu, J.H.
    Hu, Z.W. Ren. Fabrication and characterization of rod
    like nano-hydroxyapatite on MAO coating supported on
    Mg-Zn-Ca alloy [J]. Appl Surf Sci,2011,257:2231-2237.
    [93] Y. Shi, M. Qi, Y. Chen, P. Shi. MAO-DCPD composite coatingon Mg alloy for degradable implant applications [J].Mater Lett,2011,65:2201-2203.
    [94] Y. Zhang, K. Bai, Z. Fu, C. Zhang, H. Zhou, L. Wang, S.Zhu, S. Guan, D. Li, J. Hu. Composite coating preparedby micro-arc oxidation followed by sol-gel process andin vitro degradation properties [J]. Appl Surf Sci,2012,258:2939-2943.
    [95]郑玉峰,顾雪楠,李楠,周维瑞.生物可降解镁合金的发展现状与展望[J].中国材料进展,2011,30:30-35.
    [96] LiZ, GuX, Lou S, et al. The Development of Binary Mg2CaAlloys for Useas Biodegradable Materials within Bone [J].Biomaterials,2008,29:1329-1344.
    [97] Zhang E, Yin D, Xu L, et al. Microstructure, Mechanicaland CorrosionProperties and Biocompatibility ofMg2Zn-MnAl2alloys for Biomedical Application[J]. MaterSci Eng C,2009,29(3):987-993.
    [98] Gu X, Zheng Y, Cheng Y, et al. In Vitro Corrosion andBiocompatibility of Binary Magnesium Alloys[J].Biomaterials,2009,30:484-498.
    [99] Seiler H.G, Sigel H. Handbook on Toxicity of InorganicCompounds [M]. New York: Marcel Dekker Inc.1988.
    [100] Sigel H. Metal Ions in Biological System [M]. New York:Marcel Dekker Inc,1986.
    [101] Witte F et al. Biodegradable magnesium–hydroxyapatitemetal matrix composites[J]. Biomaterials,2007,28:2163–74.
    [102] Witte F et al. In vitro and in vivo corrosion measurementsof magnesium alloys[J]. Biomaterials,2006,27:1013–8.
    [103] Xu L, Yu G, Zhang E, Pan F, Yang K. In vivo corrosionbehavior of Mg–Mn–Zn alloy for bone implantapplication[J]. J Biomed Mater Res A,2007,83:703–11.
    [104] Staiger MP, Pietak AM, Huadmai J, Dias G. Magnesium andits alloys as orthopedic biomaterials: a review [J].Biomaterials,2006,27:1728–34.
    [105] Denkena B, Lucas A. Biocompatible magnesium alloys asabsorbable implant materials dadjusted surface andsubsurface properties by machining processes[J]. ManufTechnol,2007,56:113e6.
    [106] Liu X.Y, Ding C.X, Wang Z.Y. Apatite formed on the surfaceof plasma sprayed wollastonite coating immersed insimulated body fluid[J]. Biomaterials,2001,22:2007-2012.
    [107] C.Q.Ning, Y.Zhou. In vitro bioactivity of a biocompositefabricated from HA and Ti powders by powder metallurgymethod[J]. Biomaterials,2002,23:2909-2915.
    [108] Liu X.Y, Tao S.Y, Ding C.X. Bioactivity of plasma sprayeddicalcium silicate coatings[J]. Biomaterials,2002,23:963-968.
    [109] Sang-Hoon Rhre, Junzo Tanaka. Effect of citric acid onthe nucleation of hydroxyapatite in a simulated bodyfluid[J]. Biomaterials,1999,20:2155-2160.
    [110] Song G, Atrens A, StJohn D, Nairn J, Li Y. Theelectrochemical corrosion of pure magnesium in1NNaCl[J]. Corros Sci,1997,39(5):855–75.
    [111] Li Z, Gu X, Lou S, Zheng Y. The development of binaryMg–Ca alloys for use as biodegradable materials withinbone[J]. Biomaterials,2008,29(10):1329–44.
    [112] Su Y.C, Li G.Y, Lian J.S. A chemical conversionhydroxyapatite coating on AZ60magnesium alloy and itselectrochemical corrosion behavior Int[J]. JElectrochem Sci,2012,7:11497-11511.
    [113] Jonasova L, Muller F, Helebrant A, Strnad J, Greil P.Biomimetic apatite formation on chemically treatedtitanium[J]. Biomaterials,2004,25:1187–94
    [114] Kuwahara H, Al-Abdullat Y, Mazaki N, et al, Precipitationof magnesium apatite on pure magnesium surface duringimmersing in Hank's solution. Mater Trans,2001,42:13171321.
    [115]关绍康,温翠莲,王立国,等.一种纳米HAP涂层/镁合金复合生物材料的制备方法.中国:200810049023.6[P].
    [116] Wen CL, Guan SK, Peng L, et al. Characterization anddegradation behavior of AZ31alloy surface modified bybone-like hydroxyapatite for implant applications[J].App Surf Sci,2009,255:64336438.
    [117]任伊宾,黄晶晶,杨柯,等.纯镁的生物腐蚀研究[J].金属学报,2005,41:12281232.
    [118] Ren YB, Wang H, Huang JJ, et al, Study of biodegradationof pure magnesium[J]. Key Eng Mater,2007,342.343:601604.
    [119] Gao JC, Wu S, Qiao LY, et al. Corrosion behavior of Mgand Mg-Zn alloys in simulated body fluid[J]. TransNonferrous Met Soc China,2008,18:589590.
    [120] Li LC, Gao JC, Wang Y. Evaluation of cyto-toxicity andcorrosion behavior of alkali-treated magnesium insimulated body fluid[J]. Surf Coat Technol,2004,185:9298.
    [121]高家诚,李龙川,王勇,等.表面改性纯镁的细胞毒性和溶
    [128] Gray M.JE, Seguin C, Strong M. Influence of surfacemodification on the in vitro corrosion rate of magnesiumalloy AZ31[J]. J Biomed Mater Res A,2009,91:221-30。
    [129] Witte F, Fischer J, Nellesen J. In vivo corrosion andcorrosion protection of magnesium alloy LAE442[J]. ActaBiomater,2010,6:1792-1799.
    [130] Wong HM, Yeung KW, Lam KO. A biodegradable polymer basedcoating to control the performance of magnesium alloyorthopaedic implants[J]. Biomaterials,2010,31:2084-96.
    [131] Xin Y, Jiang J, Huo K. Corrosion resistance andcytocompatibility of biodegradable surgical magnesiumalloy coated with hydrogenated amorphous silicon[J]. JBiomed Mater Res A,2009,89:717-26.
    [132] Xu L, Yu G, Zhang E. In vivo corrosion behavior ofMg-Mn-Zn alloy for bone implant application[J]. BiomedMater Res A,2007,83:703-11.
    [133] Xu L, Zhang E, Yang K. Phosphating treatment andcorrosion properties of Mg-Mn-Zn alloy for biomedicalapplication[J]. J Mater Sci Mater Med,2009,20:859-67.
    [134]吴平,刘秦玉,由少华[M]. GB-T16886.1-2001医疗器械生物学评价.304-9.
    [135]由少华,王昕[M].GB-T16886.5-2003医疗器械生物学评价83-8.
    [136] Qiao GY, Shen QP, Su JS. Study on cytotoxicity of threekinds of dental ceramic alloys on L929mouse fibroblastsin vitro[J].Shanghai Kou Qiang Yi Xue,2010,19:72-6.
    [137] Ozdemir KG, Yilmaz H, Yilmaz S. In vitro evaluation ofcytotoxicity of soft lining materials on L929cells byMTT assay[J]. J Biomed Mater Res B Appl Biomater,2009,90:82-86.
    [138] Miranda RB, Fidel SR, Boller MA.L929cell response toroot perforation repair cements: an in vitrocytotoxicity assay [J]. Braz Dent J,2009,20:22-26.
    [139] Barbosa SV, Barroso CM, Ruiz PA. Cytotoxicity ofendodontic irrigants containing calcium hydroxide andsodium lauryl sulphate on fibroblasts derived from mouseL929cell line[J]. J Braz Dent,2009,20:118-21.
    [140] Acharya C, Ghosh SK. Silk fribroinprotein from mulbetrryand nonmulberry silkworms: cytotoxicitybiocompatibility and kinetics of L929murine fibroblastadhesion[J]. J Mater Sci Mater Med,2008,19:2627-36.
    [141] Witte F et al. Biodegradable magnesium–hydroxyapatitemetal matrix composites[J]. Biomaterials,2007,28:2163–74.
    [142] Witte F et al. In vitro and in vivo corrosion measurementsof magnesium alloys[J]. Biomaterials,2006,27:1013–8.
    [143] Xu L, Yu G, Zhang E, Pan F, Yang K. In vivo corrosionbehavior of Mg–Mn–Zn alloy for bone implantapplication[J]. J Biomed Mater Res A,2007,83:703–11.
    [144] Staiger MP, Pietak AM, Huadmai J, Dias G. Magnesium andits alloys as orthopedic biomaterials: a review[J].Biomaterials,2006,27:1728–34.
    [145] Rodrigues LR. Inhibition of bacterial adhesion onmedical devices [J]. Adv Exp Med Biol,2011,715:351–67.
    [146] Bellucci D, Cannillo V, Cattini A, Sola A. A newgeneration of scaffolds for bone tissue engineering[J].Ind Ceram,2011,31(1):59–62.
    [147] Boccaccini AR, Blaker JJ. Bioactive composite materialsfor tissue engineering scaffolds[J]. Expert Rev MedDevices,2005,2(3):303–17.
    [148] Mouri o V, Boccaccini AR. Bone tissue engineeringtherapeutics: controlled drug delivery inthree-dimensional scaffolds[J]. J R Soc Interface,2010,7(43):209–27.
    [149] Hoog OC, Birbilis N, Zhang MZ, Estrin Y. Surface grainsize effects on the corrosion of magnesium[J]. Key EngMater,2008,384:229–40.
    [150] Wang H, Estrin Y, Zúberová Z. Bio-corrosion of amagnesium alloy with different processing histories[J].Mater Lett,2008,62:2476–9.
    [151] Xin R, Wang M, Gao J, Liu P, Liu Q. Effect ofmicrostructure and texture on corrosion resistance ofmagnesium alloys[J]. Mater Sci Forum,2009,610–613:1160–3.
    [152] Kaesel VT, Tai PT, Bach FW, Haferkamp H, Witte F,Windhagen H. Approach to control the corrosion ofmagnesium by alloying. In: Proceedings of the sixthinternational conference magnesium alloys and theirapplications [M]. New York:Wiley VCH,2004. p.534–539.
    [153] Hort N et al. Magnesium alloys as implant materials–principles of property design for Mg-RE alloys[J]. ActaBiomater,2010,6:1714–25.
    [154] Gu XN, Li N, Zhou WR, Zheng YF, Zhao X, Cai QZ, Ruan L.In vivo corrosion mechanism by elemental interdiffusionof biodegradable Mg-Ca alloy[J]. J Biomed Mater Res BAppl Biomater,2012,100(8):2251-60.
    [155] Zhou P, Gong HR. Phase stability, mechanical property,and electronic structure of an Mg-Ca system[J]. J MechBehav Biomed Mater,2012,8:154-64.
    [156] Berglund IS, Brar HS, Dolgova N, Acharya AP, KeselowskyBG, Sarntinoranont M, Manuel MV. Synthesis andcharacterization of Mg-Ca-Sr alloys for biodegradableorthopedic implant applications[J]. J Biomed Mater ResB Appl Biomater,2012,100(6):1524-34.
    [157] Habeb AM, Al-Harbi H, Schlingmann KP. Resolving basalganglia calcification in hereditary hypomagnesemia withsecondary hypocalcemia due to a novel TRPM6genemutation[J]. Saudi J Kidney Dis Transpl,2012,23(5):1038-42.
    [158] Kikuchi K, Tanaka H, Gima M, Kashiwagi Y, Shida H,Kawamura Y, Hasebe N. Abnormalities of magnesium (Mg)metabolism and therapeutic significance of Mgadministration in patients with metabolic syndrome, type2diabetes, heart failure and chronic hemodialysis[J].Clin Calcium,2012,22(8):1217-26.
    [159] Zurawski A, Rybak JC, Meyer LV, Matthes PR, StepanenkoV, Dannenbauer N, Würthner F, Müller-Buschbaum KAlkaline earth imidazolate coordination polymers bysolvent free melt synthesis as potential host latticesfor rare earth photoluminescence:(x)(∞)[AE(Im)2(ImH)(2-3)], Mg, Ca, Sr, Ba, x=1-2[J].Dalton Trans,2012,41(14):4067-78
    [160] Ruf J. Organischer Metallschutz. Hannover[M], Germany:Vincentz: Entwicklungund Anwendung vonBeschichtungsstoffen;1993:641–5.
    [161] Ruf J. Organischer Metallschutz. Hannover [M], Germany,Vincentz: Entwicklungund Anwendung vonBeschichtungsstoffen;1993:68–70.
    [162] Song G. Corrosion behavior of magnesium (Mg) alloys. In:Dong H, editor Surface engineering of light alloys,aluminium, magnesium, titanium alloys[M]. Cambridge, UK:Woodhead Publishing Ltd.;2010:3–39.
    [163]ISO. ISO10993-5:2009(E)Biological evaluation of medicaldevices—Part5: Tests for in vitro cytotoxicity:2009.
    [164] Plumb JA. Cell sensitivity assays: the MTT assay[J].Methods Mol Med,2004,88:165–9.
    [165] Beyer H, Pyl T. über Thiazole, XXIV. Mitteil: überC,N-Diphenyl-N0-thiazolyl-(2)-formazane und derenTetrazoliumsalze[J].ChemischeBerichte,1954,87:1505–11.
    [166] Harrison MA, Rae IF. General techniques of cellculture[M]. Cam-bridge: Cambridge University Press;1997. p.7–31.
    [167] Owen TA, Aronow M, Shalhoub V, et al. Progressivedevelopment of the rat osteoblast phenotype in vitro:reciprocal relationships in expression of genesassociated with osteoblast proliferation anddifferentiation during formation of the boneextracellular matrix[J]. J CellPhysiol,1990,143:420–430.
    [168] Aubin JE. Advances in the osteoblast lineage[J]. BiochemCell Biol,1998,76:899–910.
    [169] Maxian SH, Stefano TD, Melican MC, Tiku ML, Zawadsky JP.Bone cell behavior on matrigel-coated Ca/P coatings ofvarying crystallinities[J]. J Biomed Mater Res,1998,40:171–179.
    [170] Matsuoka H, Akiyama H, Okada Y, et al. In vitroanalysis of the stimulation of bone formationby highly bioactive apatite-andwollastonite-containing glass-ceramic[J]. J BiomedMater Res,1999,47:176–188.
    [171] Mattson MP, Chan SL. Calcium orchestrates apoptosis[J].Nat Cell Biol,2003,5:1041–1043.
    [172] David A, Lobner D. In vitro cytotoxicity of orthodonticarchwires in cortical cell cultures[J]. Eur J Orthod,2004,26:421–426.
    [173] Cimpan MR, Matre R, Cressey LI, et al. The effect of heat-and auto-polymerized denture base polymers onclonogenicity, apoptosis, and necrosis in fibroblasts:denture base polymers induce apoptosis andnecrosis[J]. Acta Odontol Scand,2000;58:217–228.
    [174] Witte F, Kaese V, H Haferkamp, E Switzer. In vivocorrosion of four magnesium alloys and the associatedbone response[J]. Biomaterials,2005,26:3557–63.
    [175] Witte F, Fischer J, Nellesen J, Crostack HA, Kaese V.In vitro and in vivo corrosion measurements of magnesiumalloys[J]. Biomaterials,2006,27:1013–8.
    [176] Staiger MP, Pietak AM, Huadmai J, Dias G. Magnesium andits alloys as orthopedic biomaterials: a review[J].Biomaterials,2006,27:1728–34.
    [177] Song G. Control of biodegradation of biocompatablemagnesium alloys[J]. Corros Sci,2007,49:1696–701.
    [178] J.A. Grogan, B.J. O'Brien, S.B. Leen, P.E. McHugh. Acorrosion model for bioabsorbable metallic stents[J].Acta Biomater,2011,7:3523-3533.
    [179] A.C. H nzi, A. Metlar, M. Schinhammer, H. Aguib, T.C. Lüth,J.F. L ffler, P.J. Uggowitzer, Biodegradablewound-closing devices for gastrointestinal interventions:degradation perfor-mance of the magnesium tip[J]. MaterSci Eng C,2011,31:1098–110.
    [180] S.E. Moulton, M.D. Imisides, R.L. Shepherd, G.G. Wallace.Galvanic coupling conducting polymers to biodegradableMg initiates autonomously powered drug release[J]. J.Mater. Chem,2008,30:3608.-3613
    [181] M. Alvarez-Lopez, M.D. Pereda, J.A. Valle, M.Fernandez-Lorenzo, M.C. Garcia-Alonso, O.A. Ruano, M.L.Escudero. Corrosion behaviour of AZ31magnesium alloywith different grain sizes in simulated biologicalfluids[J]. Acta Biomater,2010,6:1763-1771.
    [182] F. Witte, J. Fischer, J. Nellesen, H.A. Crostack, V.Kaese, A. Pisch, F. Beckmann, H. Windhagen. In vitro andin vivo corrosion measurement of magnesium alloys[J].Biomaterials,2006,27:1013-18.
    [183] M.B. Kannan, R.K.S. Raman. Evaluating the stresscorrosion cracking susceptibility of Mg–Al–Zn alloy inmodified-simulated body fluid[J]. Scripta Mater,2008,59:175.-178.
    [184] X.N. Gu, W.R. Zhou, Y.F. Zheng, Y.Chen, S.P. Zhong, T.F.Xi and L.J. Chen, Corrosion fatigue behavior of twotypical biomedical Mg alloys-AZ91D and WE43in simulatedbody fluid[J]. Acta Biomaterialia,2010,6:4605-4613.
    [185] B. Smola, L. Joska, V. B ezina, I. Stulíková, F. Hnilica.Degradable Mg-Y-Nd-Mn alloys modified by Sc or Zn[J].Mater. Sci. Eng. C,2012,32:659-664.
    [186] M. Jamesh, S. Kumar, T.S.N.S. Naraya nan. Effect ofthermal oxidation on the corrosion resistance of Ti6Al4Valloy in hydrochloric and nitric acid medium[J]. Corros.Sci,2011,53:645-654.
    [187] S. Zhang, J. Li, Y. Song, C. Zhao, C. Xie, X. Zhang. XPSStudies of Magnesium Surfaces after Exposure to DMEM,HBSS, and SBF.Adv[J]. Eng. Mate,2010,12: B699-B704.
    [188] S. Zhang, X. Zhang, C. Zhao, J. Li, Y. Song, C. Xie, H.Tao, Y. Zhang, Y. He, Y. Jiang, Y. Bian. Research on anMg-Zn alloy as a degradable biomaterial[J]. ActaBiomater,2010,6:626-40.
    [189] X. Zhang, G. Yuan, L. Mao, J. Niu, W. Ding. Biocorrosionproperties of as-extruded Mg–Nd–Zn–Zr alloy comparedwith commercial AZ31and WE43alloys[J].Mater. Lett,2012,66:209-211.
    [190] Y. Zong, G. Yuan, X. Zhang, L. Mao, J. Niu, W. Ding.Comparison of biodegradable behaviors of AZ31andMg-Nd-Zn-Zr alloys in Hank’s physiological solution.[J]Mater. Sci. Eng. B,2012,177:395-401.
    [191] Hiromoto S, Yamamoto A. High corrosion resistance ofmagnesium coated with hydroxyapatite directlysynthesized in an aqueous solution[J]. Electrochim Acta,2009,54:7085–93.
    [192] Gray-Munro JE, Strong M. The mechanism of deposition ofcalcium phosphate coatings from solution onto magnesiumalloy AZ31[J]. J Biomed Mater Res Part A,2009,90(2):339–50.
    [193] Chen XB, Birbilis N, Abbott TB. A simple route towardsa hydroxyapatite–Mg(OH)2conversion coating formagnesium[J]. Corros Sci,2011,53:2263–8.
    [194] Xu L, Pan F, Yu G, Yang L, Zhang E, Yang K. In vitro andin vivo evaluation of the surface bioactivity of acalcium phosphate coated magnesium alloy[J].Biomaterials,2009,30:1512–23.
    [195] Song YW, Shan DY, Han EH. Electrodeposition ofhydroxyapatite coating on AZ91D magnesium alloy forbiomedical application[J]. Mater Lett,2008,62:3276–9.
    [196] Wen C, Guan S, Peng L, Ren C, Wang X, Hu Z.Characterization and degradation behavior of AZ31alloysurface modified by bone-like hydroxyapatite for implantapplications[J]. Appl Surf Sci,2009,255:6433–8.
    [197] Kannan MB, Orr L. In vitro mechanical integrity ofhydroxyapatite coated magnesium alloy[J]. Biomed Mater,2011,6:045003–11.
    [198] Yang JX, Cui FZ, Lee IS, Zhang Y, Yin QS, Xia H, et al.In vivo biocompatibility and degradation behavior of Mgalloy coated by calcium phosphate in a rabbit model[J].J Biomater Appl,2012,27:153-164.
    [199] Jo JH, Hong JY, Shin KS, Kim HE, Koh YH. Enhancingbiocompatibility and corrosion resistance of Mg implantsvia surface treatments[J]. J Biomater Appl,2012,27:469-76.
    [200] Lorenz C, Brunner JG, Kollmannsberger P, Jaafar L, FabryB, Virtanen S. Effect of surface pre-treatments onbiocompatibility of magnesium[J]. Acta Biomater,2009,5:2783–9.
    [201] Rettig R, Virtanen S. Composition of corrosion layersfluids[J]. J Biomed Mater Res Part A,2009,85(2):359–69.
    [202] Adden N, Kappelt G, Klocke B, Mueller H, Sager L. Medicalimplant for medicine dispersion with poroussurface[P/OL]. EP patent2233162,2009.
    [203] Chen XB, Birbilis N, Abbot TB. Review ofcorrosion-resistant conversion coatings for magnesium andits alloys[J]. Corrosion,2011,67(3):035005-1–035005-16.
    [204] Sugimoto J, Romani AM, Valentin-Torres AM, Luciano AA,Ramirez Kitchen CM, Funderburg N, Mesiano S, BernsteinHB. Magnesium decreases inflammatory cytokineproduction; a novel innate immunomodulatorymechanism[J]. J Immunol,2012,188:6338-46.
    [205] Kouisni L, Azzi M, Zertoubi M, Dalard F. Phosphatecoatings onmagnesium alloy AM60part1: study of theformation and the growth of zinc phosphate films[J]. SurfCoat Tech,2004,185:58–67.
    [206] Sebastian J. Schambach, S Bag, L Schilling, C Groden.Application of micro-CT in small animal imaging[J].Methods,2010,50:2–13.
    [207] Gao Y, Luo E, Hu J, Xue J, Zhu S, Li J: Effect ofcombined local treatment with zoledronic acid andbasic fibroblast growth factor on implant fixationin ovariectomized rats[J]. Bone,2009,44:225-232.
    [208]J U. Umoh, AV Sampaio, I Welch, V Pitelka. In vivo micro-CTanalysis of bone remodeling in a rat calvarial defectmodel[J]. Phys Med Bio,2009,54(7):2147-61.
    [209] D.H. Kempen, L. Lu, TE Hefferan. Enhanced bonemorphogenetic protein-2-induced ectopic and orthotopicbone formation by intermittent parathyroid hormone (1-34)administration[J]. Biomaterials,2009,30:2816-2825.
    [210] J.S. Nyman, S Munoz, S Jadhav, A Mansour. Quantitativemeasures of femoral fracture repair in rats derived bymicro-computed tomography[J]. J. Biomech,2009,42:891–897.
    [211] Gu XN, Li N, Zhou WR, Zheng YF, Zhao X, Cai QZ, et al.Corrosion resistance and surface biocompatibility of amicroarc oxidation coating on a Mg–Ca alloy[J]. ActaBiomater,2011;7:1880–9.
    [212] Ng WF, Wong MH, Cheng FT. Stearic acid coating onmagnesium for enhancing corrosion resistance in Hanks’solution[J]. Surf Coat Technol,2010,204:1823–30.
    [213] Xu X, Lu P, Guo M, Fang M. Cross-linkedgelatin/nanoparticles composite coating on micro-arcoxidation film for corrosion and drug release[J]. ApplSurf Sci,2010,256:2367–71.
    [214] Gao JH, Shi XY, Yang B, Hou SS, Meng EC, Guan FX, et al.Fabrication and characterization of bioactive compositecoatings on Mg–Zn–Ca alloy by MAO/sol-gel[J]. J MaterSci: Mater Med,2011,22:1681–7.
    [215] Hahn BD et al. Aerosol deposition ofhydroxyapatite–chitosan composite coatings onbiodegradable magnesium alloy[J]. Surf Coat Technol,2011,205:3112–8.
    [216] Wong HM, Yeung KWK, Lam KO, Tam V, Chu PK, Luk KDK, etal. A biodegradable polymer-based coating to control theperformance of magnesium alloy orthopaedic implants[J].Biomaterials,2010,31:2084–96.
    [217] Witte F, Fischer J, Nellesen J, Vogt C, Vogt J, DonathT, et al. In vivo corrosion and corrosion protection ofmagnesium alloy LAE442[J]. Acta Biomater,2010,6:1792–9.
    [218] Li JN, Cao P, Zhang XN, Zhang SX, He YH. In vitrodegradation and cell attachment of a PLGA coatedbiodegradable Mg–6Zn based alloy[J]. J Mater Sci,2010,45:6038–45.
    [219] H nzi AC, Gunde P, Schinhammer M, Uggowitzer PJ. On thebiodegradation performance of an Mg–Y–RE alloy withvarious surface conditions in simulated body fluid[J].Acta Biomater,2009,5:162–71.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700